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Abstract

The Blaschke–Petkantschin formula is a geometric measure decomposition of the q-fold product of
Lebesgue measure on Rn. Here we discuss another decomposition called polar decomposition by
considering Rn × · · · × Rn as Mn×k and using its polar decomposition. This is a generalisation of the
Blaschke–Petkantschin formula and may be useful when one needs to integrate a function g : Rn × · · · ×

Rn→ R with rotational symmetry, that is, for each orthogonal transformation O, g(O(x1), . . . , O(xk)) =

g(x1, . . . xk). As an application we compute the moments of a Gaussian determinant.

2010 Mathematics subject classification: primary 28A75; secondary 49Q15, 60D05.

Keywords and phrases: Blaschke–Petkantschin formula, co-area formula, polar decomposition, moments
of Gaussian determinant.

1. Introduction

Usually we need to integrate a function which has some symmetries and these
symmetries help us to compute the integration more easily or to obtain some qualitative
properties about the result. For instance, we use the well-known polar integral
formula for functions with radial symmetry. Another example is integration of a
function g : Rn × · · · × Rn→ R invariant under rotations, that is, for each orthogonal
transformation O, we have g(x1, . . . , xk) = g(O(x1), . . . , O(xk)). If k ≤ n, by a suitable
rotation we may assume that x1, . . . , xk lie on a fixed k-dimensional subspace of Rn.
Therefore it would be possible to integrate g on this k-dimensional subspace rather
than Rn. The Blaschke–Petkantschin formula, which is a fundamental relation in
stereology, helps us to do that [4, 5]. By this formula, to integrate g on Rn × · · · × Rn

we first integrate it with a special weight on L × · · · × L of all k-dimensional subspaces
L of Rn and then integrate the result on the homogeneous space of all k-dimensional
subspaces. Here we give another relation based on polar decomposition of matrices
and prove it by using the co-area formula [1, 2].

A similar problem can be posed for complex spaces: can we compute the integration
of g on Cn × · · · × Cn by integrating on Ck × · · · × Ck when g : Cn × · · · × Cn→ R is
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a rotationally symmetric function, that is, for each unitary transformation U we have
g(x1, . . . , xk) = g(U(x1), . . . , U(xn))? Note that for integration on (Cn)k we consider
this space as a real vector space endowed with the standard inner product. If we
consider (Cn)k as the space of n × k complex matrices, then the standard inner product
on it is given by 〈A, B〉 = Re tr(B∗A). The steps for solving this problem are the same
as for the real case, so we state our results in both cases, but the proofs will be given
only for the complex case.

We also give another version of the polar integral theorem and show how the
polar integral theorem implies the Blaschke–Petkantschin formula [4]. We apply
this theorem to obtain another way of computing the moments of a Gaussian
determinant [3].

Throughout this paper we use capital letters (A, B, . . .) to denote matrices;
calligraphic style (M, O, . . .) to denote sets of matrices; and small letters (u, v, f , l)
to denote vectors in Rn and Cn and maps between sets of matrices. We also use the
following notation.
• Mn×k : n × k real matrices with the standard inner product 〈A, B〉 = tr(BtA).

(MCn×k: n × k complex matrices with the standard real inner product 〈A, B〉 =
Re tr(B∗A).)

• Pk : k × k symmetric matrices. (Hk: Hermitian matrices.)
• P+

k ⊂ Pk: subset of all matrices with nonnegative eigenvalues. (H+
k ⊂Hk: subset

of all Hermitian matrices with nonnegative eigenvalues.)
• Ak : k × k antisymmetric matrices. (ACk : anti-Hermitian matrices.)
• O(n) : n × n orthogonal matrices. (U(n): unitary matrices.)
We consider the above sets as Riemannian submanifolds ofMk×k andMCk×k.

