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BOUNDARY VALUES AND BODY FORCES 
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G. F. D. DUFF 

ABSTRACT. For a vector solution u(x, t) with finite energy of the Navier Stokes equa
tions with body forces and boundary values on a region Q. Ç R3 for t > 0, conditions 
are established on the L6I5{Q) and L2(Q) norms of derivatives of the data that ensure 
the estimates ||DJDJM|| G L2(4r+2s-1)_1 (0,7) a n d m a x ^ |DJZ>JM| G lP-r+s+l)~X (0, T), 
up to any given integer value of the weighted order 2r+s, where r or s = S1+S2+S3 > 0 
and 0 < T < 00. 
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1162 G. F. D. DUFF 

Chapter I. Non-homogeneous data 

1. Introduction. Among the classical equations of applied mathematics and math
ematical physics, the Navier Stokes equations in three space dimensions retain particular 
interest because the standard initial and boundary value problem for them has not been 
shown to be correctly posed in every respect. Indeed solutions with finite kinetic energy 
which develop singularities over time, and may be non-unique, are believed to exist. Al
though no completely satisfactory explicit example has yet been found, interesting cases 
that come very close to fulfilling all the conditions are discussed in [2,4,9,10,12]. The 
existence of long-time weak solutions in Hilbert space has been demonstrated [9], and 
these become smooth under a certain condition of small magnitudes [6,10,13]. The set 
of singular points in space-time has been shown to have Hausdorff dimension at most 1, 
and to have one-dimensional Hausdorff measure zero [2,12]. Solutions with singularities 
may be related to such physical motions as tornadoes. 

In these circumstances interest will naturally attach to the general properties of solu
tions with finite energy. A first step of this kind was taken in [5] wherein the existence of 
energy-type estimates for higher space derivatives of solutions was shown for the case of 
a three-dimensional periodic parallelepiped or 3-torus. For the general initial value prob
lem in three space dimensions, but with zero boundary values and body forces, higher 
order estimates for all space and time derivatives were found in [4] as follows: 

Let u(x, t) be a vector solution of the homogeneous Navier Stokes equations with finite 
kinetic energy on a three-dimensional region Q, which vanishes on dQ. and is smooth 
except on a singular set of dimension 1 in space-time. Then the L2{Q) norm of Dr

tiyxu is 
integrable to the power 2(4r + 2s — l ) - 1 over every finite time interval (0, T), where r or 
s = s\ + $2 + S3 is a positive integer, and max^Q |D[DJw| is integrable over (0, T) to the 
power (2r + s + 1)_1, where r, s = 0,1,2, 

The present paper is concerned with the related higher derivative estimates, condi
tions, and results that apply when non-zero boundary values and body forces are intro
duced. The theorem is stated in § 4 below, but certain preliminary comments may be 
appropriate here. As shown in [4] the finiteness of the kinetic energy, or initial value 
norm || w||2, with other data zero, is sufficient to ensure the higher derivative estimates of 
every order of derivatives, with the condition that the integrability over time decreases as 
the derivative order increases. For non-homogeneous boundary values and body forces, 
however, a cumulative sequence of hypotheses on corresponding derivatives of the data 
will be appropriate. This reflects the situation that, whereas initial values will exert their 
influence once for all at time zero, and then be left behind in the past, the boundary val
ues and body forces, by later behaviour, or by developing singularities of some degree, 
can influence the later character of the solution to an extent not foreshadowed by earlier 
behaviour. This aspect will be considered again in the discussion of the main lemma on 
integrability of §5. 
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NAVIER STOKES DERIVATIVE ESTIMATES 1163 

2. The Navier Stokes Equations. Let xt (i = 1,2,3) denote Cartesian coordinates 
in R3 and let t denote the time variable. Let W;(JC, t) be the vector field of velocity com
ponents of a fluid flow, and /?(JC, t) be the pressure. The constant viscosity coefficient is 
denoted by v. Let Bt(x, t) denote a vector field of imposed body forces. Then the non-
homogeneous Navier Stokes equations are 

^ . x dut dut dp A n , 
(2.1) _ ! + M ' = _ ^ 1 + y^ui + Bi(x, t) 

at oxk oXi 

where i = 1,2,3 and summation over k = 1,2,3 by the Einstein convention is under
stood for repeated indices. 

The differential dx shall denote the volume element dxxdx^dx^ while the Laplace 
operator in R3 is denoted by A = £?=1 ^ . We shall also assume that the equation of 
continuity, or incompressibility, 

3 9M. 
(2.2) divu = Yi^r1 = 0 

itî dxi 

holds in the above homogeneous form. The four equations for the unknowns ut and p 
(the latter up to an additive constant) form a semi-linear elliptic-parabolic system. 

Three initial conditions are appropriate: 

(2.3) Ui(x90) = Uio(x) 

where uo(x) = { M/oW} is a given solenoidal vector field of integrable square on a given 
region £1: 

(2.4) Nll2
2 = £ L M*)l 2 dx < oo. 

