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Abstract

In the present paper questions related to stability and boundedness with respect to manifolds
of solutions of impulsive differential-difference equations are considered. The investiga-
tions are carried out by means of piecewise-continuous functions which are analogues of
the classical Lyapunov's functions. By means of a vectorial comparison equation and dif-
ferential inequalities for piecewise-continuous functions, theorems are proved on stability
and boundedness with respect to manifolds of solutions of impulsive differential-difference
equations with impulse effect at fixed moments.

1. Introduction

A number of processes studied in physics, chemistry, biology, etc., are characterized by
the fact that at fixed moments they change their state by jumps. Adequate mathematical
models of such processes are the impulsive differential equations.

The beginning of the investigations devoted to the impulsive differential equations
was set with the work of Mil'man and Myshkis [6]. In the recent years the theory
of these equations is developing very intensively due to their numerous applications
to radio engineering, control theory, biotechnologies, industrial robotics, economics,
etc. (Bainov and Simeonov [2], Kulev and Bainov [4], Lakshmikantham, Bainov and
Simeonov [5], Simeonov and Bainov [7], Vasundhara Devi [8].)

The impulsive differential-difference equations are a generalization of the impulsive
differential equations. They are mathematical models of real processes which, besides
the change by jumps of the state, are characterized by a dependence on their prehistory.
In spite of the great possibilities for application, the theory of the impulsive differential-
difference equations is developing rather slowly (Bainov, Covachev and Stamova [1]).
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In the present paper questions related to stability and boundedness with respect
to manifolds of solutions of an impulsive system of differential-difference equations
with impulse effect at fixed moments are considered. The investigations are carried
out by means of piecewise continuous functions which are analogues of the classical
Lyapunov's functions (Simeonov and Bainov [7]).

2. Preliminary notes and definitions

Denote by R" the n -dimensional Euclidean space with elements JC =
, , . . . ,xn) and the norm |JC| = (£"= 1 xf)X'2, h > 0, <p0: [t0 - h,t0] -+ R".

Consider an impulsive system of differential-difference equations of the form

x(t) = fit, x(t), xit - h)), t T* T,-, t > t0,

xit) = <PoiO, t€[to-h,to], (1)

AX(T,) = X(T, + 0) - X(T, - 0) = /,(x(r,)), r , > t0, 1 = 1 , 2 , . . . ,

where t0 € R, / : (to, oo) x R" x R" - • K", /,: W -> R", / = 1, 2,...,

t0 = T0 < T, < . . . < T; < T/+i < . . . .

Denote by x(t) = x(t\ t0, <po) the solution of the problem (1), and by J+(t0, fo)
the maximal interval of the type [/0, co) in which this solution is defined. Let (p0 6
C[[h — h, t0], R"]. The solution x (/) = x(t; t0, (p0) of the problem (1) is characterized
by the following:

1. For t0 — h < t < to the solution x(t) coincides with the function <p0.
2. The solution x(t; t0, <p0) is a piecewise-continuous function on J+(tQ, <p0) with

points of discontinuity of the first kind r,, i = 1, 2 , . . . , at which it is continuous
from the left, that is, at the moments of the impulse effect r, the following equalities
are valid:

Ti - 0) =

x(r, + 0) = JC(T,) + /,(JC(T,)), r, ^ x, + h, I = 0, 1, 2 , . . . .

3. If for some/ = 0, 1, 2 . . . we have xt < xt + h < xi+l, i = 1,2,... , then in the
interval [r, + h, r1+1] the solution x(t) of the problem (1) coincides with the solution
of the problem

= f(t,y(t),x(t-h + O)),
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4. If r , + /i = r, for/ = 0, 1 ,2 . . . ,i = 1,2, . . . , then in the interval [T, + h, r,+,]
the solution x(t) coincides with the solution of the problem

yix, + h)= x{r, + h) + I,(X(T, + h)).

5. The function x(t) is piecewise differentiable with respect to t and x(t) =

f(t, x(t), x(t - h)) for t e J+(t0, <p0) \ ({r,}~, U {T, + A}~,).
Introduce the following notation: K+ = [0, oo), JXf is the class of all continuous

functions a: (R+ -> K+ such that a(0) = 0, Co = C[[t0 - h, t0], K"], ||<po|| =
maXje[,o_A-,o] l^oC*)! is the norm of the function <p0 e Co,

G, = {(t, x) e [to, oo) x r : T,_, < f < T,} , i = 1, 2 , . . . ,

= x(t -h),t€ Oo, oo) .

Let g: [t0 - A , o o ) x l " ^ Km (m < n). For f € ['o - h, oo) define the sets

M,(n-m) = \

= {* € K": |g(r,jc)| < a j , f € ft>, oo),

M( 0(n-m)(a) = (^)€ Co: ||^(f,^)|| = max

a = const > 0.