2. Polar integral theorem

Since g is invariant under rotations of Rn, we should first obtain a condition
on x1, . . . , xk and y1, . . . , yk which guarantees the existence of an orthogonal
transformation O ∈ O(n) such that O(xi) = yi for all i. This condition is 〈xi, x j〉 =

〈yi, y j〉 for all i and j. By considering n × k matrices X = [x1| · · · |xk] and Y =

[y1| · · · |yk], this condition would be XtX = Y tY . In this terminology we may consider
g as a function on n × k matrices. Therefore g is invariant under rotations of Rn if and
only if it is constant on the level sets of f :Mn×k→Pk; f (X) = XtX. Thus in order to
integrate g onMn×k it is convenient to first integrate it on the level sets of f . This can
be done by the co-area formula which is a generalisation of Fubini’s theorem [1, 2].

By the co-area formula, if n ≥ m and f : Rn→ Rm is a smooth function, then for any
smooth function g : Rn→ R,∫

x∈Rn
g(x)J f (x) dx =

∫
y∈Rm

(∫
f −1(y)

g dµn−m

)
dy,

where J f (x) =
√

det(Dx f ◦ (Dx f )∗) and dµn−m is the (n − m)-dimensional Hausdorff
measure in Rn. Note that when a surface S ⊂ Rn is an l-dimensional submanifold
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of Rn, then the l-dimensional Hausdorff measure on it is the natural measure of S as a
Riemannian submanifold of Rn.

In our problem f :Mn×k→Pk; f (X) = XtX. Therefore,∫
X∈Mn×k

g(X)J f (X) dX =

∫
P∈Pk

∫
f −1(P)

g dµ dP

=

∫
P∈Pk

vol( f −1(P))g( f −1(P)) dP.

We need only compute J f (X) and vol( f −1(P)). In the complex case f should be defined
by f (X) = X∗X.

L 2.1. Let f :MCn×k→Hk be defined by f (X) = X∗X. If λ1, . . . , λk are
eigenvalues of P = f (X) then

J f (X)2 = det(DX f ◦ (DX f )∗) = 2k(k+1) det(P)
∏
i< j

(λi + λ j)2.

In the real case where f :Mn×k→Pk; f (X) = XtX, if λ1, . . . , λk are eigenvalues of
P = f (X) then J f (X)2 = 2k(k+1)/2 ∏

i≤ j (λi + λ j) .

P. We observe that

DX f (A) = A∗X + X∗A,〈
(DX f )∗(Ã), A

〉
=

〈
Ã, DX f (A)

〉
=

〈
Ã, A∗X + X∗A

〉
= Re tr(ÃA∗X + ÃX∗A) = Re tr(A∗XÃ + A∗XÃ∗)
= 2 Re tr(A∗XÃ) =

〈
2XÃ, A

〉
.

Let lX = DX f ◦ (DX f )∗ :Hk→Hk. We have lX(Ã) = 2(ÃP + PÃ). If v1, . . . , vk are
orthonormal eigenvectors of P corresponding to eigenvalues λ1, . . . , λκ, then each of
the Hermitian operators Ãi, j,+ : Ck→ Ck (i ≤ j) and Ãi, j,− : Ck→ Ck (i < j) defined by

Ãi, j,+(vi) = v j, Ãi, j,+(v j) = vi, Ãi, j,+(vs) = 0 (s , i, j);

Ãi, j,−(vi) = iv j, Ãi, j,−(v j) = −ivi, Ãi, j,−(vs) = 0 (s , i, j),

is an eigenvector of lX corresponding to the eigenvalue 2(λi + λ j), because

lX(Ãi, j,+)(vi) = 2[PÃi, j,+ + Ãi, j,+P](vi) = 2(λ j + λi)v j = 2(λ j + λi)Ãi, j,+(vi),

lX(Ãi, j,+)(v j) = 2[PÃi, j,+ + Ãi, j,+P](v j) = 2(λi + λ j)vi = 2(λi + λ j)Ãi, j,+(v j),

lX(Ãi, j,+)(vs) = 2[PÃi, j,+ + Ãi, j,+P](vs) = 0 = 2(λi + λ j)Ãi, j,+(vs);

lX(Ãi, j,−)(vi) = 2[PÃi, j,− + Ãi, j,−P](vi) = 2i(λ j + λi)v j = 2(λ j + λi)Ãi, j,−(vi),

