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NAVIER STOKES DERIVATIVE ESTIMATES
IN THREE DIMENSIONS WITH
BOUNDARY VALUES AND BODY FORCES

Dedicated to P.G. Rooney in celebration of many years of friendship

G. F. D. DUFF

ABSTRACT.  For a vector solution u(x, f) with finite energy of the Navier Stokes equa-
tions with body forces and boundary values on a region Q C R3 fort > 0, conditions
are established on the L%/5 () and L*(2) norms of derivatives of the data that ensure
the estimates || D/ DS u|| € L24r+2=D7"' (0, T) and max,eq |DIDSu| € L2+ (0, T),
up to any given integer value of the weighted order 2r+s, where rors = sy +s2+53 > 0
and 0 < T < oo.
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Chapter I. Non-homogeneous data

1. Introduction. Among the classical equations of applied mathematics and math-
ematical physics, the Navier Stokes equations in three space dimensions retain particular
interest because the standard initial and boundary value problem for them has not been
shown to be correctly posed in every respect. Indeed solutions with finite kinetic energy
which develop singularities over time, and may be non-unique, are believed to exist. Al-
though no completely satisfactory explicit example has yet been found, interesting cases
that come very close to fulfilling all the conditions are discussed in [2,4,9,10,12]. The
existence of long-time weak solutions in Hilbert space has been demonstrated [9], and
these become smooth under a certain condition of small magnitudes [6,10,13]. The set
of singular points in space-time has been shown to have Hausdorff dimension at most 1,
and to have one-dimensional Hausdorff measure zero [2,12]. Solutions with singularities
may be related to such physical motions as tornadoes.

In these circumstances interest will naturally attach to the general properties of solu-
tions with finite energy. A first step of this kind was taken in [5] wherein the existence of
energy-type estimates for higher space derivatives of solutions was shown for the case of
a three-dimensional periodic parallelepiped or 3-torus. For the general initial value prob-
lem in three space dimensions, but with zero boundary values and body forces, higher
order estimates for all space and time derivatives were found in [4] as follows:

Let u(x, t) be a vector solution of the homogeneous Navier Stokes equations with finite
kinetic energy on a three-dimensional region €2, which vanishes on dQ2 and is smooth
except on a singular set of dimension 1 in space-time. Then the L?(Q) norm of D/D’u is
integrable to the power 2(4r+2s — 1)~! over every finite time interval (0, T), where r or
§ = 51+ 52 + 53 is a positive integer, and max,co |D?DSu| is integrable over (0, T) to the
power 2r+s+ 1)1, where r,s = 0,1,2,....

The present paper is concerned with the related higher derivative estimates, condi-
tions, and results that apply when non-zero boundary values and body forces are intro-
duced. The theorem is stated in §4 below, but certain preliminary comments may be
appropriate here. As shown in [4] the finiteness of the kinetic energy, or initial value
norm || u||,, with other data zero, is sufficient to ensure the higher derivative estimates of
every order of derivatives, with the condition that the integrability over time decreases as
the derivative order increases. For non-homogeneous boundary values and body forces,
however, a cuamulative sequence of hypotheses on corresponding derivatives of the data
will be appropriate. This reflects the situation that, whereas initial values will exert their
influence once for all at time zero, and then be left behind in the past, the boundary val-
ues and body forces, by later behaviour, or by developing singularities of some degree,
can influence the later character of the solution to an extent not foreshadowed by earlier
behaviour. This aspect will be considered again in the discussion of the main lemma on
integrability of § 5.
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2. The Navier Stokes Equations. Let x; (i = 1, 2, 3) denote Cartesian coordinates
in R? and let ¢ denote the time variable. Let u;(x, f) be the vector field of velocity com-
ponents of a fluid flow, and p(x, f) be the pressure. The constant viscosity coefficient is
denoted by v. Let B;(x, ) denote a vector field of imposed body forces. Then the non-
homogeneous Navier Stokes equations are
2.1) %+ukg—;§ = —g—Z+VAu,+B,-(x,t)
where i = 1,2,3 and summation over k = 1,2, 3 by the Einstein convention is under-
stood for repeated indices.

The differential dx shall denote the volume element dx;dx,dx3;, while the Laplace
operator in R? is denoted by A = 33, g?. We shall also assume that the equation of

continuity, or incompressibility,
du;
2.2) divu = Z a: -
holds in the above homogeneous form. The four equations for the unknowns u; and p

(the latter up to an additive constant) form a semi-linear elliptic-parabolic system.
Three initial conditions are appropriate:

2.3) ui(x,0) = uj(x)
where ug(x) = {u;0(x)} is a given solenoidal vector field of integrable square on a given
region
2 3 2
2.4) luoll = 3 [ Ju(]?dx < oo.
i=1

We assume throughout the boundary 0 satisfies a weak cone condition and is piecewise
C*> with a finite number of edges or corners in any bounded subregion, and that dQ is
not too tightly coiled or layered at large distances as in (4.3) of [4] if Q is unbounded.
The boundary conditions shall be

2.5) ui(x, t) = wix, 1)

for x € 0Q, where w;(x,?) is a given vector field defined on dQ and in £, subject to
conditions as stated below, and such that in Q

2.6) divw = z %‘;’ -
Taking the divergence of (2.1) we find
ouy du; 0B;
: = -3+ 3 = —(mudi +Bi;
2.7 Ap o In, + e (uxui) ik + B,
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where the subscript commas denote partial derivatives with respect to the indices fol-
lowing. Letting x approach the boundary we obtain the boundary relations for p:

aW,' aui _ ap ) )
(28) W"’Wk—a?k—— g\‘l—"f'l/Aul'FB,.

Let us set
(2 9) u=vi+w;

so that on Q2 we have

(2.10) vi=0.
Then also in Q
2.11) vii=uji —wi; =0
and on 0Q2
8v,- av,’
Wi=— = Wp=—
kaxk " on

where n = {n;} denotes the unit normal to <, and d/ dn the normal derivative. Also
in view of (2.10) and (2.11) we have on 0<2, with a suitable coordinate system as in [4,

§10],
TR COSNE 7 S
2.12) & kaxk~ "\ 9n ‘on/ " on
’ ——w(%+%)-0
B " Bxl axZ N

where n, x; and x, denote suitable coordinates locally normal and tangent to d<2, see (4,
§10]. Hence the normal component of (2.8) yields the Neumann type boundary condition
dp _ dwy, owy

—=— — niwg=— +vnAv; + vnAw; + B,,.
on ot

ax,-
Estimates of the potentials arising as solutions of the boundary value problem (2.7) and
(2.13) will be given in §9 below. Here we merely note that the standard necessary con-

dition for the consistency of this Neumann problem for p can easily be verified from the
conditions listed above.

(2.13)

3. Analytical Preliminaries. The Lebesgue space LP(€2) will denote the vector (or
sometimes scalar) functions on Q with finite norm || 4| ,, where

3
3.1 llull2 = /Qizzl|u,-(x,t)lpdx.

Throughout, these norms become functions of the time . We set

3
3.2 ,V) = vid
3.2) (u,v) /(;;uv by
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and observe by Holder’s inequality that

(3.3) [, )] < lullp VIl

where }, +1 =1, p> 1,4 > 1sothat p and g are dual indices. As well, we em-

ploy Young’s inequality [7, Theorem 37], equivalent to the theorem of arithmetic and
geometric means,

<

& bl
3.4 ab< —+ —
P 9
where a > 0, b > 0. By an extension to a product of several variables, we have as well
n 1 .
3.5) a..tn <Y~
Jj=1 Pj

where p; = 7“,/’ W = Zj’.‘zl wj. Here the weight w; > 0 may be attributed to g; so that
each term on the right side has weight p;w; = W. As in [4] we also use the inequality

(3.6) WA Sn(éaf/q)q

whereaq; > 0,j = 1,...,nand p > 0, g > 1, easily shown by comparing with
n(max a;).
We shall frequently use the Sobolev inequality

1

3.7) Il < C(UOwlp+liwly). 2= =3>0

1 1
p 3
where C is constant for each p < 3 [1]. Here V u denotes %f regarded as 9 components
of a tensor in R*. The cases, p = 6/5,q = 2and p = 2, ¢ = 6 are most frequently

employed. For g = 0o we use the inequality, see [1, p. 718; 4, § 2]
3.8) max u] = [|uflso < C(llullg’* [V llg’* + l1ul).
In the Hilbert space L*(Q2) a vector field w;(x) can be expressed as a sum of gradient
and solenoidal components:
(3.9 wi(x) = vi(x) + V¢ (x)

where v;;(x) = divy = 0in Q and v, = vin; = 0 on dQ. It follows that these two
components are orthogonal with respect to the inner product (3.2) [9]. The solenoidal
part Au; of Au; is known as the solenoidal Laplacian or Stokes operator [9, p. 44], while
the gradient part Vf, with

(3.10) Au; = Au; + V f,

defines the viscosity potential f corresponding to u;, up to an additive constant [4]. Note
that A is a globally supported operator on vectors: Au; = (Au); in contrast to the pointwise
operator A on components ;.
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As shown in [1] there is a special Sobolev inequality of the form
(.11 IDewlls < C(IlDewllz + | Diwll2),

where we have used DS to denote the s™ order Cartesian derivative and ||Diw||; =
Ysiasass=s | DY D3 DS w|5. Then (3.8) becomes

1/2 1/2
(3.12) max |w| = Wl < C(IDawlly | D2wlly"* + || Dawllz + (| wll2)-

If (2.11) holds and v vanishes on 0£2, we also note, using gradient notation

1V vlls < C(I1D*]l2 + 1|1 DVIl2)

by (3.11)
< c(lavlz + 1V v]2)
by [9, p. 21]
< C(I1AVl2 + IV £ll2+ 1V v]l2)
by (3.10)

~ ~ 1/2 1/2
< C(I&v]lz + | &)l 2110 vl + 1197 v]12)
by [4, Lemma 2]. Hence
(3.13) 1Vylle < C(1Av2 + |V v]2)

Similarly, if D?, denotes partial differentiation of order s = o; + a, with respect to
tangential coordinates defined as in [4. Chapter III], it can be shown as in Lemma 1 of
that paper that

IV Divlls < C(IADL V] + X 1V DRvIL)
B<a
where 31 + 3, = m, B; < «;.

4. Statement of the Theorem.

The conditions that a solution of (2.1)—(2.5) can be expected to satisfy are at best
those of the theorem in [4] on initial values, for non-homogeneous data functions can
not, a priori, be expected necessarily to reduce or remove singularities that can only
be located, if they exist, by the construction of the solution itself. The problem now
becomes the specification of conditions for boundary value and body force data that will
at least preserve the same behaviour of the solutions. That this is possible is shown by
the following

THEOREM. Let uy € L*(Q) and let r,s be non-negative integers, p an odd positive
integer. Then if Q is bounded,
(a) if ||wll2, |Dawll2 € L*O,T), and ||wille/s.
L>®(0,T) and ||V ul|» € L*0,T).

|Blle/s € L*0,T) then ||ull, €
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(b) iffor a given odd value of p > 1 we also have, forr > 0, s > 0,

@) 1D Diwle/s € LHO.T), 2145 < 30— 1)

@n il € 120, 1Dl € LE O, 0<5< 1o +1)
and

@.3) IDID3Bleys € LETQO,T), 245 < 30— 1)
then

(4.4) | D;Diu||, € L7 (0,T), 0< 2r+s< %(p +1),
and

4.5) max |D[Dlu| € L= (0,T),  2r+s< %(p —-3)

(c) if for all finite p > 2 we have forr > 0,5 > 0
| DiDywlle/ s |

Diwll2, || DIDyBll; s € LP(0, T),

then w and B are C**(Q x (0,T)) and (4.4) and (4.5) hold for all r,s > 0.
If Q is unbounded, p should be replaced by p +2 in(4.1), (4.2) and (4.3) of (b).

Proof of this main result will occupy the rest of this paper, frequent reference being
made to the calculations of [4].

Conditions (4.1) and (4.3) also imply certain bounds in L2(0, T). By (3.7) withp = g,
we may write

(4.6) ID/Diwllz < CLIDID ey s + | DiDwley 5}

for r > 0, s > 0. By (4.1) the first term on the right side is in Lﬂ%(o, T)for2r+s <

%(p + 1) while the second term is in Lt O, T)for2r+s < %(p + 3) and consequently
alsoin L5 (0, T) for the same values of r and s. Hence we find, with the given condition

(4.2), that

@.7) ID/Diwl € LET O, 2r4s < S(o+ 1),
Similarly

4.8) |1 D/D3B|l» < C{||D;D"' Bllg;s + | D;D}Blle 5}

where r > 0, s > 0. Again, the first term is in L% (0,T) for 2r + s < L(p — 3) while
the second term is in L7 (0, T) and hence also in L7575 (0, T) for 2r + s < L —1.
Thus we find

o 1
4.9) |D'DEB|, € L#55(0,T),  2r+s< 50 =3).
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Henceforth it will be convenient to regard (4.7) and (4.9) on the same footing as (4.1)-
(4.3), the hypotheses of part (b) of the Theorem.