We shall use the following definitions of stability and boundedness (Bhatia and
Lakshmikantham [3])

DEFINITION 1. The zero solution x(t) = 0 of the problem (1) is said to be:
1.1. Stable with respect to the function g (t, x) if for any t0 e 0& and any £ > 0, there

exists a positive function 8 = S(t0, e) which is continuous in t0 for any fixed e > 0 and
such that if <p0 € Mt0(n — m)(S) and t € J+(t0, <Po), then x(t; t0, <p0) e M,(n — m)(e).

1.2. Uniformly stable with respect to the function g(t, x) if the function S in 1.1
does not depend on t0-

1.3. Globally equi-attractive with respect to the function g(t, x) if for any t0 €
K, a > 0 and e > 0 there exists a positive number T = T(t0, a, s) such that if
<p0 € Ml0(n - m)(a), then t0 + T € 7+(r0, <Po), and x(f; r0, <Po) € M,(n - m)(e) for
f G [t0 + T, oo) D J+(t0, <p0).

1.4. Uniformly globally attractive with respect to the function g(t, x) if the number
T of 1.3 does not depend on /0.

1.5. Globally equi-asymptotically stable with respect to the function g(t, x) if it is
stable and globally equi-attractive with respect to the function g(t, x).
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1.6. Uniformly globally asymptotically stable with respect to the function g{t, x)
if it is uniformly stable and uniformly globally attractive with respect to the function
g«,x).

1.7. Unstable with respect to the function g(t, x) if there exists s > 0 and t0 e K
such that for any 8 > 0 one can choose <p0 € M,0(n — m)(S) and t e J+(t0, <po), such
that \g{t,x(t\t0, <po))\ >£•

DEFINITION 2. The solutions of the problem (1) are said to be:
2.1. Equi-bounded with respect to the function g(t, x) if for any t0 € K and any

a > 0 there exists a positive function fi = P(to,a) which is continuous in t0 for
any a > 0 and such that if <p0 € M,0(n — m)(a), t e J+(t0, <po), then x{t; t0, <po) €
M,(n-m){P).

2.2. Uniformly bounded with respect to the function g{t, x) if the function yS in 2.1
does not depend on t0.

2.3. Ultimately bounded with respect to the function g(t, x) for bound N if there
exists a number N > 0 and for any t0 € (R and a > 0 there exists a positive
number T = T(to,a) such that if <pQ e M,0(n — m)(a), then to + T e J+(t0, <p0) and
x(t; t0, <p0) e Af,(n - m)(N) for ( e [ ; 0 + 7\ oo) D J+(t0, <p0).

2.4. Uniformly ultimately bounded with respect to the function g(t, x) for bound
iV if the number T from 2.3 does not depend on t0.

REMARK. If n = m and g(t, x) = x, then Definition 1 is reduced to the definition
of stability by Lyapunov of the zero solution of the problem (1) and Definition 2 is
reduced to the definition of boundedness of the solutions of the problem (1).

Together with the problem (1) we shall consider the problem

u(t) = F(t,u(t)), t ^ z i t t > t0,

O) = uo, (2)

A«(T,) = Bi(u(z,)), T, >t0, * = 1, 2

where u0 e £2, F: (t0, oo) x Q -> Kk, B,: Q ->• R*, i = 1, 2, . . . , fi is a domain in
K* containing the origin.

Denote by u{t) = u(t; t0, u0) the solution of the problem (2) and by J+(t0, u0)
the maximal interval of the form [t0, to) in which the solution u(t; t0, u0) is defined.
Introduce into Rk a partial ordering in the following way: for the vectors u, v 6 K*
we shall say that u > v if uj > Vj for each j = 1,2,. . . ,k and u > v if Uj > v,- for
each ; = 1,2, . . . , it.

DEFINITION 3. The function \fr: Q ->• K* is said to be monotone increasing in fi if
T/T(M) > V(u) for M > u and i]/{u) > \f/(v) for u > v, u, v e fi.
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DEFINITION 4. The function F: (t0, oo) x fi -*• R* is said to be quasimonotone
increasing in (/0, oo) x Q. if for any two points (t, u) and (t, v) in (f0, oo) x £2 and
for any j = 1 ,2 , . . . , k the inequality F;(r, M) > /•}(*, v) is valid only if uj = Vj
and M > v, that is, if for any fixed t € (f0, oo) and any 7 = 1,2, . . . , k the function
Fy(r, «) is nondecreasing with respect to (M1; . . . , M,_I, MJ+1, . . . , «*).