lX(Ãi, j,−)(v j) = 2[PÃi, j,− + Ãi, j,−P](v j) = −2i(λi + λ j)vi = 2(λi + λ j)Ãi, j,−(v j),

lX(Ãi, j,−)(vs) = 2[PÃi, j,− + Ãi, j,−P](vs) = 0 = 2(λi + λ j)Ãi, j,−(vs).
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These are k2 linearly independent Hermitian operators, so they make a complete set of
eigenvectors of lX . Therefore,

det(lX) = 2k2
∏
i≤ j

(λi + λ j)
∏
i< j

(λi + λ j) = 2k(k+1) det(P)
∏
i< j

(λi + λ j)2.

This completes the proof. �

Now we need to study the level sets of f and their metrics and measures. Since
for every U ∈ U,

〈
UA, UB

〉
= Re tr(A∗U∗UB) = Re tr(A∗B) =

〈
A, B

〉
, the left action

of U(n) on MCn×k preserves the inner product and consequently the induced metric
on each orbit is invariant under this action. Let S1 = f −1(Ik) ⊂MCn×k, Ĩ =

[ Ik
0

]
∈ S1

and define the linear map l :MCn×n→M
C
n×k by l(Z) = ZĨ. Clearly l is surjective,

l(U(n)) = S1 and l(In) = Ĩ. Therefore,

V1 = TĨ S1 = l(TIn U(n)) = l(ACn )

=

{[
A1

B

]
: A1 ∈ A

C
k , B ∈MC(n−k)×k

}
.

For each P ∈ H+
k there is a simple relation between S1 and SP = f −1(P). Suppose that

Q =
√

P. The restriction of the isomorphism h :MCn×k→M
C
n×k; h(X) = XQ to S1 is a

diffeomorphism from S1 to SP which commutes with the actions of U(n) on S1 and
SP, that is, h(UX) = Uh(X).

L 2.2. If λ1, . . . , λk are eigenvalues of P ∈ H+
k and ω1 and ωP are the measures

on S1 and SP corresponding to their induced metrics, then h∗(ωP) = Cpω1 where CP

is a constant that depends only on P. Moreover,

C2
P = 2−k(k−1) det(P)2(n−k)+1

∏
i< j

(λi + λ j)2.

In the real case where P ∈ Pk,

C2
P = 2−k(k+1)/2 det(P)n−k−1

∏
i6 j

(λi + λ j).

P. Suppose that
〈
·, ·

〉
P is the pullback of the induced metric on SP by h. Since h

commutes with the action ofU(n) on S1 and SP,
〈
·, ·

〉
P and its corresponding measure

h∗(ωP) are also invariant under this action. Because this action is transitive each
invariant measure should be a constant multiple of ω1. Thus h∗(ωP) = Cpω1 where
CP is constant. To compute CP we compare ω1 and h∗(ωP) at the tangent space of Ĩ.
For this reason we find a base for this space which is orthogonal with respect to both
metrics. Note that for each U, V ∈ V1 = TĨ S1:〈

U, V
〉

P =
〈
h(U), h(V)

〉
=

〈
UQ, VQ

〉
= Re tr(VQQtU t) = Re tr(VPU t) =

〈
U, VP

〉
=

〈
U, ProjV1

(VP)
〉
.
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The eigenvectors of the positive definite map r :V1→V1 defined by r(V) =

ProjV1
(VP) are orthogonal with respect to both metrics

〈
·, ·

〉
and

〈
·, ·

〉
P. Therefore

C2
P is equal to the product of the eigenvalues of r. By definition of r:

∀

[
A
B

]
∈ V1 : r

([
A
B

])
= ProjV1

([
AP
BP

])
=

AP + PA
2

BP

 .
Thus r is the direct sum of two operators r1 :Ak→Ak, r1(A) = (PA + AP)/2, and
r2 :MC(n−k)×k→M

C
(n−k)×k, r2(B) = BP. If v1, . . . , vk are orthonormal eigenvectors of

P corresponding to eigenvalues λ1, . . . , λκ , then, as in Lemma 2.1, each of the anti-
Hermitian operators Ãi, j,+ (i ≤ j), Ãi, j,− (i < j): Ck→ Ck defined by