Although slightly different versions or groupings of the hypotheses and conclusions
for derivatives of various orders are possible, we have chosen what appears to be the sim-
plest grouping of partial derivatives, namely according to their weighted order 2r + s =
2r + 51 + 52 + s3. For each level p = 1,3,5, ..., all the conditions for the preceding
weighted orders are understood to apply also, and are used in the reduction of the in-
equalities that forms the main part of the following proof. Thus when p and s = s, +s2+53
are given in (4.1)—(4.3) it suffices [7, Theorem 222] to consider only the highest value
of r, namely r = [%(p -1) - %s]. Likewise for given p and r it suffices by the em-
bedding theorems to consider only the three highest integer values of s for compact £2.
Although higher values of p appear for lower order derivatives as p increases, the entire
scale from L2(0,T) to L*°(0, T) is equivalent in the sense of embeddings to half of one
time derivative only.

5. Anextended Integrability Lemma. The method to be used below depends on a
sequence of inequalities, one for each order of derivatives. With part 5) of the following
lemma these can be used to deduce properties of integrability. The lemma, stated in full
for completeness, is an extension to non-homogeneous inequalities of Lemma 3 of [4],
see also [5] and [7, p. 114, 126 and 173]. Throughout assume all functions measurable:
Q(t) will denote a generic function in L'(0, 7).

LEMMA 1. Leta> 1,p > 0,F(t) > Fy > 0, F(t) € LP(0,T), F(t) continuous where
finite, G(t) > 0, Q(t) € L'(0, T) and Q(t) > 0. Let F'(t) be defined a.e. and satisfy

5.1 F (0 +G(t) < KF**P(t) + CF*(1)Q(1).

Then
1) F'"%(¢) has bounded variation on [0, T), with non-decreasing singular part.
2) The discontinuities at Ty of F'~%(t) are jumps up from value zero (F(Tk) = oo)
and the sum ¥y F'~%(Ty + 0) is bounded.
3) Ast — T, — 0, F(t) > yk(t)“_""’)_l where yi(t) denotes the minimal retrograde
solutionof y = —(a+p— D[K + CQ(t)y;L_‘] which vanishes at Ty.

4) Also
T G(1)
— ZF‘ Ty +0) + -
(5.2) a—1 0 Fa(t) .
<K/ F(t)Pdt+C/ Q(t)dt+ (T)
so that G(t) < C1F(t)Q1(t) where Q,(1) € L'(0, T).
5) Hence G(t) € LB;LP(O, T) and
T af—p T —p_ T p F(l)'”
(5.3) fo G() dtS(K+1)/0 F"(t)dt+a+pf0 O dr+ o
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6) Finally, N(t) = CF*(1)Q(t) € L# (0, T) with

a

T 2 T pC (T
/0 N(t)#s dt < / F(t)”dt+m /0 @) dt.

a+pJo

PROOF. Omitting the non-negative term G(¢) from the inequality, dividing by F*(z)
and expressing the left side as a perfect differential we find

1 d 1—a _ _
— o F 0 2 —KP() - CO.

The right hand side being integrable over ¢, we see that the negative variation Ng(¢) of
F'=4(t) [14, p. 18] is continuous and bounded over [0, T]. Hence the positive and total
variations of F1=%(¢) are also bounded over [0, T]. This proves 1).

Since F(t) is continuous where finite, F!%(¢) can be discontinuous only at the level
zero. As the range covers non-negative values only, the jump must be up; the sum of these
jumps cannot exceed the positive variation of F 1=a(1), which is bounded over [0, T] as
above. This verifies 2).

To establish 3), we again omit G(f) from the main inequality and divide by F**7(r)
obtaining

Z;{t F'=P() > —(a+p — 1)K + CFP()Q(1)].

The comparison of F!=97P(t) with y,(¢) is then immediate and F!~%7P(t) < y(t) for
t < Ti. This proves 3).

Returning to the main inequality we divide by F¥(¢) and integrate over (Ty—;, Tx) where
Ty = 0. Extending the interval of integration on the right to 7, where T} < T for all k, and
summing over k, we find the inequality in 4). This gives an explicit estimate for the sum
(see 2) above) and shows that the integral is convergent. Hence G(£)F~%(t) € L'(0,T),
completing the proof of 4).

Now with Holder’s inequality 5) is established as follows:

£
T 2 T G(t)ﬂ+p ra
| 6= [ =g Fays i

(t)a+P
< ([ rora)® ([ 22 a)*
p (TGO
a+pJo F(r)e

a T
<
< /o F(t)’ dt +

a+p
by Young’s inequality (3.4) with p replaced by (a + p)/ a and ¢ by (a + p)/ p. Finally
T 2 2 (T ap 2
[0 N@)# dt < C# /0 F(t)#s Q(t)# dt
T =T
< Ce ( /0 FGy dt) ’ ( /O 01 dt)

by Holder’s inequality once again, so implying 6) and completing the proof of Lemma 1.

L2
a+p
< 00
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Note that when C = 0, part 3) goes back to [10, p. 224]. When C # 0, the singularity
of F(t) has the same order if Q(¢) is bounded, but may be lower if Q(¢) is unbounded
as t — T, — 0. Since the inequality (5.1) is not integrable over (0,7) as it is given,
the question might arise, why the hypothesis N(f) < CF(¢)*Q(t) is appropriate. This
is, however, the best condition possible if we are to be able to integrate after division by
F(1)*. If F(¢) should have a singularity, say at 7', then a higher than integrable singularity
becomes possible for N(r) at T, since Q(¢) may also be singular at 7;. However we do
not know in practice when singular instants may occur, so it is assumed not possible
to predict such a coincidence of singularities of F(¢) and N(), as a hypothesis. If there
is no singularity of F(¢) at a given time, then any singularity of N(¢) at that instant is
restricted to be integrable. In the applications, this restriction of unpredictability also
involves causality, for the occurrence of singular instants will be influenced in part by
the prior behaviour of the impressed forces represented by N(f) = CF*(¢)Q(¢) in the
inequality (5.1).

Chapter II. Time derivatives of the gradient and Stokes operators

6. The sequence of inequalities. With u; = v; + w; as in (2.9) the Navier Stokes
momentum equations become

(6. 1) Vig ¥ Wip +ViVig +WiVig + VWi + WiWigp = —p i + I/AV,' + I/AW,‘ + B,<(x, t).

We multiply by v;, contract over index i and integrate over €2, obtaining

1d »
—2-Zl—t||v||2 +va,~w,;,dx+v/Q ViVikVik dx+/ﬂv,~wkv,',kdx
(62) +/;2v,-vkw,-,kdx+]gv,-wkw,~,kdx
= —/Qv,p,,-dx+l//Qv,-Avidx+l//ﬂv,-Awidx+/Qv,-B,~dx.
In view of (2.2) and (2.6) we have vix = ugx — wix = 0 so the third term on the left is
1 1
(6.3) /Qvivkvi,k dx = E/ka(v?)vkdx = —E/QV,(,,((vf)dx =0

and the fourth term on the left of (6.2) likewise vanishes.
The second term on the left is estimated by

| vowicds| < vl Iwileys < I vla lwile s
6.4) < SIVVIE +Killwll s

in view of Sobolev’s and Young’s inequalities.
Now [q vip,idx = 0 by the orthogonality of v; to gradient fields, while

v
] A v,Awidx‘ - | A vv,-vw,-dx[ < SV 3+ Kol D3
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and
| viBid| < [l I1Bll 5
(6.5) < C|IV |2 ||Blless
174
< SIVl + KBl 5
Also
[ vitvide = = [V dx = —|[ V|3
and
| vivewie d < 1vlle [1vlls | Dawl:
1/2 1/2
< IVl Illg" I, 2| Dawll
3/2 1/2
(6.6) < Vvl vl 2 Dawl
14
< 76Vl + Kal 2 Dol

by Young’s inequality with exponents 3 and 4. Similarly,

©€7) | [ vmwisds] < 1vlls lwlls 1Dl

12, 1/2
< Cllvllg’ vl I Dawla + [ wll) [ Dol
12 1/2
< IV vl Vil I Dowl]3 + (w13
v 2/3 8/3 8/3
< el VI + Ksllvlla *Dowlly” + 1wl ")
14
< T IV l3+ Kol + 1Dawll + 1wl
where Young’s inequality has been used twice, with exponents 4 and 43, then with ex-
ponents 3 and 2. Two integrals containing v;vix = 3(vi)} vanish, by (2.6) and (2.11).
Assembling these estimates, we find, after multiplication by 2 and certain cancellations

d
(6.8) ZIIZ + V3 < AMIEADw]lz + D+ M)
where
(6.9) Ni(t) = C{l|Dwll3 + | Dwll3 + | wll3 + | willd;s + 11BIIG s }-

By hypothesis (a) C||D,w|3 € L'(0,T). Hence the integrating factor
exp(—C RAIDwl||3 + 1) dr ) is bounded above and below by positive constants:

t
(6.10) 0< A <exp(— [ C(IDawli +Dr) < Az

for0<t<T.
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We may omit the second term on the left of (6.8) and find an explicit bound for the
resulting first order linear differential inequality for || v||3:

t
I3 < Ivoll3 exp (C [dIDawl3 + 1))
t t
©.11) + [Cexp (C [[(IDwll3 + Dl )Ni(r) dr
_ A
§A11l|v0|]22+A—j/(; Ni(r)dr.

By hypothesis (a), N| (1) € L'(0, T) so this expression is uniformly bounded on 0 < ¢ <
T. Hence ||v||2(r) < Ko, say, in this range.
Returning to the inequality (6.8) we can now integrate it directly, and so find

T T T
MIZ +v [TV VI3t < CKo [ (IDawli3 + D+ [ Niceyde + [[woll3

S K7< 0Q.

(6.12)

Hence ||V v||, € L%(0, T) as required. This completes the case (a) of the Theorem.
To establish the second inequality, multiply (6.1) by Av; and integrate; obtaining

1d ~ X
_EE“V‘)HZZ + /;IAviwi,,dx + LAVinVi,k dx
(6.13) + /Q&v,wkw_k dx + /;z Aviviwi dx + /Q Aviwiwix dx

=— /ﬂ Avipdx +v fﬂ AviAvi dx +v /Q AviAw; dx + L Av;B; dx.
Detailed reductions of the terms are as follows:
~ ~ 1 24 ~
| Bviwisds| < 1Bl llwil < T2l + Cllwil3
|, Bvivivie | < (1Bl vllell 7
~ 1/2 1/2
< Ol BV VIV vl 2 vl
~ n3/2 3/2 ~
< Ol &3PV il + Cll AV vl
1% ~
< &3 + {1V vl§ + 9 vl13)
where we have used (2.20) of [4] and Young’s inequality with indices 4 and %, 2 and 2,
| Bviwevie dx| < [[&v]allwllsl| ¥ vl
e z 1/2 1/2 2
< CI AVl AV + 1V vl A Dawllz + Wl vl
1% -
< T | BVl + KADawll3 + 1wl + [|Dawll3 + [ wl DIV w13
|, Bviviwise | < 1Bzl v]ell Dawls
e 1/2 1/2 2
< Cl|AVl[2 )|V V|2l Dawlly (| D2wll, > + | Dewl]l/)
1% ~
< 2 l|Bvl3 + KNV VI3 Dawllo D2z + | Do)
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| Bviwewie d| < Bl wlell Dowls
e 1/2 1/2 1/2
< Cll Al Dwlly*ADewll2 + Wl D2l * + | Dewlly” )

14 ~
< 1l AvIz + KAIDowll3 + WD DIwllz + [| Dewll2)

/Qﬁvipyidxz 0
Ay Aw; Y A2 2
| Bvidwi | < 2 11Bv] + Cll w3
~ 174 -~
| AviBiax| < T8} + C1BII3
Collecting terms, we find
d 9
SIV+ v lBl3

< K{IV VI3 +lIwidl3 + AIDewllz + [[wllz + [[Dawll3 + [IwlIDIV vil3
+ [V VIZI1Dewllall D3wlz + [| Dawll3 | Dwl2
+[[D2wli3 + | BII3 }-