DEFINITION 5. The solution u+: J+(t0, u0) ->• K* of the problem (2) is said to be
a maximal solution if any other solution u: (to,a>) -» K* satisfies the inequality
«+(r) > u(t) for f € J+(t0, M0) n (f0, aj).

A minimal solution u~{t) of the problem (2) is defined in an analogous way.
Let e e K* be the vector ( 1 , 1 , . . . , 1) and {«: 0 < u < e} C Q. Further on we

shall consider only such solutions u(t) of the problem (2) for which u(t) > 0. That is
why the following definitions of stability and boundedness of the solutions of (2) are
appropriate:

DEFINITION 6. The zero solution of the problem (2) is said to be:
6.1. Stable if for any t0 € K and e > 0 there exists a positive function S = 8(t0, e)

which is continuous in t0 for any s > 0 and is such that if 0 < u0 < 8e and
t € J+(t0, M0), then u+(t; t0, w0) < ee.

6.2. Uniformly stable if the function <5 in 6.1 does not depend on t0.
6.3. Globally equi-attractive if for any t0 € K, a > 0 and £ > 0 there exists a

positive number T = T(t0, a, e) such that if 0 < u0 < are, then t0 + T € ^+(?o. «o)
and u+{t; f0, «o) < ee for r € [/0 + 7\ 00) n J+{t0, u0).

6.4. Uniformly globally attractive if the number T of 6.3 does not depend on t0.
6.5. Globally equi-asymptotically stable if it is stable and globally equi-attractive.
6.6. Uniformly globally asymptotically stable if it is uniformly stable and uniformly

globally attractive.
6.7. Unstable if there exists e > 0 and to e (R such that for any 5 > 0 one can

choose M0 G £2. 0 < u0 < Se and t > t0 so that the inequality u~(t; t0, u0) ft ee is
valid.

(We shall note that the symbol ^ is not equivalent to the symbol > in general, and
it means that there exists j = 1, 2 , . . . , k such that uj(t; t0, u0) > e.)

DEFINITION 7. The solutions of the problem (2) are said to be:
7.1. Equi-bounded if for any t0 e K and any a > 0 there exists a positive function

P = P(t0, a ) which is continuous in t0 for any a > 0 and such that if 0 < «0 5 <*£
and f € J+(t0, M0). then M+(f; f0, «o) < /3e.

7.2. Uniformly bounded if the function /J in 7.1 does not depend on t0.
7.3. Ultimately bounded for bound N if there exists a number N > 0 and for any

r0 € Kandot > 0 there exists a positive number T = T(t0, a ) such that if 0 < u0 < ore,
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then t0 + T e J+(t0, u0) and u+(t; t0, u0) < Ne for t e[to + T, oo) n J+(t0, u0).
7.4. Uniformly ultimately bounded for bound N if the number T in 7.3 does not

depend on t0.

Henceforth we shall use piecewise-continuous auxiliary functions which are ana-
logues of the classical Lyapunov's functions (Simeonov and Bainov [7]).

DEFINITION 8. We say that the function V: [t0, oo) x R" ->• Q, V = (Vu ... , Vk)
belongs to the class YQ if it satisfies the following conditions.

1. The function V is continuous in any of the sets G,, / = 1,2,... and V(t, 0) = 0
forr e [/o, oo).

2. The function V is Lipschitz continuous with respect to its second argument x in
any of the sets G,, / = 1, 2 , . . . .

3. For each i = 1,2,... there exist the finite limits

V(Tj -0,x)= lim V(t,x), V(ti+0,x)= lim V(t,x).
t-*zi r->r,-

«.jr)eG, 0,M)eCl + i

4. The equality V(T, - 0, x) = K(T,, X), X e W is valid.

Let V € %. For {t, x) e U~,G, we define the function

Vm(t, x) = lim sup a"1 IV (f + a, x + af(t, x, x)) - V(t, x)].
<7-»0+ L J

If x = x(t) is the solution of the problem (1), then

where D+ V(t, x(t)) is the right Dini derivative of the function V(t, x(t)).
Introduce the following conditions.
HI. The function f(t, x, x) is continuous in (r,_,, r,] x K" x K", i = 1, 2 , . . . .
H2. The function f(t, x, x) is Lipschitz continuous with respect to its second and

third arguments x and x, uniformly on t 6 (t0, oo), with a constant L > 0.
H3. f(t, 0, 0) = 0 for t e ft>, oo).
H4. The functions /,•(*), i — 1, 2 , . . . , are continuous in W and /,(0) = 0.
H5. t0 = T0 < T] < . . . < r, < T,+I <
H6. lim T, = oo.

i->oo

H7. The function g(r, x) is continuous in [t0 — h, oo) x K".
H8. The set M,(n - m) is an (n - m)-manifold in 08".
H9. The function F{t,u) is continuous and quasimonotone increasing in (r,_i, r,] x

£2, i = 1,2
H10. F(t, 0) = 0 for / e (to, oo).
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H l l . The functions V,-: £2 ->• K \ V^C") = « + B< (u), i = 1, 2, . . . are monotone

increasing in £2.