Ãi, j,+(vi) = iv j, Ãi, j,+(v j) = ivi, Ãi, j,+(vs) = 0 (s , i, j),

Ãi, j,−(vi) = v j, Ãi, j,−(v j) = −vi, Ãi, j,−(vs) = 0 (s , i, j),

is an eigenvector of r1 corresponding to the eigenvalue (λi + λ j)/2. Eigenvectors of r2

are the maps B̃i,l,± : Ck→ Cn−k which are defined by B̃i,l,±(vi) = i(1±1)/2el, B̃i,l.±(v j) = 0,
and the eigenvalue corresponding to B̃i,l,± is λi. Therefore,

C2
P = 2−k(k−1) det(P)2(n−k)+1

∏
i< j

(λi + λ j)2.

This completes the proof. �

Consider again the map l :U(n)→S1 defined by l(U) = UĨ. One can apply the
co-area formula for this map to convert the integration on S1 to integration on U(n).
Note that the level sets of l are the left cosets of G where G = l−1(Ĩ) is the stabiliser
of Ĩ:

G =

[
Ik 0
0 U(n − k)

]
,

and therefore its volume as a Riemannian submanifold of U(n) is equal
to vol(U(n − k)).

L 2.3. Suppose that ω is the measure on U(n) corresponding to the induced
metric onU(n) as a Riemannian submanifold ofMCn×n. For each function g : S1→ R,∫

S1

g(X)ω1 =
2−k(n−k)

vol(U(n − k))

∫
U(n)

g(l(U))ω.

In the real case, if ω is the standard measure on O(n), then∫
S1

g(X)ω1 =
2−k(n−k)/2

vol(O(n − k))

∫
O(n)

g(l(O))ω.
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P. By the co-area formula,∫
U(n)

g(l(U))Jl(U)ω =

∫
S1

(∫
l−1(X)

g(X)ωX

)
ω1 = vol(G)

∫
S1

g(X)ω1,

where Jl(U)2 = det(DU l ◦ (DU l)∗). Since the left action of U(n) on U(n) and S1

preserves their metrics and l commutes with these actions, Jl is constant. We compute
it at the point U = In. Note that l = DIn l : TInU(n) =An→ T ĨS1 =V1, so for each
V ∈ An and W ∈ V1,〈

V, (DIn l)∗(W)
〉

=
〈
DIn l(V), W

〉
=

〈
VĨ, W

〉
= Re tr(WĨ∗V∗)

=
〈
V, WĨ∗

〉
=

〈
V, ProjAn

(WĨ∗)
〉

=

〈
V,

WĨ∗ − ĨW∗

2

〉
.

Therefore, letting r = DIn l ◦ (DIn l)∗ :V1→V1,

∀

[
A
B

]
∈ V1 : r

([
A
B

])
=

[
A

1
2 B

]
.

Clearly, det(r) = 2−2k(n−k). This completes the proof of the lemma. �

C 2.4. ConsiderU(n) and S 2n−1 ⊂ Cn with their standard metrics and define
vol(U(0)) = 1. Then

vol(S1) = 2−k(n−k) vol(U(n))
vol(U(n − k))

,
vol(U(n))

vol(U(n − 1))
= 2n−1 vol(S 2n−1).

In the real case, by defining vol(O(1)) = 2, vol(O(0)) = 1 and vol(S 0) = 2,

vol(S1) = 2−k(n−k)/2 vol(O(n))
vol(O(n − k))

,
vol(O(n))

vol(O(n − 1))
= 2(n−1)/2 vol(S n−1).

P. The first equation is the direct result of the previous lemma. For the second, let
k = 1 in the first and note thatMCn×1 is Cn with the standard metric and S1 = S 2n−1. �

Now we have enough tools to prove the polar integral theorem.