Since
IV BID Dl < IV VIS + Dol + 311D
and
1Dl D2wlz <SPS + 3100113
we find
6.14) SNV VIE + SvIAvE < KTV IS+ M50
where

6.15) N3(t) = C{llwill3 + || BIZ + I DIwll3 + 1 Dawll3 + | wli§ + [ Dawll3 + | wll3 + 1}
Again, multiplying (6.1) by v;, and integrating, we have

2
v, +/v~w- dx/vvv- dx+/v-wv- dx
” 1“2 o LtWit Q itVkVik Q iItWkVik
(6.16) +/Qv,-‘,vkw,-,kdx+'/Qv,-‘,wkw,-,kdx
=— 1/ v 'dx+l// Vi Av-dx+l// Vi Aw-dx+/ v;:B; dx.
/Q itD,i o VitV o Vit BWi o Vit

In detail, we find

1
| veowicds| < [lvlallwelle < gl + Klwil3
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| viovevie | < ilall vl Vil
< cnv,n IV w3 %11 Av)ly
< lénwuz A HR

< 16 I3+ B3 + KV v

| vmevua ] < [lilallwilll Vvl
< cuv,nz(un wlla + 1wl V vl 2| Avll

< Selll3 + 35 IA3 + K{IV IS+ [ Dawll$ + 1 w]S)

by Young’s inequality for four factors, with two small coefficients, and exponents 2, 6,
12 and 4,

| vviowia ] < [l vl Dol
< cuv,n IV vlla| Dowlly | D2wil 2

< 16”"t”2 +K{||D3w]l3 + |V VI3 + [ Dawll$ )

|y vewiowigd < vl ll sl Dowls

3/2 3/2 1/2 1 2
< cnv,nquu wlly 2+ wlly A D2wlly* + (| Dowlly
< muwuz +K{[| D2w]2 + | Daw]l$ + W]}
L Vi,tp,idx =0
/Qvi,,Av,-dx = —/QVV,‘,,V vidx = ————]|Vv|]2
] 1
| visdwidx| < llvllal| D2wla < Sl + KI| D3w3
1
| visBidx| < [vllallBllz < = llvill3 + k118112
Q 16
Assembling these inequalities, we find after multiplying by 2,
d 7
(6.17) v IV + 1vill2 < KV VIS + S AVI3 + Naa(t)
where
6.18)  Nap(@) = K{||will? + [|D2w]|3 + [|Dawll$ + [|wll$ + | BIF} < CN3(w).
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As in (8.1) of [4] we now add (6.14) and (6.17) together with the result that after cancel-
lation of a term in || Av||2,

d _
(6.19) 1+ I/)E”Vv”g +v||AV))7 + ||vill3 < K|V V||S + CN3(0).

By hypothesis for p = 3, we have N3(¢) € L'(0,T). We write F3(t) = 1+ ||V v||?
and G3(1) = v||Av||2 + ||v/]|? as in [4, §8]. Observing that N3(f) < CF3(t)2Q(f) where
Q(t) € L'(0, T) we see that the hypotheses of Lemma 1 hold withp = 1,a = 2. Hence the
conclusion G3(f) € L'/3(0, T) is also valid. Consequently || Av||, and ||v:||, € L*/3(0,T)
as desired. This in turn, together with the similar hypotheses on w which are satisfied
with much to spare imply || Aull2, ||u |2 € L¥ 30, T).

For the second group of three inequalities we differentiate (6.1) once with respect to
t, obtaining

(6.20) Vit ¥ Wi + VieVik + ViVike + Wi Vik + WiVige
+ ViWik + ViWike + WieWik + WiWi g

= —pi +VAvi; +vAw;, + B;,(x, ).

First multiply by v;, and integrate, finding

1d
2
) E “ Vt“2+ /;2 Vi Wig dx + /;2 Vit ViVik dx
+ / VitVkVik dx + _/ ViWi,Vik dx
Q Q
+ / Vi WiVike dX + / Vi Vi Wik dx
Q [¢)
+ / VigViWi ke dX + / VigWr Wik dX + / VigWkWikr dx
Q Q Q
=—/ v 'dx+va-AV< dx
/Q itD,it o VitBVit
+v /Q ViiAw;, dx + /Q vi,Bi, dx.

(6.21)

Using x* < 1 +x%,0 < a < b, x > 0 to retain highest powers only, we find

’/Q VitWi s dx‘ < “Vt”6”Wn”6/5
< C||Vv,|l2||w,,|‘6/5

v
< ﬁ”v vil|3 + K”thug/s
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| visveavie | < 1131V vl
< can/ vl 219 vl
= 32 “V"r”z + K|V v
< 55 19wl + K(Ivdl,” + 19 v112°)
/Q VigViVig dx = /;2 Vki(vi,t),kdx
= —/ka,k%(viy,)zdx =0
/Q Vi WiVike dX = fQ Wi %(Vi,t),zk dx
= /Q Wk‘k%(vi,t)zdx =0
| veomwiavie ] < vllellwills| 9
< ANV willalwills 2 Dawelly” + el DIV vl
inv wll3 + wil(l Dawelz + wil) |V 113

1/2

I/\

l/\

IIV w13 + K(IDawill3 + will,” + [V vI[3°+ 1)

| viaveawia dxl < lvlZlIDawll2
3/2 1/2
< IV willy vl 2| Dewlla
< 1V ull3 + Kllvi 311 Dol

< S I9vlE + K(Ilvlla” + 1 Dowlls”)

| viavewiasdx| < lvillsllvlell Dol

< cuwu vl PV ol Dewd 2
< IV vll3 + K31 vl Dawl3

l/\

IIV vll3 + (Il + 19120 + 1 Do)

| viweowisdx] < I1vilellwillall Dol
1/2 1/2 1/2
< AV llallwilly A Dewelly” + [ willy S Dowll2
IV vill3 + Kl willa(| Dowla + | wil|2) | Dew]]2

10/3

- 32|

SIvlZ+ K(IDawil 2 + [[willa + | Dov][ 0+ 1)

_32
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| viowiwise ] < vl ol Dl

< IV lly*1villy I Dawllz + [ wll2) | Dawll2
< —nwnz + K|l Dawlls”? + Iwlls )| Dowil| 5

10/3
IV w2+ K(IDowil2 + [[vill3® + | Dawll 0+ [ w20 + 1)

4/3
+wlis /

- 32
/Q Vi,tP,itdx =0
/Q VisAvy dx = —/Q(V vl dx = —[| Vv |3

|/§l2 Vi Aw;, dx‘ = |"/vii,thWi.t dx
<Vl Dewell2
14
< 1V villz + Kl Dawill3

| viBuo ] < llvlell Bl
< C[Vvillal Belles s
14
<% IV vil3 +KIIBilI§) 5

Combining the results of these calculations we obtain the inequality

6.22) S+ 9 vl < K{ vl + 9L

2 4 1 Dow]130 + [ w130

+{|Dowrl|3 + (| willy
+ “W"||6/5 + ||Bt"6/5 +1 }
Now multiply (6.14) by 3|| V v||5 and add the resulting expressions to (6.22), obtaining
%(ll villz + IV VI +v { Vw3 +3]V VI|§||AVH§}
(6.23) < K{Iwlly" + IV w130} + Ms(e) + 3V vl|3Ns(0)
5/3
__K(mm§+nvvw) +Ms(0)+ 3] V V]| AN ()
where
Ms(0) = K{ | Dowll3 + 1 wills + D3l + [ Dowl}3° + | wil}®
(6.24) +lwalldys + I1BIZ s + 1B, + 1),
As in (8.2) of [4] we set

Fs(ty=1+|lv 3 + IV V]IS

and

https://doi.org/10.4153/CJM-1991-068-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-068-0

1178 G. E D. DUFF
_ 2 4 K12
Gs(0) = ||V willy +3[|V vz ]| Av]l3
By the hypotheses of the theorem for p = 5 we have Ms(f) € L' (0, f) and we define
Ns(t) = Ms(1) + 3| V v|| 3N3(2).

Thus
Ns(t) < Fi 2000 + 3FY (0)0(r)

< F 0w
where Q(r) € L'(0,T) as required in the integrability lemma withp = §,a = 3.
The lemma then applies to (6.23) and we conclude Gs(z) € L5(0, T) so that Vw2 €

L3(0,T).
The next inequality is found if we multiply (6.20) by Av;, and then integrate, obtaining

/AV,’,V,'ndX'F/ Avi,wi,,dx+/ Avi,vk,vikdx
Q Vi, Q Wi, Q AVk Vi,
+] Av,-‘,vkv,-k,,dx+/ Avi‘,wk',vi,kdx+/ &v,-,wkv,-k, dx
Q Q Q ’ ’
(6 25) +/{;/Sv,-v,vk,,w,-,kdx+'/$)Av,-,,vkw,-yk,dx+/Qﬂv,;,wk,,wi,kdx
+ /Q liv,»,,wkw,»‘k, dx

= — /Q &v,»,,p,,-, dx+v /Q A~v,<‘,Av,~‘, dx+v /;2 A~v,~,,Aw,~,, dx + /Q Av,;,B,;, dx
The various terms are transformed as follows, by orthogonality and inequalities:
/Q ZSVi,t Vig dx = /;) Avigviy dx
= —/(‘IVV,',,V Vi dx

1d
= ) Elle,llzz

| Bviowi ] < || vzl walz

|2
< g llAwiliz + Kllwallz

| Bviaviavie d] < | Avl2 max |yl |V vl

L 3/2 1/2 ~
< CllBI 1 vlly 219 oz + L Aul ]|V vl 9 vl

14 ~ ~
< ZABIE + KNV ul3AV IS + V)2
v+ 14/5
< S+ K(IVwlly 1Vl +1)
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| B da| < | wlallll) ¥ vl
/2,4 % 1/2 1/2
< Cl\Bvila| V2N 9 villy 2 Bvily >+ 197 vl )
< 1Bl + KNV ul3 (19 vl + 11V v113)

+K(IVul "+ Vvl +1)

’ /Q &vi,,wk,,v,-,k dx‘
< || Avill2 max |wi| |V ]
< CllAvilla | AIDowlly 2 D2willy ? + | Dowillz + [l will )| ¥ V2
< & 18113 + KADw o[ D2willo + 1 Dawil} + | will DIV w13

14/5 14/5
< 18wl + K (DA} + 1Dawells " + il + [V ]} + 1)

|y Aviswevisa ] < 1w allwlell ¥ vil

< Cl|Avi|l2(|Dawllz + 1wl Y velly Al Bvlly” > + 1V vl
—nAv,nz +K(|Dawllf + 1wl + DIV wili3

2 Bull3 + K(IV vl + 11D 3+ 1wil* + 1)

|, Bviaviwie d] < [|Av 2 max v [| D]
< anv,u” 219 villy 21 Dawllz + Cll Avil |2l villol| Dewll2
A2 + KNV vili3 (1wl +1)

- 64
< M Aul3 + k(1 vl + [ Dowll}* + 1)
l /Q Avi,tvkwi,kt dx‘
< Bl llsll Dawills
1/2 1/2
< Cll &l Vil Dewilly? + [[willy I D2welly/

< 64||A"t“2 + K|V VIZAI Dawillz + [lwill)l| Dwil2

14/5 14/5
< N Bull3 + K(ID2will3 + 10wl + il + [V vl13* +1)
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I /Q Av,-,,wk,,w,;k dx'
< | Avilla max |wi | Dawl]2
< Cl|Avilla| Dawilly 1 D2willy * + [ Dewrlla + [ will2)| Dawllz
< —IIAwllz + K(|| Dxwi|2|| D2wil2 + (| Dawi|3 + [ well ]| Daw||3

1 Bull3 + K (1 D2wll3 + [ Dowilly " + [lwlly + | Dawl}3* + 1)

| Bviowiwis dx} < vl wilsll Dol

~ 2 1/2
< Cl|Avilla(| Dew|ls + [l will )| Dewilly 1 D2will3* + | Dewe]))
< 2o Bull3 + KA Dawll3 + DI Dawillo(| Dl + | Do)

14/5

174
< A3+ K(IDBwl3 + [Dowil; " + | Dol + w3+ 1)

fQ Avipidx =0
- ~ 2 ~
L)AVi"AVi’tdx: ./(‘I(AVU) dx = ”AV;”%
/(lA"V,'JAW’; dx = -/(‘IAV,"IDEWi‘ld-x
< [|Avil2l| DFw.|l2
1% ~
< g Avliz + Kl DYwi13
|, BvidBis | < [1Bvil2 |18
1 4 ~
< A3 + K| B3
When combined these calculations lead to the inequality
14/5 14
SNV vl + Sv A3 <k {1Vl + 93
14/5
(6.26) +1|D2wi3 + | Dowe

+ w2 + 1B+ 1),

+[[Dawlly* + [lwllp*

As in [4, § 7] we shall combine this inequality with a companion inequality of the
same singular index obtained when (6 20) is multiplied by v;, and integrated. Thus we
obtain

2
(6.27) / Vig)” dx + / VigWin dx + / VitV Vig dx
Q Q Q
+ /Q Vit ViVike dX + /Q ViaWiVik dx + fg Vi WkVike dX

+ /Q ViV Wik dx + /(; Vi VWi dx + _/Q ViaWi Wik dx
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+ /Q ViaWiWi ks dx

=— [ v -dx+1//v~ Avy; dx+1//v- Aw;, dx
/(.2 inD it o VinBWVis o Vi AWix
+AVi‘t[Bi,tdx.