H12 . Bi(0) = 0,i = 1 , 2 , . . . .

H 1 3 . For any / = 1, 2, . . . and u; e £2 the limit

lim F(t, u)

exists.
In the proofs of the main results we shall use the following lemmas.

LEMMA 1 (Bainov and Simeonov [2]). Let the following conditions hold.
1. Conditions H9, HI 1 and H13 are met.
2. The function u+: J+(t0, u0) —>• K* is the maximal solution of the problem (2)

andu+(xi + 0) € £2 ifxt € J+(t0, u0).
3. The function w: J+(t0, u0) -*• £2 is piecewise-continuous with points of discon-

tinuity of the first kind r,-, T, 6 ^+(?o, «o)» at which it is continuous from the left and
is such that

u>(r,- + 0) e £2, r, e 7+(r0, MO).

wte + 0) < «o,

Dw(t) < F(t, w(f)) for t € 7+(f0, «o) \ {T,),

where Dw(t) is any of the Dini derivatives of the function w(t),

W(T, + 0) < ifo(tu(T,)), T, € 7+(r0, «o).

Then io(f) < M+(f), f e 7+(f0, M0)-

LEMMA 2 (Bainov and Simeonov [2]). Let the following conditions hold.
1. Conditions H9, H l l andH13 are met.
2. The function u~: J+(t0, u0) —>• K* is the minimal solution of the problem (2)

andu-fji+Q) e £2 i/r, € J+(t0, u0).
3. The function w: J+(t0, u0) —> £2 is piecewise-continuous with points of discon-

tinuity of the first kind r,, r, 6 y+Oo, M0), at which it is continuous from the left and
is such that

w{Ti + 0) G £2, for Ti e J+(tQ, u0),

wOo + 0) > M0,

Dw(t) > F(t, w(t)) for/ e J+(t0, u0), t # T,,

w(r, + 0) > ^ ( W C T , ) ) , T, e 7+(r0, «o)-

M - ( / ) , / e J+(t0, M0).
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LEMMA 3. Let the following conditions hold.
1. Conditions H9, HI 1 and H13 are met.
2. The function u+: J+(t0, u0) —> OS* is the maximal solution of the problem (2)

and u+(Ti + 0) € £2 ifx-, e J+(t0, u0).
3. The functions k: [t0, oo) -> (0, oo) and w: J+(t0,u0) —> £2 are piecewise-

continuous with points of discontinuity of the first kind r,, r, e J+(to, u0), at which
they are continuous from the left and are such that

k(t)w(t) e £2 for t € J+(t0, M0),

£(T, + 0)M;(T, + 0) 6 ft for r,- e J+(t0, uo),

k(t0 + 0)w(t0 + 0) <«O,

Dk(t)w{t) < F(r, A(0w(0) for r 6 7+(r0) iio), r # r,,

k(Ti + 0)w(.z, + 0) < t/r,(A:(r,)u;(T,)) for z, e J+(t0, uo).

Thenk(t)w(t) < u+(t)fort e 7+(?0 ,M0)-

Lemma 3 is an immediate corollary of Lemma 1.

3. Main results

THEOREM 1. Let the following conditions hold.
1. Conditions HI-HI 3 are met.
2. The function y: [t0, oo) —> [1, oo) is continuous in [t0, oo).
3. There exist functions V € % and a, b € Jtf such that

a(\g(t, x)\)e < V(t, x) < y(t)b(\g(t, x)\)e, (t, x) e [*0, oo) x K", (3)

Vw{t,x)<F{t,V(t,x)), ( * , J C ) € U ~ , G , , (4)

V(r,-+0,Jc + /,(x)) <ilr,(V(zltx)), i = 1, 2 , . . . , ^ € R\ (5)

4. y+(f0, «o) = Uo, oo).
77ien:
1. If the zero solution of the problem (2) is stable, then the zero solution of the

problem (1) is stable with respect to the function g(t, x).
2. If the zero solution of the problem (2) is globally equi-attractive, then the zero

solution of the problem (1) is globally equi-attractive with respect to the function
g(t,x).

PROOF OF ASSERTION 1. Lets > 0 be chosen. From the stability of the zero solution
of the problem (2) it follows that there exists a positive function 8* = 8*(t0, e)
which is continuous with respect to (0 e R for each e > 0 and is such that if

https://doi.org/10.1017/S0334270000000825 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000825


[9] Impulsive differential-difference equations 497

0 < M0 < 8*e and / e J+(t0,u0), then u+(t;t0,u0) < a{e)e. By condition 4 of
Theorem 1 J+(t0, u0) = [to, oo).