T 2.5 (Polar integral theorem). Denoting the volume of Si by σi and induced
measures on U(n) ⊂MCn×n and S1 ⊂M

C
n×k by ω and ω1, for each integrable function

g :MCn×k→ R and ψ :Hk→Hk:

(1) ∫
MCn×k

g(X) dX = 2−k2
∫
H+

k

(∫
S1

g(X
√

P)ω1

)
det(P)n−k dP

= Cc

∫
H+

k

(∫
U(n)

g(UĨ
√

P)ω
)

det(P)n−k dP,
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where

Cc =
2−kn

vol(U(n − k))
= (2(n(n+1)+k(k−1))/2σ2(n−k)−1 · · · σ1)−1;

(2) ∫
MCn×k

ψ(X∗X) dX = 2k(k−1)/2σ2n−1 · · · σ2(n−k)+1

∫
H+

k

ψ(P) det(P)n−k dP

=
σ2n−1 · · · σ2(n−k)+1

σ2k−1 · · · σ1

∫
MCk×k

ψ(Y∗Y) det(Y∗Y)n−k dY.

In the real case, where ω and ω1 are measures on O(n) ⊂Mn×n and S1 ⊂Mn×k:

(1) ∫
Mn×k

g(X) dX = 2−k(k+1)/2
∫
P+

k

(∫
S1

g(X
√

P)ω1

)
det(P)(n−k−1)/2 dP

= Cr

∫
P+

k

(∫
O(n)

g(UĨ
√

P)ω
)

det(P)(n−k−1)/2 dP,

where

Cr =
2−k(n+1)/2

vol(O(n − k))
= (2(n(n−1)+k(k+3))/4σn−k−1 · · · σ0)−1;

(2) ∫
Mn×k

ψ(XtX) dX = 2−k(k+3)/4σn−1 · · · σn−k

∫
P+

k

ψ(P) det(P)(n−k−1)/2 dP

=
σn−1 · · · σn−k

σk−1 · · · σ0

∫
Mk×k

ψ(Y tY) det(Y tY)(n−k)/2 dY.

P. Using the above results, by applying the co-area formula to the function
g(X)/J f (X) instead of g,∫

MCn×k

g(X) dX =

∫
H+

k

∫
Sp

g(X)
J f (X)

ωP

 dP

=

∫
H+

k

∫
S1

g(X
√

P)

J f (X
√

P)
Cpω1

 dP

= 2−k2
∫
H+

k

(∫
S1

g(X
√

P) det(P)n−kω1

)
dP

=
2−kn

vol(U(n − k))

∫
H+

k

(∫
U(n)

g(UĨ
√

P)ω
)

det(P)n−k dP.

Part (2) is the direct result of part (1). �
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3. Some remarks and applications

3.1. Another version of the polar integral theorem The polar integral theorem for
k = 1 says that ∫

Rn
g(x) dx = 2−1

∫
y∈S n−1

∫
p∈R+

g(y
√

p)p(n−1)/2 dpω1.

This is exactly the well-known polar integral but for variable p = r2. By change of
variable,

2−1
∫

y∈S n−1

∫
p∈R+

g(y
√

p)p(n−1)/2 dpω1 =

∫
y∈S n−1

∫
r∈R+

g(yr)rn−1 drω1.

One can write the polar integral theorem for the variable Q =
√

P. If l :H+
k →H

+
k is

defined by l(Q) = Q2, then dP = det(DQl) dQ. But DQl(A) = QA + AQ. Thus, as in the
proof of Lemma 2.1,

det(DQl) = 2k det(Q)
∏
i< j

(µi + µ j)2,

where µ1, . . . , µk are eigenvalues of Q. So∫
MCn×k

g(X) dX = 2−k2+k
∫
H+

k

(∫
S1

g(XQ)ω1

)
det(Q)2(n−k)+1

∏
i< j

(µi + µ j)2 dQ

= 2kCc

∫
H+

k

(∫
U(n)

g(UĨQ)ω
)

det(Q)2(n−k)+1
∏
i< j

(µi + µ j)2 dQ.

In the real case,∫
Mn×k

g(X) dX = 2−k(k−1)/2
∫
P+

k

(∫
S1

g(XQ)ω1

)
det(Q)n−k

∏
i< j

(µi + µ j) dP

= 2kCr

∫
P+

k

(∫
O(n)

g(UĨQ)ω
)

det(Q)n−k
∏
i, j

(µi + µ j) dP.