These various terms should be transformed as follows; the first term on the left being
obviously in the desired form already:

I/Q ViaWin dx‘ < [vall2llwall2
< vl + Kllwall
| virveaviacd] < vl max el |V o]
< Ol Vvl Al + 1V vl 9 vl
< 32 vall3 + K1V vl Bvella ]| + 9 w219 13
< vl + B2 + KIV RO +1 V)

1 14/5
< gzllvelld + 1 Bull3 + K(1V vl + 1V v]3*+ 1)

| perveviae ] < lvallll vl 9 will
<C||vn||znwuz<uw||‘”nAwn‘” +1Vvill2)
= 32 ||Vn||2 +K1|IVv||2(||Vv,||2||Av,||2 + ||Vv,||2)
< sl + B IE + K(IV vl + [Vl 1)
Mz ViutWk,Vik dxl < ||v,,||2max |Wt| ”VVHZ
< Cllvalla| Deowelly | D2willy? + | Dowellz + [ will )V vz
< —nvnui + Ki(|Dawil 2| D2wellz + | Dowdl3 + I wdll DIV I3
< ol + KDl + IDowl3 + w3 + |7 vi1 34 +1)
| viawaviz dx| < [lvallolwllel ¥ vell
< cnvnnz(uuanz + WA villy 2l Bl + 19 vell2)
< 32 Ivall3 + 2511013 + KUV vl 3 Dawll3 + [wll3 + 1)

14/5
= 32||Vn||2 +— ||Av,||2+K(||Vv,|| / +||DxW||2l4+“W”2M+1)
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| viaviawis ] < flvilla max v | Dow]z

1/2 1/2

B Cllvttllz(lIVw(I [&vill," "+ [V vill) | Dewll2

14/5
< 5llvall3 + gl A3 + K(IV vl + 1 Dosllf + 1)

| varvewias x| < [lvallolivlsll Dol
1/2 1/2
<cnvnn IV vl Deowill I D2willy + | Dawill2)
S 32“"n”2 +K(||D2w,||2||wa,||2 + ||DxWr”2)”VV”2

145
< 5llvalld + KDV + D23 + D]+ 1)

| viwiawis ] < [1villa max |wi] || D]
< 1/2 1/2
C||Vn||2(|| Dowilly 2 D2willy? + | Dawillz + | will2) | Dawllz
< nnvnnz + Ky Dowill2l| D2willa + | Dowill3 + [[will )| Dawl 3
14/5 14/5
||vnuz+1<(nozw,||2+no willa '+ lw s * + | Dowll ) + 1)

| viawiwissds| < llollwllell Dowels
1/2 1/2
<C||Vn||2(||DxW||2+||W||2)(||war|| PID2wdly? + | Dawil2)
< 32 L vall2 + KADw|Z + [ Wi Dewill2 | D2well2 + | Dewel 1)

14/5

vl + K(ID2will3 + [1Dawell,™ + 1 Dawllz* + [l wl3*)

- 32
L VigPiadx =0
/Q VinAvi, dx = —/QVV,-,,,V Vigdx = —'21‘%”V"t”22
L VigAwi, dx = /Q ViaD2wiy dx < ||va2| Diwi||2

1
< 3 llvallz + K[ D3will3

/Q Vi‘ttBi,tdx
<| vtrllzllBrllz

= || Vtt“z + K”Br“z
32
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From these calculations we are led to the inequality

d 14/5
vV vl +11vall < K{IV vl + 199113 + [ D3wel 2
14/5
(6.28) +1Dawl " 1Dl + [ wll3* + lwall} + 11813}
V. o~
+ 2 A2

By adding together (6.26) and (6.28) and cancelling a term on the right side in || Av,||3,
we find

d ~
()= [Vl + v ]| Avil3 + Ivall2

14/5 14/5
<K{IV vl + Vvl + | D2wi3 + | Dawill,*/
(6.29) +[lwllz* + 1 Dawllz* + lwall3 + || Bl + 1}

We now multiply inequality (6.14) by 5|| V v||3 and add it to (6.29), thus finding

CLADIT w2 + VALY + v N Bvel3 + vl + 51V VA2
(6.30) < K{|IVvill3* + |V v[|3*} + Ma() + 5| V vI|3N3()
< K(IV 2 + 19 v[120)7 + Mae) + 5|V v 3N3 o)
where
(6.31) My(t) = K{||D2wil|3 + | Dawilly*® + | Dawl|3* + [ W]l + | waell3 + (| BelIZ +1}.
Again following (8.4) of [4] we set

Fi(t) = 1+ (1 +0)|| Vv |7 + ||V v||2°
G(t) = v||Avi||3 + || vall3 + 5V I3 Av]|3.

By the hypotheses of the theorem for p = 7 we have M(¢) € L'(0, T) and we now define
N7(t) = M) + 5|V v|| 3| N3 ().

Thus
No(t) = FL (000 + SFS (00 < FS (90«

where Q(t) € L'(0, T) as required in the lemma on integrability withp = 1, a = ¢. The
lemma can now be seen to apply to (6.30) and we may conclude: G5(t) € L'/7(0,T).
Hence both || Av;||> and ||v¢||2 lie in L*/7(0, T).

As in [4, § 8] an induction on the order of time derivatives can now be started.
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7. Inequalities for Higher Orders of Time Derivatives. The first six inequalities
illustrate and initiate a cycle of relationships among space derivatives of orders 0, 1 and
2 that leads to the desired estimates. The induction process to be described now extends
these relationships to time derivatives of higher order. We follow the method of [4, §7,8]

as modified in the preceding section.
The momentum equations (6.1) differentiated r times with respect to ¢ take the form

l),r+l Vi +D,r+lwi + z <r> {Dlka Vik +DIWkD V,k
=0 \J
(1.1) +UWDHWM+UWDHMQ
Dip; +vD;Av; + vD;Aw; + D;B;.
Multiply by Djv; and integrate over €2, obtaining after some routine calculations
1 r r
DD+ [|D7V vil3
r r . —i . i
= “E) <j> /QDrrVi{DkaDt "k + DowiDy vy
(7.2) + DD wig + D{Wszr_jWi.k} dx
—ADME“MM—VADWWMQMﬁ+LDMM&¢
The last three terms on the right side can be transformed as follows:
| [ D wide| < 1Dyl D wlle s
< ClID;V vl DF wlley s
v 4
< 2o 1D}V vl|3 + K[| DI wllg) s
‘ o vinwa,-dx' < ||D’V V||| DID.w2
< S |DIV V2 + K| DD
|, ivi;Bids| < | Dpvlell DBl s
< CID;V v|2|| DiBlle; 5
ID;V vz + K| D{Bllg, s

S 22r+4
Certain terms with j = 0 in the sum will vanish by the divergence property:
' r I 4 2
/S;D,vika,v,-,kdx = E/ka(D,vi),kdx
1 22
==3 ) vk (Djvi) " dx = 0

and likewise )
/;)Dt’v,kat’v,;k dx = ~3 jka‘k (D,’v,-)2 dx = 0.
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However there are now two terms with j = 0 that do not vanish, namely
|, DiviveDiwie | < | Dl DD
< D, il + [ DIV VL2l D Dow2
< 51DV I3 + KIS vl DDl
+ K[| D2V vll2l| DD 2.
and likewise
' /Q DjviwiDiw; dx

2 4 4 4
IDIV VI3 + KDV, (I Dxwll; + 1wl )N D Dawll

< 22r+d
+ K|| Dyv||2|| Dew]l2|| DI Diw] -
For the terms with 0 < j < r we follow the estimate (7.14) of [2] in this way:
‘ /Q D,’v,-D{kair'j Vik dx‘
< 1DvlsllDVIIs || DV vl
< CIID'V V21Dl D9 vl + | DM D} 7V v
S5 IDIV VI3 + KA D1 DV vl + | DD D VI3

— 22r+4
and likewise
' / Drv,'l)i kar—jv,'_k dx‘

DV I3 + K(|| Dpwll2l| DiDsxwll2 + | DwlIDII DTV VI3

- 22r+4 ”
1/ Drv,'[)ikar‘jW,',k dx’
|DV 13 + KA D2\ DV vilz + | DIV D] Dawll3

- 22r+4|
] / D'v,Di ka'_j w; kdx‘
< 55z DIV ¥l + KU D2l DiDowll2 + | Diwl1 )1 D Dawll3
Finally the terms with j = r become
|, i d| < DV v
< clopy /1D, vl 2 vl

< 22,+4 107V Vi3 + KDV IV vl

| Diviliwivis dx| < | Dvlell Dpwllal| V vl
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< DV vl Dywll I D Dawlly + | Dl v

< WHD{V vz + K(ID{wll2l| DI Dawll2 + | DYwlIDIIV w13

| DiviDivewe d| < 22”4 2 IDIV VI3 + K| D3| Dowll$

|, DiviDpwwie d| < 5 DIV V3 + KA Dpwila | DEDawll + 11Dy DIl Do

22r+4

Assembling these calculations, we find after certain cancellations of terms containing
| DIV v||? the following inequality:
Di||Div||3+v || D}V I3
< c{IDIB(IV VI3 + 1 Dowld + 1wl
+||D'vu” DDy IV ol + 1Dowlls”)

@.3) *Z DD vl (11079 v + (107 Dow3)

=1 A » L
+ 21 D2l DiDawll2(I|DV vII3 + || D Dawl3)
j:

+ (1Dl Dy Dawllz + 1DwIIZ) (19 vlI2 + [ Dowl3)
+ 1D w2 s+ DD} + 1 D;BYZ 5 + 1),

For the purposes of calculation, it is convenient at this stage to attribute to derivatives
of w the same formal singular index (reciprocal power of integrability) as derivatives of
v: thus || V v||2 and || D,w||» have formal singular index 1, || DID:v||; and || D;Dfw||> have
formal singular index %(4r + 2s — 1). The highest singular index of each such term on
the right side of (7.3) is then the sum of the indices of its factors and is 4r + 1. Young’s
inequality in the form (3.5) then applies with the singular index playing the role of the
weight w for each factor. Resolving each product of terms on the right side of (7.3) into
a sum of powers of the factors, we find (7.3) takes the form

DIDvl3 +v[1D;9 i3 < ¢ P

+znvv 15+ 3 | Dw]| 5
(7.4) =1

+ 3| DD + 1D wlle, s
Jj=0

+ DB s + w52 + 1.

Note particularly the incorporation of the term || D{D,w||3 in the last sum on the right
hand side; the corresponding term in v is now present only on the left side.
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We now write this inequality in the form
r . B2 2
1.5 DIDVZ+v|I DV V3 < {11 + z 1DV | + Mara 1)
j=1

where
(7.6)

Maa () = (z | Djwll ¥ +2 |DID ] 1D Wiz s+ w3 + 1Dl 5 +1)

and C denotes the constant in (7.5).
Note that the hypotheses of the Theorem for p = 4r+ 1 imply My, (¢) € L'(0, T).
Next multiply (7.1) by D/Av; and integrate over Q: we obtain after routine calculations

1d -
57 1DIV vz + v DIAvII;
(7.7) = /Q DrAvD widx — /Q DrAviDI Aw; dx — /Q DrAv,D'B; dx
(7 PRl Vv 1Y o 1y
+ Z ] /‘; DIAV,'(D{‘VkD, Vig + Dltkat Vik
j=0
+ Dika,r_jwi‘k + DiWkD,rijWi,k) dx
The various terms may be treated as shown:
| iR wids| < |DFAwof) D7

14 ~
< Zas | DIAV1Z + K| D} w13

‘ [, DAvD; Aw; dx' < ‘ [ DrAvD; D, dx
Q Q
< IID’AViIl | D;DIwll>
< Sares | DEAVIE + K| DD
‘ A D,’&v,D,’B,»dx' < ||D’Av||2||D’B||2

= 22,.,.5 “DrAVHZ + K“DrBHZ

Forj < [%] (where [x] denotes the greatest integer less than or equal to x) we write
l /Q D} AvDjviD; v, dx‘
< || D} Av||2 || D] D}V I3
< CIID’AVN 1DV VILA1D; 7V vl 2Dy Ay + (| D7V vl

= 22r+5 55 IDFAVIES + KN DIV VI3 D7V vl || DAVl + D7V v
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The corresponding term with [-2’-] J < ris handled differently:

‘/;2 Df&v,D{ka;_jv,;k dx’
< || D}Av||, max | Djv||| D} 7V V||,
< ClI DAV (| DIV vl | DIAVIL, " + | DI VI D7V vl

< %ll DyAV|[3 + KA DIV vl || DIV + | D VI DV v

Because the involutory change of the summation index j into r — j converts each of these
expressions into the other, the summation can be reduced to the first half range provided
all terms are doubled. The sums with mixed v and w factors behave similarly but with a
crossover: for0 <j < [%]

‘/(; D;AV,‘D;‘WkD,’_jV,"k dx]
< ||D;AV|a || Diwl6|| Dy % vl
< C||D;AV||2(|| DiDawllz + | DIl Dy % il || DA,

< 27+§|Il)§AVIIz +K(|DIDawl[3 + | DiwIDI DTV V|2l D)7 Av .