Let

and let cp0 € M,0(n - m)(8). It is clear that y(to)b(\\g(t, <po)l|) < 8*. From (3) there
follow the inequalities

V(to + O,<po(to)) < Y(to)b(\g(to,(po(to))\)e < y(t0M\\g(t,<p0)\\)e < 8*e.

Hence u+(t; t0, V(t0 + 0, <po(to))) < a(s)e for t > t0.
On the other hand, if x(t) = x(t; t0, cpQ) is a solution of the problem (1), then from

the conditions of Theorem 1 it follows that the function w(t) = V(t, x(t)) satisfies
the conditions of Lemma 1. Using this fact and (3) as well, we obtain

a(\g(t, x(t))\)e < V(t, x(t)) < u+(t; t0, V(t0 + 0, <po(to))) < a(s)e

for t e J+(t0, <p0)- Hence \g(t, x(t))\ < e for t e J+(t0, <p0), that is, x(t) e M,{n-
m){e) forf e J+(t0,<pQ).

PROOF OF ASSERTION 2. Let a > 0, s > 0. Introduce the notation

a* = y(to)b(a) > 0.

If the zero solution of the problem (2) is equi-attractive, then there exists a positive
number T = T(t0, a, s) such that if 0 < w0 < ot*e, then t0 + T e 7+(f0, «o) and
u+(t;t0, «o) <a(£)efort e [to + T, oo)H J+(t0, M0). Since condition 4 of Theorem 1
is met, then J+(t0, u0) = [t0, oo).

Let <p0 € M,0(n — m)(a). Then the inequality y{to)b(\\g(t, (po)\\) < a* is valid.
From the inequalities (3) we obtain

0, <po(to)) < y(to)b(\g(t0, <po(to))\)e < y{to)b{\\g{t, <po)\\)e < a*e.

Hence u+(t; t0, V(t0 + 0, <poOo))) < a(e)e for t > t0 + T.
If x{t) = x(t; t0, <p0) is the solution of the problem (1), then from Lemma 1 it

follows that

V(t, x(t)) < M+(r; t0, V(t0 + 0, <po('o))) for t e J+(t0, <p0).

From the above inequality and (3) we derive the inequalities

a(\g(t, x(t))\)e < V(t, x(t)) < u+{t; tQ, V(tQ + 0, ^Oo))) < a(e)e

forr e [to+T, oo)nj+(t0, (p0). Hence \g(t,x(t))\ < sfort 6 [to+T, oo)n/+(r0, <p0).
This completes the proof of Assertion 2 of Theorem 1.
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COROLLARY 1. Let the following conditions hold.
1. Conditions H1-H8 are satisfied.
2. The functions d: [t0, oo) ->• 0&+ and y: [t0, oo) -*• [1, oo) are continuous in

[t0, oo).
3. There exist functions V e %, a, b, c e Jff such that

a(\g(t, x)\) < V(t, x) < y(t)b(\g(t, x)\), (t, x) e [t0, oo) x 01",

V0)(t, x) < d{t)c{\g(t, x)\), {t, x) e U£,G,,

v(z, + o,x + /,(*)) < V(T,,X), i = i , 2 , . . . , x € r .

00

4. / rf(s)c 6 " 1 1 — j ds = oo for sufficiently small r) > 0.

o
77ze« r/ie zero solution of the problem (1) /s globally equi-asymptotically stable

with respect to the function g(t,x).

PROOF. Consider the scalar problem

*[»-Q)]- <-•
0 ) = M 0

without impulses (that is, /?,(«) s 0). By condition 4 of Corollary 1 the zero solution
of the problem (6) is globally equi-asymptotically stable. Then from Theorem 1 it
follows that the zero solution of the problem (1) is globally equi-asymptotically stable
with respect to the function g(t, x).

THEOREM 2. Let the following conditions hold.
1. Conditions H1-H13 are fulfilled.
2. There exist functions V € %, and a, b e Jff such that

a(\g(t, x)\)e < V(t, x) < b(\g(f, x)\)e for (t, x) e [t0, oo) x R»,

Vm(t,x) < F{t, V(t,x)), (t,x) e U,~G,,

V(T, + 0, x + /,(*)) < ^(V(T,- , x)), i = 1, 2 , . . . , x € R-.

3. y+(f0, «o) = [fo, oo).
Then:
1. //" the zero solution of the problem (2) is uniformly stable, then the zero solution

of the problem (I) is uniformly stable with respect to the function g(t,x).
2. If the zero solution of the problem (2) is uniformly globally attractive, then the

zero solution of the problem (1) is uniformly globally attractive with respect to the
function g(t,x).
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The proof of Theorem 2 is analogous to the proof of Theorem 1. We shall note
that in this case we can choose the function S* (hence the function 8 as well) and the
number T independently of t0.