3.2. Blaschke–Petkantschin formula The polar integral theorem in the real case
includes the Blaschke–Petkantschin formula as follows. The left action of O(n) on
S1 is transitive and the right action of O(k) on S1 is proper and free. These actions
commute with each other and preserve the metric of S1. Therefore S1/O(k) is a
homogeneous space and its induced metric and measure are invariant under the natural
action ofO(n). We denote this measure by α. This is the uniqueO(n)-invariant measure
on S1/O(k) such that vol(S1/O(k)) = vol(S1)/vol(O(k)). Considering each element
of S1 as k orthonormal vectors in Rn, each O(k)-orbit consists of all k orthonormal
vectors spanning the same k-dimensional subspace of Rn. So S1/O(k) is the space
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of k-dimensional subspaces of Rn, which is denoted by Lk. For each k-plane L ∈ Lk,
fix an element S L ∈ S1 with columns in L. Note that l : O(k)→S1, X→ S LX is a
metric-preserving map, because it is a restriction of a metric-preserving linear map
X→ S LX fromMk×k toMn×k. Thus∫

S1

g(X)ω1 =

∫
L∈Lk

(∫
O∈O(k)

g(S LO)ω
)
α̃,

where ω is the standard measure on O(k) and α̃ is a unique O(k)-invariant measure
on Lk such that vol(Lk) = vol(S1)/vol(O(k)). Therefore, α̃ = α. The polar integral
theorem for n = k says that∫

Mk×k

g̃(X) dx = 2−k(k+1)/2
∫
O(k)

(∫
Pk

g̃(O
√

P) det(P)−1/2 dP

)
ω.

Letting g̃L(X) = g(S LX) det(X)n−k in the above equation,∫
Mn×k

g(X) dx = 2−k(k+1)/2
∫
S1

(∫
Pk

g(Y
√

P) det(P)(n−k−1)/2 dP

)
ω1

=

∫
L∈Lk

2−k(k+1)/2
∫

O∈O(k)

∫
Pk

g̃L(O
√

P) det(P)−1/2 dPωα

=

∫
L∈Lk

(∫
Mk×k

g̃L(X) dX

)
α

=

∫
L∈Lk

∫X=[x1 |···|xk]
x1,...,xk∈L

g(X) det(XtX)(n−k)/2 dx1 · · · dxk

 α.
Since det(XtX)1/2 is k! times the k-dimensional volume of the k-simplex with vertices
O, x1, . . . , xk, the above relation is the Blaschke–Petkantschin formula.

3.3. Moments of the Gaussian determinant As an application of the polar integral
theorem we will compute the moments of the Gaussian determinant.

T 3.1. If ∆k is the determinant of a k × k random matrix with independent
Gaussian entries, then, for each l ≥ 0,

E(|∆k|
l) = (2π)kl/2

k∏
i=1

vol(S i−1)
vol(S l+i−1)

= 2kl/2
k∏

i=1

Γ((l + i)/2)
Γ(i/2)

.

P. Let ψ(P) = e−tr(P)/2. By Theorem 2.5,∫
Mn×k

e−(
∑k

i, j=1 x2
i j)/2 dX =

∫
Mn×k

ψ(XtX) dX = C
∫
Mk×k

ψ(Y tY)|det(Y)|n−k dY

= C
∫
Mk×k

e−(
∑k

i, j=1 y2
i j)/2|det(Y)|n−k dY,
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where

C =
vol(S n−1) · · · vol(S n−k)
vol(S k−1) · · · vol(S 0)

.

Since ∫
Mn×k

e−(
∑k

i, j=1 x2
i j)/2 dX =

(∫
R

e−x2/2

)nk

= (2π)nk/2,

we obtain

C−1(2π)(nk−k2)/2 = (2π)−k2/2
∫
Mk×k

e−(
∑k

i, j=1 y2
i j)/2|det(Y)|n−k dY = E(|∆k|

n−k).

Considering the well-known relation vol(S n−1) = 2πn/2Γ(n/2)−1, the proof of the
theorem is complete. �
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