The corresponding leading term for [ﬂ < j < ris in the complementary term

'L D:&V[D{VkD,r—jW,"k dx'
<||D’Av|[2 max |D’v|||D"jD w2
<C||D'AV||2|lDr_’DxW||2(||D'V vl I DIAV], 2 + | DIV v])2)

_22r+5 ID7AVII3 + K| D7 Dawll 3| DYV V|2l DALz + | DIV 1)

which resembles the preceding when j is mapped into r — j and vice versa.

Consequently all leading terms in the four sums on the right side of (7.7) can be
ex'pressed as sums over the lower half-range 0 <j < [%] We thus find after multiplying
by 2, and cancelling a large group of terms containing || D?Av)||3,

r 3 ra
DDV V|3 + v DjAv 3
I . , » o
(109 VI3 + | DIDwl3 + | Diwl )11 D79 vilal| D7 Aol

(7.8) 5 . .
+ 2 (IDV VI3 + | DiDewli3 + || Dpwli3)

Jj=0
-(I1D7 Dawll2|| DF Diwlla + 11D Dawll3)

(=}

+ 11Dy w3 + | DD3wl3 + || DBl + 1.
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Whereas all the terms containing w can now be expressed simply as powers of the norms
involved, by use of Young’s inequality, the terms in || DAv||; must be treated more del-
icately, as in [4, § 7,8]. Thus we express the term with j = 0 in the first sum in (7.8) as
follows, where 7 is a real number with 0 < ¥ < 2 that will be specified later:

(7.9) (I1V VI3 + I1Dawll3 + 1w I D)V vil2|| DAVl
1 A r
< 2@ =Dz + K| DIV VIZ(IV VIS + 1Dawll3 + [ wll3).-

The remaining terms with 1 <j < [%] of the first sum are written in the form
(7.10)

(IIUQVVl|22+IIDliWII§+!ID’WIIZ)IID'"jV |
< c,,(||1yvv|| Sy ||D’wa|| S | D+ | D 2

A .
1D Al

r—j)+l )

4841 .
Ar—j+1 X ”Dr——jv Vl

el DV

4(»1»1 r—]

Here the constant C,; depends on r and j, the C in the denominator is the constant C in
(7.8), and the last term has the index 8r + 6. With these precautions we can now write
(7.8) in the following special form:

Yv ~
DDV + (v + ) 1D 3

8re6
< DV F 4 [V + Do

r

2
+Z(IID’V o+ DDl + | D,
=1
(7 11) 4(8:{)63)

8rf6 .
+||D/7V Y| 2+ 1D Dyl

+ 1D wil3 + | DyD2wll3 + | DBI + 1

7 4 Do

_y .
D A2

1 Ll —
+ Zﬁ]gollDt VV'

To be combined with (7.11) is another inequality formed by multiplying (7.1) by
D,’+l v; and integrating over €. This takes the form, after routine calculations:

v A T
(7.12) S DIV vz + (1Dl
/Dr+l (){D’VkD V,k+D]WkD v,k

+ D‘ka,r_]W,',k + l)iWthr_jWi,k} dx

+ /Q D! vi(—Dfp’,‘ +vD[Av; + vD{Aw; + D,'B,-) dx.
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Now fq DI*'v;Dip,;dx = 0 by orthogonality, since D;*'v; is solenoidal and vanishes on
0L, and D]p; is a gradient. Also
| JRARTAe dx\ - | | D viDiAY, dx!

< D]l D AV]l
v(2—7)
— 22r+5

] | DD D2w dxl

D7 'vI13 + K| D3,

I'/Q D,HIV,'D:AW,‘ Xm

<D vl Dy Diwll

v(2—7)

WHD:M"H% +K||D/Dw|3,

IN

107 vIl2| 7Bl

v(2—-7)
S 22r+5

Il

‘ [, Drtvi;; dx|
Q
1D} vl|3 + K| /B3

Since D*!v is solenoidal vanishing on 0€2, we can remove the gradient part of the other
factor in the first two of this last group. This could also, if desired, be done for the last
of these terms, retaining only B; where B; = B; + V3.

Again, we have

> <r> /Q D,HIViD{VkDIr_jVi,k dx

=0 \J

(5] . .
< (S 1D VI lell D9 vl

(7.13) + 3 1Dy vllo max | DV |1D] 7V vz

J=15+1]

3 . - »
<l 3 IV a1 D% vl 21Dy A2 + | DV ||

2=, .., (51 . . B
< S ID R +C X DI VLD sl D A + 1DV 1)
j:
while
(7.14) r /D,”l"i[D{Wthr*jvi,k+D£VkD,'7jw,-,k]dx|
=0 \J/ /2
G . . ,4-
< C‘. OllDiV vII3(I1 D] Dewl||2|| D} 7 D2wll2 + || D] 7 Dywl|3)
]:

5 ‘ - B
+ 2 1DV w1 D7V || D Avll + (| DYV vllzz)\

j=0

2_

v

L T

+
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Combining these formulas together with a version of (7.13) in which w replaces v in all
but the first factor D;*!v;, we find using (7.8) in conjunction with the foregoing calcula-

tions,
vD,|| DV V|3 + ]I D713
<v||DiAv||3 + C{ DV VI 4 [V 576 + (| Daw]| 3746 + || ]| 3746
(51 s
+ (IlD’VVH +|ID’D W|| oy | Diwlly™
j=1
(7.15)
+ “Dr jV vl 4{r—/)+l + ”D’_Jwanz 1—1)41 + ”Dr—_]DZ ” 4(r _/)+3)

+ 11D wli3 + | DD2w]3 + || DB + 1)
Vs g
e LA Hl L3S

Now we add (7.11) and (7.15) to obtain the inequality

v ~
(L+0)D D}V V347 (I DjAV3 + IID’”VII§)

< (I v + | Vv

(31
+; (AR
(7.16) i=l

. 8r46
+|D7V v F)

S
1D Aol

1 (5] )
— D™
+ R 10T
+ Myyi3(2)

where

4

2

@A) M) = C(IDo ]+ 3 [ DDl L D]
=1

8r+6 . j ) 8r+6
Wi+l =, Hr—j+3
>+ DD )

[5] .
#2101 Do
+ 107wl + DDl + 1 D{BI3 + [w]§ +1)

and C denotes the constant in (7.16). We observe that the hypotheses of the Theorem for
p = 4r+ 3 imply that M4,.3(t) € L'(0, 7).
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8. The Induction on Orders of Time Derivatives. The result of the Theorem has
been shown in §6 for r < 1 and s < 2, that is, for the derivative norms ||v|2, ||V V|2,
|| Av||2 and hence || D?v||2; || vil|2, |V vil|2 and || Dxve |2, together with || v,]|2. Using these
results as a starting point, we now set up the induction on r, assuming the result of
the Theorem holds for a given r and demonstrating its truth for » + 1. Thus we as-
sume | DIV v|ly € L2@*D7(0,T) and | DIAV|,, | DF*'v]l2 € L2470, T) for h =
0,1,2,....,r—1.

As in [4, § 8] we define recursively forr = 2,3 ..., functions

8.1 Farn(t) = || D{V||3 + FZ;,[(I)+FZ;13(t)
8.2) Garn () = v||D;V V”z + FZ;:[(t)G4r~l(t) + FX’, 5(0Gar—3(1),
and now also

-1
5 F&'} 3 (DN4r—3(0).

Likewise, for the second stage necessary at this induction step, we also define

(8.3) Nar1(t) = Myrn1 () + F"' 21 (ONar (1) +

(8.4) Fara(t) = (1 + 0)|| DIV V|2 + F2, (1)

4 +1
8.5) Gare(t) = |ID'Avl|2 " ||D'+‘ I3+ TS A2 (0Ga 10
(8.6) Nare3(t) = Maa(2) + FZ}ZI(I)NM—I(I)

3

As in [4, § 8] the singular index of Fq(t) is in general ¢ — 2, and the singular index of
G,(1) is g, for every odd positive integer g. The definitions for ¢ = 3,5,7 are given in

86.

To show that Ny,.i(f) and Na,3(f) satisfy the condition N(t) < CF(1)*Q(t) of the
Integrability Lemma is a necessary part of the induction step. This was initiated in §6
forr = 1,5 = 0O and s = 1. To establish this result for Ng,.1(f) we note that by the
induction hypothesis a = 4r/ 4r — 1,

Nay—3(1) = Far_3(1)55 Q(1)
and

Nar—1(1) = Far 1 (035 Q(2).
Hence by (8.1)

Narni()) < O1) + FE2,(0)(Far3(0 35 0()
+ FE2,0(Far s ¥ 00)
8.7) < Q|1+ Far 375 + Fari (975 |
< Q|1+ Farnt 75 4 Fypoy (8575

< Q1) - Farn1 ()77
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To show the same induction result for N4,,3(f) we have a = j:f and by (8.4)

Nara() SOO[1+¢ - Fara (07 - Fyy1 (¥ ]
=01 + ¢+ Far (0]
(8.8) <Q(t){1 + - Fara(Dim 2‘—2]
=Q(1)Fare3(1) 1

Thus the induction on r is completed for this condition in the lemma.
The basic inequalities for the preceding stage of the induction are

(8.9) Fiy3(0) + Gar—3(t) < CFay3(¥F + Nup_3(1)
and

4r—-3
(8.10) Fip 1 (D) 7 7G4r—l(f) < CFap1(1)¥5 + Nap_y (1)

so we regard these inequalities as established. Multiply (8.9) by =1L F. ;{;‘_ ,(1) and (8.10)
by ¥=1F,, ,(1)%7 and add both to (7.5). Thus we obtain

-7
DDV} + 31 Far1 0 + o0

4r—1
+v||D;V V”z + Far (077 G (1) *+3 5[:4’_3(,)4,,5 Gar—3(1)
(8 11) drsl dr+l
lZ 05 Z IV 4 Fas (085 + Fap (0

l 4r—17
SF4,_3(t)4r—3 Nar—3(t) + 3F4rA1(t)4"‘ Nar—1(2)

The last three terms on the rlght are together less than Ny, (7).
By means of the relations

4r
+ My (1) +2

||D'V|| = < F4,+1(t)“’ < F4,+5(t)4’”
<< FasO¥s, j=1,.,r—1,
and
(12AY V||, i < F4,+3(f)“’*‘ < F4j+"(f)“““
<--- < F4,_|(t)473, j=01...,r—1
we can show the right hand side of (8.11) is bounded above by

Ar+l

- 4r—17
C[”D,V” + Far3(0)%5 + P F4r—i(f)“' 14 Napar (1)

4r—17
(8.12) < Cl|| D)3 + Far (D35 + 4—_1F4r—l(t)4’"5]4 T 4+ Napa (1)

= CF4r+|(l‘)4'—‘ + Nyri1 (D).
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Thus we have shown that
(8.13) Fiprt () + Gar1 (1) < CFapi (0¥ + Ny (1),

which is the counterpart of (8.9) at the next higher value of r. Observing that Fy,.,(?) €
L5 (0,T) by hypotheses of the induction for p = 4r — 1, we see that the hypotheses of
the Integrability Lemma for Fy,,; (t) and Ny, (?) are fulfilled withp = 4r 7 a+p = 2: i']
e 4r+l $0 Gare1 () € L#1(0, T) and ||D;V ul|> must belong
to L4r27(0, T). ThlS now also shows that Fy,,3(f) € L 0, 7).
To establish the corresponding results for || D{Av||> and || D*'v||7 we multiply (8.10)

by 2L Fy,_1(1)% and add to (7.16) wherein 7 is set equal to L. This leads to

D,[(1 + )| DIV v} + Far 1 (0¥
4r+1
+
4r —

4r+1
4 7

{“”DrAV”z +|1DI3 )+ Far1 ()77 Gayy (1)