THEOREM 3. Let the conditions of Theorem 1 hold and a(r) —> oo as r —> oo.
Then:
1. If the solutions of the problem (2) are equi-bounded, then the solutions of the

problem (1) are equi-bounded with respect to the function g(t, x).
2. If the solutions of the problem (2) are ultimately bounded for bound N, then the

solutions of the problem (1) are ultimately bounded for bound a~l (N) with respect to
the function g(t, x).

PROOF OF ASSERTION 1. Let a > 0. Set a* = y(to)b(a). Then from the condition
a(r) —»• oo as r —> oo it follows that a —> oo as a* —»• oo.

If the solutions of the problem (2) are equi-bounded, then there exists a positive
function fa = Pi(t0, a) which is continuous with respect to tQ for any a > 0 and is
such that if 0 < u0 < a*eandt e J+(t0, u0), thenw+(r; t0, u0) < fae. By condition 4
of Theorem 1 we have J+(t0, u0) = [t0, oo). Set p = P(t0, a) = a-l{fix{t0, a)). Let
<Po € Ml0(n - m)(a). Then Y(.h)H\\g(.t, <Po)\\) < a* and since

V(r0 + 0,^o('o)) < y(to)b(\g(to,<po(to))\)e < y(to)b(\\g(t, <po)\\)e,

then V(t0 + 0, <po(to)) < a*e. Hence u+(t; t0, V(t0 + 0, (f>o(to))) < Pie for t > t0. On
the other hand, from Lemma 1 it follows that if x(t) = x(t;t0, <Po) is the solution of
the problem (1), then V(t, x(t)) < u+(t; t0, V(t0 + 0, <po(to))) for t G J+(t0, <p0).

From (3) we get to the inequalities

a(\g(t, x(t))\)e < V(t,x(t)) < u+(t; t0, V(t0 + 0, <po«o))) <

for t € J+(to,<Po), whence it follows that \g(t,x(t))\ < a~\px) = P for t e

PROOF OF ASSERTION 2. Let a > 0 and a* = y(to)b(a). If the solutions of the
problem (2) are ultimately bounded for bound N, then there exist positive numbers N
and T = T(t0, a) such that if 0 < u0 < ae and t > t0 + T, then u+(t; t0, u0) < Ne.

Let <p0 e M,0(n — m)(a). Then y(fo)^(llg(', <Po)\\) 5 «*• From condition (3) we
derive the estimate V(t0 + 0, ^o('o)) < <x*e. Consequently

u+(t; t0, V(t0 + 0, <po(to))) < Ne for t > t0 + T.

From Lemma 1 it follows that for t e J+(to,(Po) the inequality V(t,x(t)) <
u+(t; t0, V(t0, <Po(to))) is valid, where x(t) = x(t; t0, <p0). Hence

a(]g(t, x(f))\)e < V(t, JC(O) < u+(t; t0, V(t0 + 0, «,(*„))) < Ne
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for t e [t0 + T, oo) D J+(t0, <Po) whence it follows that \g(t, x(t))\ < a'^N) for
t e[to + T, oo) n J+(t0, <p0).

THEOREM 4. Let the conditions of Theorem 2 hold anda(r) ->• oo as r ->• oo. Then:
1. If the solutions of the problem (2) are uniformly bounded, then the solutions of

the problem (1) are uniformly bounded with respect to the function g{t,x).
2. If the solutions of the problem (2) are uniformly ultimately bounded for bound

N, then the solutions of the problem (1) are uniformly ultimately bounded for bound
a~l (N) with respect to the function g(t, x).

The proof of Theorem 4 is analogous to the proof of Theorem 3. In this case the
function /S and the number T can be chosen independently of t0.

THEOREM 5. Let the following conditions hold:
1. Conditions H1-H13 are valid.
2. There exists a function k: [t0, oo) —*• (0, oo) which is piecewise-continuous

with points of discontinuity of the first kind T, at which it is continuous from the left,
k(t) -> oo as t -+ oo and £(r, + 0) > Ofor i = 1,2, . . . .