< C{IDIV v+ Vvl Z(IIUVvii DIV

(8.14)
_& o
ST DAV + Magaa(t)

1 5] o
s SIDT

4r+ 1
* 53 Far (075 [CFar (D35 + Ny (1)

+ Far 1 (D55 + May3(0).
Thus the right hand side of (8.14) is bounded above by

w12
e + “V \1“8r+6 + Far (%3 + (”D]V ” 4,+| + ”Drvjv v[

J=1

“|D’Vv

4<r—1)+l )}

1 . o
VZ“D v V|5 i | D7 Av||3 + Nayus(t)

(8.15) t o

Again, we have the properties

(8.16) [2ARYIR &l < Fya (¥ < Fyr ()7
< F4j+11(t)"'*9 <o < Fap (DS
and
v oy
v|ID; 7V v 24'""’" !iDr TAvll5
) EAvEy =
= l|Dz V“‘g!“ }4(r~j)+3(t)«' il Gd(r—])+¥(t)
8.17) <DV ;’_M Fagrprtt) 7 Gagr—jpar ()

. B
< DIV T Fa (077 Gayos(r)
. 4
=< F-’lr—l(t) dres G4r—l(t)
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Hence the terms containing || D} ?Av||; in (8.15) can be majorized by small multiples of
F4,_1(t)% Ga4,—1(t) and so cancelled against a small part of the corresponding term on
the left side in (8.14). Choosing this small multiple as indicated in (8.15) and using the

inequality 2
[%]ﬁ < % - (::i;) . r=273,...
we now find from (8.14) and (8.15)
D,[(1 +v)|| D}V||2 + Fary ()75
@18 e (SIDAE DI+ 2 FE G 0)

4r+3
r+1

< Cla+nIDV I} + Faa 0FF] ™ 4 Napis )

This establishes the second basic inequality (8.10) for the next induction step, in the form
4r+1 4re3
(8.19) Fia(D)+ 4—rj3-G4r+3(f) < CFapa(D3 + Nipes(t)

By the hypotheses of the Theorem for p = 4r + 3, we see that My,.3(f) as given by
(7.17)is in L'(0, T). Hence, by (8.8), N4,.3(?) satisfies the conditions of the Integrability
Lemma. Thus the lemma applies to (8.19) withp = .7 anda = 1+ 1. It follows that
Girsa(t) € L5 (0, T) and thus || DIAv||, and || D/*'v||, € L¥3(0,T).

Now let f denote the viscosity potential of v, which is a solenoidal vector field van-

ishing on 0€2, as in (2.18) of [4]. As in Lemma 1 of [4] we have the estimate
(8.20) IVA13 < IV V(1 Avllz + 1V vil2)
and its time derivative analogues
(8.21) 1DV 1117 < DV vl (| DJAV][2 + || D)V v])2).
Hence || D[V f||: € L7 (0, T) which follows from the preceding results. By an estimate
of Ladyzhenskaya [6, p.21] we have
8.22) | DDDy|; < C(|DjAv]3 + 1DV ]I3)
< C(I DAV + | D)V £ + 1DV V][3) € L7550, T)
This establishes the result || D/D2v||, € L#3(0, T) and shows that the result of the Theo-
rem is valid for v, 4, and their first and second order space derivatives, together with all

orders of time derivatives of these quantities; i.e. forr = 0,1.2,...and s = 0,1, 2.
As in [4, § 9] we also have by (3.12) and the hypotheses of the Theorem for p = 3,

(8.23) max [u] < C(IIV ully [ D2ully* +l|ul) € L'0.T)
while for r = 1,2,... and the hypotheses of the Theorem for p = 4r+ 3,
®.249)  max|Diul < (I D}V ully | D;D%ul + | Dull2) € L7 0.1

This establishes the maximum norm result of the Theorem for s = 0.
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Chapter III. Estimates for Tangential and Normal Derivatives

9. The Pressure Potentials. To estimate space derivatives of order higher than the
second, we again make use of tangential coordinate systems as introduced in [2, § 10].
Substituting (2.9) into (2.7) and (2.8) we find, in view of (2.6)

©.1 Ap = —VigVki — 2VigWki — Wigwii + Bi;.

Taking only the normal component of (2.8) while noting that v vanishes on dQ2, as well

as (2.12)
9.2) a_p =— wk%ni +vn;Av; + vn;Aw;
on oxy
— Wi + Bin,-.
Hence we may write
(93) [7:b1+b2+2b3+b4+l/f1+l/f2+fg

where the various pressure terms indicated are defined as follows. Noting (2.12) we set

9.4) Aby = —vipvii; %ﬂl =0
Aby = —wipwi; % = _WkgTM:ni
Aby = — VWi s %% =0
Aby = B;i(x,1); %—1:1 = Bin;
Af = 0 %fi = niAv;
AH =0 % = niAw;
Afs = 0; (;is = —w;n;

and observe that each pressure term is defined up to a constant which can be specified
by setting the average value over € to be zero if Q is bounded. It can be shown that
each of the seven listed Neumann problems has data that satisfy the necessary condition
JoAudx = f3q g—z ds and we leave the verification to the reader.

Observe that b; and f; satisfy exactly the same conditions as b and f in (11.1), (11.2),
(5.1) and (5.2) of [4], except that v now replaces u in these conditions. Hence we may
adopt for b and f) the results of Lemmas 7 and 8 of [4] and their time derivative versions
as in Lemma 8r there, with v of course replacing u in these estimates. Similarly, replacing
u by win Lemma 7 of [4], we obtain the estimate for f>.
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To estimate b, we proceed as follows, using the commutation formula (10.17) of [4]

oD:, b,

on
I ow; ey
_5 aQD‘;sz‘;Wkgk—nidS—/(lDabz{;Aﬂ%Mg
+ 3 BiD: Dby + z C;DsDlyby + TED (D} + D3)ba

,3<a

| (ViDb2) D% (wi

IV Diball3 = [ Dby ds — /Ds byAD" by dx

aW, awl
* oxe oxy

/D bz{ZAﬁ (w,kwk,)+ Z BBD3DI b, + Z CaDl b,

9.5)

=) dx — —/ DE by VD (wi 5 ) dx

+ 3 E; D)y (D} + D3)ba | dx
f<a

The permutation of derivatives in the second integral deserves some comment. We have
the commutation formulae

s—1 .
9.6) D, Viw = ViDyw+ 3 g ViDjw
j=0
s—1 A
9.7) V,‘DZW = D‘;V,'W + E gjlyg Viw
J=0 '
where V; = h;D;. The coefficients g;, §; are composed of positive or negative integer

multiples of derivatives of logh; which are independent of r near the pole and hence
bounded and smooth everywhere. Thus

Vin,(wkg—;vf)sz,Vi( gm) Eg,D’V(wkgM:)

(a5 s

& (s I kjaw,
—Z<j)D]a ox; R 0

szl J oWk i ¢ Ow;
+§§j2 ( )D/ei axk% Iaxk

9.8)

Expanding the expression by means of (9.6), we see that the integral of the second term
on the right hand side of (9.5) is bounded in magnitude by an expression

©.9) Il D&cblls - CZZIIVDIWII IViD wlls

j=0¢=
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Thus, in the same way as in (11.18) of [2]

ow;
'ﬁ/ﬂ l); l?z ‘;7 I)A (ka E) )(ix‘
s 4] ' e
< VDbl Y 3 IDDwlLN Y D wll
j=0¢=0
1 B s é] - -
< IV Db} + 3 Y- {IDDEWIE(I DD wilzl| DD il
j=0£=0

+ VDLt wii3) |

A reduction similar to a part of the foregoing shows that the term in (9.5) containing
coefficients Kg has a similar bound which can thus be combined with the preceding by

adjustment of the constant C. The terms with coefficients EZ,E; and Eg are treated as
in the proof of Lemma 7 of [4].
Finally, since by (9.6) we have

e E (i

= ( >D' Wi E geViDgw;
=0

J
it follows that the first integral on the right side of (9.5) is bounded as follows by (9.6):

s ( avvl

kox,
ow;
< 1905 bl1l105 (m 2201

| [ ViDiba - D (i)

<CIVDbala{ F  IDpwllll DDEwls

0<j+0<s5.6>

+ . D] DD‘ , }
“SJZIS: I;?Edg‘ ﬂwkln X BW”z
0§i<[§;

< CIV Diballa{ 3 DD wla(1DDwll | DD wlly' + | D, wile)
l>l ]

1/2 2~ 1/2 1 i :
+ 3 (1Dl DDl + | DDyl + D) - | DDl

J+E<s
0</<[%}

N‘b

< IV DLl +C 5 DD, w(IDDG I D2DGwla + | DD wi)

0<j+E<s
f>l§|

+C 3 (IDDywlal DD wlla + 11 D) wl3 + 11D wl3)]| DS w3
051<l_§1
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Assembling these results, we find that (9.5) becomes after cancellations

s 1§
IV D353 < €32 3 DDkl
(12D wllal| DD il + | DDy Ewll3 + 11 D) wl13)

s—1
(9.10) +C Y IVDb|3
=0
and successive substitution of the earlier

By evaluation successively fors = 0, 1,2,3
formulas into (9.10), we find as in Lemmas 7 and 8 of [4]

LEMMA2. Fors=0,1,2,... we have
2 s 4] £ 012 j
VDbl <C3 50 IIDxDQWIlz(IIDxD’JZWIIzIIDilya wll
9.11) j=0£0=0
+ DD w3 + 1105 w13
As in Lemma 8 of [4] we state the corresponding form of the result for time derivatives

f order r without detailed calculation:

LEMMA 2R. Forr,s =0,1,2,3,... we have
|1 D}V D bs;
roos [h+r—2n]
<c Ly 3 | DfD:D; w3
(912) =0;=0£=0,£<s
(HDI"’DXU; wlal| Dy D2D)  wila + (| D) DD w3

+ 1D D w3

Here C depends on r and s but not on w.
By entirely similar derivations we obtain for b3 the estimates in

LEMMA 3. Fors=20,1,2,... we have

s [51 ) o
19050313 <€ 3 (DD wIR(19 0 a0 e+ 5 19vlE)

2 & z
©.13) + IV DR(1DD] Wl DD} il + DD i + (1 wl2)

and
LEMMA 3R. Forr,s =0,1,2,... we have

1D}V Dy, b3l
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;s [5+r=2h]

<cyy 3 {IDv kv

j=0j=0 £=0,¢<s
9.14) (| D"V D ||| Dy RADIE E | + 2 | D"V D "v|13)
+||DIV Do vll3 (| Dy DDy WIIzIIDI "DED’JZWHz
DD DI w2+ (1D D wl) |
where C depends on r, s but not on v or w.

To estimate b4 we have

DS b
||VDf,b4||22:/ ng4aa s — /Ub4AD by dx
= [ DibuDBinidS — [ Dyba(DAbe+ S A3 D) Aby

B<a

+ Y BiD:D)bs+ Z CiD)yby+ = E3 Dly(D3 + D3)bs ) dx

B<a

=f(}V,-Dab4-Df,B,-dx+/(2D*;b4-V,DfIB,-dx
. i —o .
__‘/‘QD’;b;;{DaBiy,"F E AﬁDIBBi.i+ ZaBﬂD3DIBb4

9. 15) + 3 CiDbs+ Z E3Dy(D} +D )b4}

B<a

< l!VDf,bstzllDfxB!Iz + | D5 balls ||V Dy Blle/ s

s—1 i
+ 105 ballo {11 D3, ViBille/ s + ng 1D, ViBilless}
j=
s—1 .
+C IV DLball3
j=0
s—1 .
<1V Dyball2{ 1 D%BIl2 + CIIV D Bll/s + C 3 |V DBl s}
j=0
s—1
+ 2% IV D bal13
j=

where we have again used (9.6) and (9.7) to interchange orders of V and Dl as well as
calculations of commutator terms like those leading to Lemma 2.
Hence by Young’s inequality once more we find

s s—1 .
010 IVDb} < C{IDLBIE + 32 IV DB s+ C 5 IV Dbl
j= =

By (4.8) this leads as before to
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LEMMA 4. Fors=20,1,2,...we have

9.17) IV D3ball2 < C{[IBI1Z 5 +20 IV DBl ).