3. There exists a function y: [t0, oo) -*• [1, oo) which is continuous in [t0, oo).
4. There exist functions V € %, a, be Jf such that

a(\g(t, x)\)e < V(t, x) < y(t)b(\g(t, x)\)e, (t, x) e [r0, oo) x IT, (7)

D+k(t)V(t,x)<F(t,k(t)V(t,x)), ( M ) e U » G , , (8)

where D+k(t)V(t,x) = limsupa-i\k(t+o)V(t+a,x+of(t,x,x))-k(t)V(t,x)],

*(r, + 0) V(T, + 0, JC + /,(JC)) < ti{k{Xi) V(r,, JC)), i = 1, 2 , . . . , x e R". (9)

5. J+(to,<Po) = [to, oo).
Then, if the zero solution of the problem (2) is stable, then the zero solution of the

problem (I) is globally equi-asymptotically stable with respect to the function g(t, x).

PROOF. Let A. = inf,€[,0OO) k(t). From condition 2 of Theorem 5 it follows that A. > 0.
Let e > 0. If the zero solution of the problem (2) is stable, then there exists a

positive function S* = 8*(t0, s) which is continuous with respect to t0 e K for any
£ > 0 and is such that if 0 < u0 < S*e and / > t0, then u+(t; t0, u0) < ka(s)e.

Define S > 0 as follows:

S = S(to,£) = b-
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Let <p0 G M,0(n - m)(8). Then k(to)y(to)b(\\g(t, <po)\\) < 8*, whence by means of
(7) we deduce the inequalities

0, <flo(lb)) < k(to)Y(to)b(\g(to, <PoUo))\)e

< k(to)Y(to)b(\\g(t, <po)\\)e < 8*e.

Hence u+(t; t0, k(to)V(to + 0, <Po(to))) < A.a(e)e for t > /0- From Lemma 3 there
follows the validity of the inequality

k(t)V(t, x(t)) < u+(t; t0, k{to)V(to + 0,

for t € J+(t0, (po), where x(t) = x(t; t0, (po)- Then for t e J+(t0, <p0), the inequalities

la(\g(t, x(t))\)e < k(t)V(t, x(t)) < u+{t; t0, k(to)V(to + 0, <

are valid from which it follows that \g(t, x(t))\ < € for t e J+(t0, <Po), that is, the
zero solution of the problem (1) is stable.

We shall show that the zero solution of the problem (1) is globally equi-attractive.
Let?7 > 0. From the stability of the zero solution of the problem (2) it follows that there
exists a positive function 8* = 8*(t0, ??) which is continuous with respect to t0 € K for
any t] > 0 and is such that if 0 < u0 < 8*e and t > t0, then u+(t; t0, u0) < r\e.

Let a > 0. Choose r? > 0 so that

= fc_, / s;(t0, n) \
\k(to)y(to))'

Let cpo e M,0(n — m)(a). Then

k(to)y(to)b(\\g(t,<po)\\)<8l

whence in view of (7) we deduce the inequalities

k(to)V(to + 0, <po(to)) < k(to)y(toM\g(to, <po(to))\)e

< k(to)y(to)bqg(t,<po)\\)e < 8;e.

Hence u+(t; t0, k(to)V(to + 0, <po('o))) < ne for t > t0. Lemma 3 implies for t G
J+(t0, (po) the validity of the inequality

*(0V(r, x(t)) < u+(t; t0, k(to)V(to + 0, <po('o))),

where x(t) = x{t; t0, <p0).
From the above inequality and (7) we get the inequalities

k(t)a(\g(t,x(t))\)e <k(t)V(t,x(t))

< u+(t; t0, k(to)V(to + 0, <po(to))) < r)e,
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t e J+(t0, (p0), which imply the estimate

\g(t,x(t))\ < a~l (-2-) for t € J+(t0, <p0).

From condition 5 of Theorem 5 it follows that J+(t0, <p0) = [t0, oo).
Since k(t) -> oo as t ->• oo, then a~l(rj/k(t)) ->• 0 as t - • oo. Hence there exists

a number 7* = 7*(ro,a, £) > t0 such that if r > T*, then |g(r,;c(r))| < e. Let
T = T(t0, a, e) = T*-10. Then for t > t0 + T the inequality \g(t, x(t))\ < e is valid,
that is, the zero solution of the problem (1) is globally equi-attractive.

THEOREM 6. Let the conditions of Theorem 5 hold and a(r) -> oo as r —>• oo. Then,
if the solutions of the problem (2) are equi-bounded, then the solutions of the problem
(I) are equi-bounded and ultimately bounded for bound N with respect to the function
g(t,x).

PROOF. Let A = inf,>,0 k(t). The condition X > 0 is valid.
We shall prove that if the solutions of the problem (2) are equi-bounded, then the

solutions of the problem (1) are equi-bounded with respect to the function g(t, x). Let
a > 0. Seta* = k(to)y(to)b(a). From the condition a (r) —>• ooasr —> oo it follows
that a -> oo as a* -> oo. If the solutions of the problem (2) are equi-bounded,
then there exists a positive function /3f = /3\(to, a), continuous on t0 6 K for each
a > 0 and such that if 0 < u0 < a*e and t > t0, then u+(t; t0, u0) < \fi\e. Set
p = p(t0, a) =a~l (P^a)).

Let <po G Ml0(n - m)(a). Then

k(to)y(t0)b(\\g(t,cpo)\\)<a*

and since

k(to)V(to + 0, <po(to)) < k(to)y(toM\g(to, <po(to))\)e < k(t0)y(t0)b(\\g(t, <po)\\)e,

then
4 k(tQ)V(to + O,<po(to)) <a*e.

Hence «+(r; t0, k(to)V(to + 0, (po(to))) < kfre for f > t0.
From Lemma 3 and condition 5 of Theorem 5 there follows the validity of the

inequality

k(t)V(t, x(t)) < u+(t; t0, k(to)V(to + 0, ?>o('o))) for t > t0.

From the above inequality and (7) we deduce the inequalities

ka(\g(t,x(t))\)e<k(t)V(t,x(t))

< u+(t; t0, k(to)V(to + 0, (po(to))) < Xfae, t > t0,
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which imply the validity of the estimate

\g(t,x(t))\<a-l(fil) = p for t>t0,

that is, the solutions of the problem (1) are equi-bounded with respect to the function
g(t,x).

Let a > 0 and or* = k(to)y(to)b(a). Choose a function fi* = P*(to,a) so
that if 0 < M0 < oi*e and t > t0, then u+(t; t0, u0) < P*e. Let cp0 € M,0(n -
m)(a). Thenk(to)y(to)H\\g(t,<po)\\) < a* and k(to)V(to + O,<po(to)) < a*e. Hence
u+(t\ t0, k(to)V(to + 0, ^o('o))) < P*e for t > /0- From Lemma 3 and condition 5 of
Theorem 5 we obtain that

k(t)V(t,x(t)) < u+(t; t0, k(t0)V{to + 0, <flb(r0))) for t > to.

From the above inequality and (7) there follow the inequalities

k(t)a(\g(t,x(t))\)e < k(t)V(t,x{t)) <

< u+(t; tQ, k(to)V(to + 0, <po(to))) < P*e, t > t0,

which imply the validity of the estimate

\g(t,x(t))\<a-l(fi*/k{t)), t>t0.

From the condition k(t) —*• oo as t —> oo it follows that a~] (/$*/k(t)) —*• 0 as
t —>• oo. Consequently, if Â  > 0, then there exists T* — T*(t0, a) > t0 such that for
t > T* the inequality \g(t, x(t))\ < N is valid. If T = r(r0, a) = T* - t0 > 0, then
for t > to + T we have |g(r, x(t))\ < N, that is, the solutions of the problem (1) are
ultimately bounded for bound N with respect to the function g{t, x).

THEOREM 7. Let the following conditions hold:
1. Conditions H1-H13 are satisfied.
2. For any S > 0 and t0 € IR f/iere exifto a function (p0 e A/,0(n — m)(5) JMC/I that

3. 7/iere exist functions V € %, and a, b 6 J ^ 5MC/I

r,x) e [r0, oo) x R", (10)

Vm{t,x)>F(ttV{f,x)), (U)eU»G f , (11)

e)), i = l , 2 uR". (12)

Then, if the zero solution of the problem (2) is unstable, then the zero solution of
the problem (1) is unstable with respect to the function g(t, x).
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PROOF. If the zero solution of the problem (2) is unstable, then there exist e* > 0 and
/0 e OS such that for any S* > 0 there exists u0 e £2:0 < u0 < S*e and t* e J+(t0, u0)
for which we have

u~(t*; tQ, MO) t ee. (13)

Choose e > 0 such that a(e) < e*. Let 8 > 0. From condition 2 of Theorem 7 it
follows that we can choose a function cp0 e Ml0(n —m)(S) such that V(/0+0, <po(to)) >
0. Let S* > 0 be chosen so that 0 < S*e < V(t0 + 0, <po(to)). From Lemma 2 it
follows that for any / e J+(to, <Po) H 7+(?o, «o) the inequality

V(f,x(?)) >M~(r;/o,Mo) (14)

is valid, where x(t) — x(t; t0, <Po).
We shall prove that there exists t e J+(t0, (p0) for which |g(r, x(t))\ > e. Suppose

that this is not true, that is, for any t e J+(t0, (p0) the inequality

\g(t,x{t))\<e (15)

is valid. From inequalities (10), (14), (15), we get to

e*e > a(e)e > a(\g(t*, x(n)\)e > V(t\ x(t*)) > u~(t*; t0, u0),

which contradicts (13). Consequently, \g(t, x(t))\ > e for some t e J+(t0, <Po)-
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