Since the definition of b4 is linear in B, we can, as is the case with Lemma 7 of [4]
and with f, simply insert the symbolic factor D} in every term of this estimate to obtain
the general case.

The final estimate is for f3. We have

D,
P}

n

IVDLAIE = [ Dof =22 ds—0

in view of Af; = 0. Substituting the boundary condition, we find the surface integral
becomes
~ e DifiDiwin; dS = — /Q VD, f3Dgwi dx

- /Q D fsViDywi, dx

From (9.7) we see that the second integral equals a sum of expressions the first of which
vanishes because w;; = 0. Estimating by (3.3) and (3.7), we find

LEMMA 5.
K . s—1 .
(9.18) IV Dofillz < ClIDgwidla + C 30 I DDy widlle s-
j=0 j=0
The corresponding formula for time derivatives is also valid.

10. Tangential Derivative Inequalities. To construct inequalities for the estima-
tion of D/D},v we set u = v+ w in (2.1) and differentiate r times with respect to ¢, so
times with respect to £, where s = s; + 53, and so obtain, after commuting A and D7,

DD (vi+w)+ S5 (;) (j) DD/ (vi + w)DI DS (vig + wig)

r=0,j=0
=— DD} (b1 +by;+2b3;+bs;+Vvfii+Vvfr;+f3,)

s—1 .
+VD]AD} (v + w;) +v ZA;’D,’AD’/B vi +w;)
(10.1) P

s—1 . s .
+vy. BgD,’D3D13(v,- Fw) vy CgD,'D’ﬁ(vi +w;)
Jj=0 =1

s—1 .
+v Y E3D;D);(D} + D3)(vi + ;) + DD}, B..
j=0
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For the first inequality at this level, multiply by D; Dy, v;, contract over i, integrate over
Q and integrate by parts the terms containing the Laplacian. This yields
(10.2)
1 : . ,
SDADIDNI + [, DIDAD;" Diwi dx || DV Diyv] 3
= - /;) DID;}, v; Z (;) <s> DIDi (vi + w D "D (v + wig) dx

hyj=0 J

- /Q DIDLviDD (b i+ b +2b3 i+ ba; +vfii+vfo+f3i)dx

s—1 .
—y fQ V DD vi(D)V Diw; + ;)AgD,’V Dl (v; + wi)) dx
o
s—1 . s .
v fQ DD, v,»(jz% B3 DDy Dl (v; + wi) + E)C}}D,’D’ﬁ(w +wy)dx
- =
s—1 R
+v [ DDy, 3 B DD (D} + DY) + wi) dx
=

+ /Q DID%v:DID:,B; dx

Let us denote the first three integrals on the right side as Iy, I», I3, and the terms with
B, C and E coefficients I4, I5 and I respectively, the last term being /7. In I, we treat the
products in the order vV v, wV v, vD,w and wD,w respectively; thus /;3,; will denote the
integral term over vV w with given values of 4 and j. We note that I1,o9 and 1,209 vanish,
as in preceding cases, by the divergence theorem, after permutation of V and D?, in the
third factor. By (9.6) the lower order terms arising from this commutation take the form

s—1 .
lz 8k /S; Dt’D‘; v,-(vk + Wk)Dtrkala Vi dx
j=0

. Lo 1 L ) %
< CIDDV{AIV VIS AV + [V vll2 + | Dawll; 1 D3wll; + 1 Dowl]2)

(10.3) x|V Dy |2

Df&D’a v

s—=2 . L
+ 2 IVl + ([ Dawll ) D)V Dl

j=0

3+ 2 1DV D).
B<a

In the third and fourth terms of the same group we find, after a similar permutation, and
using (3.12)

] /Q 3> 8D Dy vitvic + WDV Dy w; dx
v=0

1

5 5 2 5 r 3
<CIDIDLY ANV VIS I AVS + 1Dl |1 D2wlls + | Dewll2} I DIV Diwil

5
s—1 . 1 . 1 ;

+ 2 IV vll2 + 1 Dowll)1DFV Dwll; (| DIDID wil3 + 1| Df DDy wil2)

j=0

Other terms of the double sum /; will be estimated as in § 12 of [4], and are accompanied
by lower order terms that need not be treated explicitly on every occasion.
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The 7 terms arising from /, are also treated as in § 12 of [4] and may then be substituted
with the aid of Lemmas 7 and 8r of [4] and Lemmas 2r, 3r, 4 and 5 of the preceding § 10.
The first term in /3 may be bounded:

|[3|’ = (/QD:VD;V,D;VD;W,dX
(10.4) < DYV Devl| | DYV Dy wi>
v
< Samess 1D}V Divll3 + ClLDID.Diw3.

The remaining terms in /3 are bounded by

s—1 . .
C2_ DV Devll2( DIV Dyl + || DiD: Dy w2)
Jj=0

(10.5) < 22%5 —— || DIV D,v||3
+ S DIV D2 + | DD D).
Jj=0
Also

s—1 .
TARS CZO'/QlD,’VD‘;v;HD,’VD’B(v,-+wi)Idx
j:
s—1 R .
< CL 1DV Do (I DV Djvllz + | D;D.D)ywll2)
par

DIV D3 + CZ(HD’VD’ vl|3 + || D;D. Dy wl|3)

S 2 2r+s+5 “

while I5, I have similar bounds.
Finally,

(10.7) ] < iID’D" vl DiDeBlls/ s

< = 22””5 | DV Div||? + C|| DID;, 3”6/5

Likewise, the additional term on the left side of (10.2) can be estimated as follows:

(10.8) | /Q DID: viD* DS, w; S5 1DIV D3 + €l D Dy w2 .

dxl - 2’r+v+5

The companion inequality is now formed by multiplying (10.1) by D; ADS 1, after
changing s into s — 1 throughout, then integrating over Q. After routine calculations we
find

1 , N . -

SDIDIV D3 + [ DIAD, vy D widx+ v || DIADY V3

- rs—1 i — 1 ) ,
~ " DiAD v hzo (;:) (5 j )Df'Dla(vk + WD DT (i + wig) dx
J=
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- /Q D/ADY '\ viDDY  (by i+ by + 2bs; + by + vfi i+ vfo +f3) dx
(10.9)  +v fQ D/ADS 'vi{ D/ADS  w; +:§Ag1);ml', (vi+w)} dx
+v /Q D/ADE! vi{ngDfD3Ub(v[ +w;) +§ CyDDy(vi +wi)} dx
+v /Q D/ADS! vi:;j E5 D[D/y (D} + D3)(vi + w;) dx

+ /Q D/ADS ' viDI D5 B, dx

As before denote the first three integrals by J;,J; and J3, the terms with B, C and E
coefficients by J4,Js and Jg, and the last integral by J;.

As in § 12 of 4], we apply the LS(2) norm to the factor DD v, or D"Diyw, in J,
when 2h +j < r+ 3, otherwise we apply to it the L°°(€2) norm; the resulting expression
being as in (12.13) of [4] where u = v in the first factors, and u = v + w in the second
and third factors of each term.

The seven terms in J are also treated according to Lemmas 7 and 8r of [4] and Lem-
mas 2r 3r 4 and 5 of the preceding §9.

In J3 we note that the A operators on the second factors can be estimated, as in (12.17)
of [4], by Stokes and gradient terms, the latter yielding zero for the first term, in which
orthogonality of gradients and solenoidal fields of L can be invoked.

For J4 we have

" s—2 .
al < Cv [ 1DJADY ) Y 1D}V Diy(vi+ i)l d
j=0

- s—2 . . . .
< ClIDIAD W]l 3o AID)V Digvllz + || DIDD wll2)
(10.10) =0
v

< o | DAAD: v

s—2 . .
+ C;}(IID[VDQWH% + | DDy wl3).
j:

Similar estimates hold for J5 and J¢ while for J; we find
(10.11) |J2| < | DJADY ||| DfDy ' Bl
14 ATy — rrys— 2
< W”Dzwfx "Wli3 + ClID/Dy ' B3
Also the additional term on the left side of (10.9) can be estimated:
UQDIADZ—'WDT“D?'W:' dx| < || D;ADY WL || D DY

(10.12) |DJADL 3 + €D DY w3

14
< S5
- 22r+x+5
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Adding together (10.2) and (10.9) we find after these reductions and multiplying
by 2,

S r §— 3 r 5 rx —
DA|IDD} |3 + | D]V D)3 + EV{ | D}V D3 + || DjADS 13}
sc{<||D:D;v|l§+ 101V D13

X (V13 + D]l + [V vI[2l| Avl2 + | Dawll2l| Diwll2 + 1)
rs,s—{
+ HZ;O | D Dyl DV Dipvllo(l| DV D3 + || D" DiDgwili)
SE 2
dh+f>rek
rs—1s—£€—1

+ X (IDIV DI DJAD V2 + 3 [IDFV DgVIIE)
htj>0 <a
2h+!_;>r+§ b=

(10.13) x (| D"V Div||? + || D7 "D.Dw||3)
r.s—1 [j/ 24r—2h]

+> > (IDIV DLV +IDIDDEw|3)
hyj=0 €=0,6<s

r— j— r—h X yj— r— j—¢
x (|1 D{~"V D vl D" AD vl +ﬁ; 1D~V Dy " vli3)
<a

s—1 . o .
+ Z;) 1DV Dy v||2(|| DfAD vl + ﬂ; DIV Dyvll2)
Jj= <a

s—2 . s—1 . s
+2 IDIAD VI3 + 2 17V Dy v; +

=0 j=

OIID,’Df;.VIIz2

j=

+ 2 I DIDD wll2{ | DiDeDg w2 + | DD w2}
j=0

Jj=

s—1 i s .
+ 2 IDDIDLwlI3 + 3 1DV Dyl +
J=0 j=0 J

S
. ID; Dy wli3}

rs,s—{

+ 2 1DIDuwlal| DI DD wlo(I D"V D13 + || D" DDy wll3)
e

rs—1,s—f—1 .

+ 2 IDIDDwlla|| DY DIDG wlla(| DV DS + 1| D" DeDywll3)
ht j>0

2h+%27+%

r.s—1 []/ 2+4r—2h) N p 5
+3 Y (IDIVDL|; +[|D{DDwl)3)
hj=0 £=0,0<s
(1D DDl wlo|| D DD wllo + | D DD w3 || DD w3
rs—1 Ui/ 2+r—2h) .\ . .
+ > 2 {lDiDDgwll;
hj=0 £=0.<s
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x (| D"V D || D AD vl + 3 |D7M D)
B<a

+{1DFV Devll3(| Dy DeDy “wila || D DD wlla
+ 1D} DD wliZ I DD i)}

r.s—1 lj/ 24r—2h]

+ 2 2 {IDiDgBl; + Z 1D}V DZBllg, 5}

hj=0 £=0,(<s
rs—1 [j] 2+r—2h)

+ 3 {IDIV Dyl DI AD v]a + Z ID!V Dyvllo)

hj=0 £=0,£<s
+|| DI DDy Wl DF DI wll2 + || DY DD sz)}

s .
+ X;) D} Dlwll3 + | D; DDy wll3 + 1| DiD; Bllg, s
]:

s—1 .
+ 2 1D DDy wlley s
Jj=0

+ 21D Dywllg s + 1D D' wli3 + | DD B3 + 1}
J=0

11. Tangential Derivative Estimates. As in the initial value problem [4, §3] we
now apply Young’s inequality to the various products of derivative norms on the right
hand side of the main inequality (10.13). Up to this stage, the functions v and w have
appeared essentially in a symmetric way in many of the sums on the right hand side.
But while the above process of bounding by powers of all the norms should be carried
out completely for all terms in w, this will not be done for all products containing v.
As in [4, §13], the terms containing Stokes operators acting on v are accompanied by
powers of the corresponding gradient norms, which should be retained in such a way
that no power of a Stokes operator norm in v or its time and tangential derivatives higher
than the square appears on the right side. After the cancellation against the left side of
any remaining terms in || DV D3,v||? and || DIAD?, 'v||2, this yields an inequality of the
following form, where a prime on the summation sign again indicates omission of the
upper right corner term h = r, j = s in the first two occurrences, and h = r,j = s — 1
in the third. The body force terms are carried over without significant change apart from
being expressed as powers of derivative norms. For h = j = O replace 4h +2j — | by +1
henceforth.

; - 5 _
D{ || DD VI3 + I DYV Dy I3} + TV{ D)V Dyl + | DFAD, I3}
syl 2T o -1 2R
<C,{||D/D} v, +|| DIV D,

0 Are2stl

+ “VVHSrMﬁQ + Z ”Dhl)l v“ 4;»] 1

hj=0
442541 s—2
+ Z |DiV DI, vllh“‘*”" +1/Z | DIADI v)|3
hj=0 Jj=
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rs—1 | o Hr=hy+2s—j=1) b 2
ahe2j—1
*hEOMD VDL, T IDfAD )
J=

9 Art2stl r+25+1 Qdre2stl

s{ZHD"D uz"'*’“+zumun wlly =

rs—1
+ DhD2D1 ’ 4:.4214,3 + |Dr+lD1 w ,
e J_z_ou SR s

+ Z | DI DD, W“6/5 + (1D Dy w3
=
DD B s+ | DD B

rs—1 X .
+hZO(IIDﬁ'D’aBHz2 +|DiV D, Bljg/5) + 1}
J=

The presence of the unit term on the right side enables us to reduce the total number of
terms by bounding lower powers of any norm by means of a constant plus a higher power
term. Thus only the highest powers, having formally the singularity index 4r+2s+1 need
to be retained, except in the case of the Stokes operator terms. As in [4, § 13], the constant
C, s on the right side of (11.1) will be henceforth fixed in value.

We now define, forr = 0,1,2,---ands = 0,1,2,---, as in [4, § 13].

) , 12 L s+, 4ra2s-1
(11.2) F,s(t) = | DIDv||3 + || D)V D573 + Z S Fyj(p)
h=0,=0
5 rs—1
+= C,S > Frin+1
hj=0

G s(t) = v(||DIV Diy||3 + HD’ADf;‘vuzz)

rostl A4 25 — Hr—hy+2s—j)
+ F ()" #2-1 Gy it
4Ly ;,ZZ th+2)= ni(1) (1)
+Cry 2 Z G(1)
h=0j=0

Here the double prime on the summation sign denotes omission of the terms h = r,j = s
and j = s + 1. Terms in which4r +2s — 1 < 0 or 4h + 2j — 1 < 0 are also omitted. We

also define
ros+l " 4r+ 25 s=J)
T - r3 F 4’“” ! N t
Nps(t) = M, (D) + = 1 Z Z PTG wi) (1)
r s—1
(11.4) +Crs ) D Nij(0)
h=0j=0
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where M, (1) denotes the nonhomogeneous term

S DDl 2
Mr,S(t) :CIr,s Z ”DtDlaw“2
hj=0

rs=1 o pdnaml

+ Z HD?V Dlawllz4h+2,+|
h,j=0

rs—1 . 9 drs2sel

+ 3 1D DD wll, ™
(11.5) hj=0
rs—1

+ hZO(IIDf'D’;BIIzZ +1|DtV D Bllg, 5)
J:

s . s—1 .
+ ZO D Dwllg s+ ZO D7 DDy wlley s
= j=

+ 1D} Dy wliZ +(|DID; Bllgys + || DiDy ' Bll; + 1.

Asin (12,4) of [4] we note the relations

. 2 4r+2.}'+l Ar+2s+1
DD <
. 2 Are2s+l 4r+2s+1
1DIV Dy, ™ < Fyja (s
N "AD) :
(11.6) v||D]ADLv||; < Gpjpi (1)
Ur—h2s—j—1) Ll

j 2 Ah+ 2+ SVl Hr—hedsy-l)
v DYV Dyl ™7 [DADL VIS < Fai (05T Gayu (1),

As in [4, § 13] we can show that (11.1) can be expressed in the standard form

d r+25+1
(l 1. 7) E;Fr,s(t) + Gr,s(t) § Kr,sFr.s(t)j”z“’] + Nr.s(t)

with the aid of previous inequalities of the same type. To do this we proceed by in-
duction on s, assuming F, (1) € Lo (0, T) and showing by Lemma 1 that G, (1) €
LT (0,T). Thus we assume (11.7) for r < r;and s < s; + 1, and for r = r; and

s < s1 and deduce it for r = ry, s = s;. To do this change r, s in (11.7) to A, j, then mul-
A r—h)+2(s—j)

tiply by giﬁf;j:}FhJ(t)'Wﬂk' and add for h = 0,1,---r;j = 0,1,-- -5+ 1 but omitting

h=r,j=sands+1,to(11.1). Also add on (11.7) with s replaced by j and multiplied

by 3C,s,forh=0,1,...,randj =0,1,...,s butomitting h = r, { = s.
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This yields, with the aid of (11.6),

5
Dt rs(t)+ Grs(t)+Crs Z Gh,}(t)
hj=0
r fgsl r s—1 250
<C{IDIDY; ¥ + || D)V D]l

r,s+1

+2°5 0
hj=0

4r+2s+1

+ E Fh,;+1(t)“”’°’*‘ +v Z | D}ADI,v)3}

hj=0 hj=0
(11 8) rs=l Ar=h)+2s=j=1)
Z FhJ+1 (O Gy (1)
h,]—
5 rstl ” 4r+ 28 - 1 dr+2s+1 5 LA 4h+20+1
+2 L T BT 4+ 2C, C  Frp(t)sir
4h,l=0 dh+20 — 1 h,l() 2 Jhéo ht h,Z()
rosHl 4r+2s — Hr=h)+2s))
+Mm(t)+ 2.2, T F;u(t) 5T Ny(t)
h 0,j=0
+ Cr: Z ZNhJ(t)
h=0j=0

Now the Stokes operator terms on the right are majorized by the sum of Gy, (¢) function
terms on the left and so can be canceled off against them in the inequality. Also the sum
on the right side of (11.8) containing the products of F and G terms is less, term by term,
than the corresponding sum in (11.3). Hence this term will cancel against %G,,s(t) on the
left hand side of (11.8) without changing the sign of that inequality. Thus we now obtain,
as in (13.8) of [4] and with the aid of (13.5)

—! Ar+2s+1

Dt rs(t) + Grs(t) < C{ Frs(t)‘“”z‘ l +2 Z Fh ([)Nm:—
hyj=0

9
(11.9) 7 5 Fuga@mis
hJ 0

£ S FL 0 N0

h=0j=0

< CFo (%55 4+ Nyo(D)

and this establishes (11.7) for the given values of r, s.

Next we show that the condition N, () = F,(¢)* Q(?) holds, where Q(r) € L', T)
anda = 4?3&1 . We assume the hypotheses of the Theorem for a given p, and let r, s be
non-negative integers such that p = 4r + 2s + 1. Then it is a straightforward matter to
verify that M, (¢) € L'(0, T).

By the induction hypothesis for earlier stages,

(11.10) N () = Fi (05557 Q4 (1),
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wherthJ(t)ELI(O,T)andh:0,1,...,r;j:O,l,2,...,s+1 withh=r, j=3s, s+1
omitted. Now, by (11.4)

ros+l, A(r—h)+2 v-,,mmz,

Ny (1) = Qm(t)+ ZZ Fh,/ N~ W Qyi(h)

ros—1

+Cry Z Z Fh‘;(t)‘””?’ ! Qh,](t)
=0 ;=0
ro s+l "
<O+ Z Z Frs (1) 75 5557 Q) (1)
h 0j=

+Crs Z ZFn(t)‘“z‘ e T Q1)

0,j=0

ros+l,

5
<O+~ Z Z Fro(aaT Onj(1)

rs—1

(11.11) +Crs > Fp (s Onj(t)

hj=0

< CQI(I)F,‘S(t)m

This shows the condition of the lemma is satisfied, and the lemma therefore applies to
(11.9). Hence G,S(t) € L#7(0,T) and this now yields ||D/V Div|l, and
| D;AD M v||; € L#5+1 (0, T) as required.

Since this induction has already been shown for s = 0, 1 and all r in § 8, the induction
over s will run separately for each value of r, for all positive integers s, and subsequently
forr=0,1,2,---in succession for all applicable values of r and s.

Because || DIDi |2 < C||DiV D% ||y, it follows that this norm will have been es-
timated at the preceding stage in s so that || DD5,v||, € L7571 (0, T). We have therefore
estimated || D/ D%, v||2, || D}V D5, v||2 and || D{AD%, v||> which latter has been shown, as in
§ 14 of [4], to be equivalent to estimating || D;D;D; D, v||». Thus all tangential derivative
norms, together with their first and second space derivative norms, have been estimated
as required, for v. As these results hold for w by hypothesis, they now hold foru = v+w.

Likewise, by (3.12) we have

max | D;D}u| = ||D;D}ul|co

< (DY Dy, ““2 | D/AD ull;
(11.12)
+ | DDyl | DyADY ull;

+||DID%,ul|y) € L+ (0,T)

with corresponding results for v and w separately. As in (14.2) of [4] only derivatives
with respect to time and tangential variables are present on the left side in (11.12), but
no normal derivatives as yet.
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12. Normal Derivatives of Higher Order. Remaining to be estimated are the
L*(Q) norms of the partial derivatives containing three or more normal derivations.

By (4.7) the desired conditions hold for w at every stage of calculation since p > 7
for every step involving a third order space derivative. Repeating the calculations of [4,
§ 15] we find the third normal derivative of u is bounded as desired, and the same result
then automatically follows for v = u — w. As in [4, § 15] the main calculation can be
done by induction on the normal order, the only new circumstance being the presence of
body force terms in the vorticity equation. Since the Laplacian and the body force term
appear as separate linear terms in the momentum equations, the normal derivative of u
under study after any number of differentiations will always have exactly two orders of
space derivatives more than the body force terms.

Thus if h, k, are integers such that 2h +j = %(p — 3), then 4h + 2j + 3 = p so that by
(4.9) | D'D/B||; € L*(0, T). By the estimates of [4, § 15] and the remark above, it follows
that || D!D}?u||, € L7577 (0, T) and this is the highest derivative norm guaranteed by the
hypotheses of the Theorem, since 4h+2(j+2) = p + 1 sothat 2h+ (j+2) = %(p +1),
as stated in (4.7). The result for the maximum norm then follows in the usual way. This
completes the proof of part (b) of the Theorem.

Finally, the proof of part (c) of the Theorem is immediate when (b) is proved for all
odd p > 0. Continuity of any given derivative of w or B is a consequence, for example,
of inclusion in L%/3 (Q X (0, T)) of all partial derivatives of order four higher.

13. Unbounded domains. The analytical operations involved in our application
of the basic Integrability Lemma are the differentiation with respect to ¢ for the space
integral defining F(¢), and the integration by parts of a term containing the Laplacian.
For a bounded domain €2, our smoothness hypothesis on the solution u(x, f) makes the
justification of these operations straightforward and elementary. When the domain Q is
unbounded, however, further considerations of uniform convergence and integrability
appear. Here we describe a justification of these operations based on the unified integra-
tion approach of McShane [11]. The necessary conditions for infinite domains require
that the value of p in Theorem 1 be increased by 2 relative to bounded domains.

For brevity we treat only one stage of the induction, namely the derivation of (6.14),
leaving to the reader the adaptation of the method to later stages. We accordingly choose
p = 5, and note that the hypotheses of Theorems 1 and 2, and Corollaries 1 and 2, of [9,
Chap. 4, §2] will be satisfied if we consider a time interval E; : Ty < t < T wherein
u(x, 1) is regular and a suitable initial instant #; € E is chosen (such #; are dense in Ey).

We now consider the nonlinear terms such as vv;x and any other quadratic terms as
non-homogeneous terms placed on the right hand side of the Navier-Stokes equations. In
applying the above results for compact subsets of E; we may assume that the prior stage
(6.8) of the induction has been established and ||v||2 and ||V v||, are therefore bounded
and continuous functions of 7 therein.

By the uniqueness Theorem 2 of [9, p. 89] the solution described there must coincide
withu = v+w of the present paper. It now follows from Theorem 1 and from Corollaries 1
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and 2 of [9, Chap. 4, § 2] in succession that Av, Av,Dv, v,V v,and V p are all elements of
L*(2) with norms depending continuously on ¢ in £, hence locally uniformly convergent
there [9, p. 529, Theorem 2].

To justify the operations in (6.13) we may now note that differentiation with respect
to t as in

d d
R0 = 2V = 2/QVV~Vv,dx

is justified by the absolute convergence, locally uniform with respect to ¢ by [8, p. 529,
Theorem 2], of the integral on the right side [11, p. 137 and p. 259]. Likewise the inte-
gration by parts in

/QVV-Vv,dxz—/QAv-v,dx:—/Qﬂv-v,dx

can be justified term by term using absolute convergence in the one-dimensional integra-
tion by parts Theorem 9.4 of [11, p. 126] and the results on iterated integration of [11,
Chap. 4, §4, pp. 261-273 or §7, pp. 300-304]. These results now justify the first term
on the left of (6.13). As the remaining terms are obtained directly, our demonstration is
complete.
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