We assume throughout the boundary dQ. satisfies a weak cone condition and is piecewise 
C°° with a finite number of edges or corners in any bounded subregion, and that 3Q is 
not too tightly coiled or layered at large distances as in (4.3) of [4] if Q is unbounded. 
The boundary conditions shall be 

(2.5) M,-(JC, t) = W,-(JC, 0 

for x £ dQ,, where w,(x, i) is a given vector field defined on dQ. and in £1, subject to 
conditions as stated below, and such that in £1 

(2.6) divw = £ ^ = 0. 
i=i àxt 

Taking the divergence of (2.1) we find 

duk dut dB( / x „ 
(2.7) Ap=--±—L + -± = -faut)* + BUi 

OXi OXk OXi 
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where the subscript commas denote partial derivatives with respect to the indices fol
lowing. Lettingx approach the boundary we obtain the boundary relations for/?: 

(2. 8) —^ + wkT± = -^- + vbui + Bu 
at axjc dXi 

Let us set 

(2.9) ui = Vi + W( 

so that on dQ we have 

(2.10) y, = 0. 

Then also in Q 

(2.11) vu = Uij-wtj = 0 

and on d£l 

OXk on 

where n = { m} denotes the unit normal to 3Q, and d/ dn the normal derivative. Also 
in view of (2.10) and (2.11) we have on dQ with a suitable coordinate system as in [4, 
§10], 

dvt (dvn drii\ dvn 

riiWkz—- = wn[- v,-— = w„ — 

= _w (^XL + ^l) = o 
n V dx\ dx2 > 

where n, x\ and X2 denote suitable coordinates locally normal and tangent to dQ see [4, 
§ 10]. Hence the normal component of (2.8) yields the Neumann type boundary condition 

dp dwn dwjç 
(2.13) — = — nïWk-z— + i/riiAvi + l/riiAwi + Bn. 

on at 0Xi 
Estimates of the potentials arising as solutions of the boundary value problem (2.7) and 
(2.13) will be given in §9 below. Here we merely note that the standard necessary con
dition for the consistency of this Neumann problem for/? can easily be verified from the 
conditions listed above. 

3. Analytical Preliminaries. The Lebesgue space LP(Q) will denote the vector (or 
sometimes scalar) functions on Q with finite norm \\u\\p, where 

(3.1) ||i«||£= [nJ2\ui(x,t)\Pdx. 

Throughout, these norms become functions of the time t. We set 

(3.2) (M,V)= / r « m & 
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NAVIER STOKES DERIVATIVE ESTIMATES 1165 

and observe by Holder's inequality that 

(3.3) |(n,v)| <| |n| |p| |v| | , 

where I + ^ = 1, p > 1, # > 1 so that p and q are dual indices. As well, we em
ploy Young's inequality [7, Theorem 37], equivalent to the theorem of arithmetic and 
geometric means, 

cP bq 

(3.4) ab<— + — 
p q 

where a > 0, b > 0. By an extension to a product of several variables, we have as well 

(3.5) a i . . . f l„<ê-*r 
j=iPj 

where pj — ^ , W = EjLi w/- Here the weight Wj > 0 may be attributed to a; so that 
each term on the right side has weight pjWj = W. As in [4] we also use the inequality 

(3.6) t^<n(±^/qy 
where q > 0, j = 1, . . . , n and p > 0, q > 1, easily shown by comparing with 
« (maxa / . 

We shall frequently use the Sobolev inequality 

(3.7) HI,<c(||VHI, + IMI,). l-=l--\>0 

where C is constant for each p < 3 [1]. Here V u denotes | j ^ regarded as 9 components 
of a tensor in R3. The cases, p — 6/ 5, q — 2 and p = 2, g = 6 are most frequently 
employed. For q = oo we use the inequality, see [1, p. 718; 4, § 2] 

(3.8) max |u| - H U < C(||M||^ /2 || VW||6
1/2+ | | I I | | 6 ) . 

In the Hilbert space L2(Q) a vector field W,(JC) can be expressed as a sum of gradient 
and solenoidal components: 

(3.9) wi(x) = vi(x) + Vi$(x) 

where V/,,-(JC) = div v = 0 in £1 and vn = Vj«; = 0 on 3£2. It follows that these two 
components are orthogonal with respect to the inner product (3.2) [9]. The solenoidal 
part Kut of Aw, is known as the solenoidal Laplacian or Stokes operator [9, p. 44], while 
the gradient part V / , with 

(3.10) Aut = Aut + V / , 

defines the viscosity potential/ corresponding to uu up to an additive constant [4]. Note 
that A is a globally supported operator on vectors: Âw, = (Âw); in contrast to the pointwise 
operator A on components w;. 
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As shown in [1] there is a special Sobolev inequality of the form 

(3.11) \\Dxw\\6 < C(||Z>>||2 + \\Dxw\\2). 

where we have used Di to denote the 5th order Cartesian derivative and ||D*w||£ = Jxn\\P 

£ î l+î2«3=, Wt&i&îAl- Then (3-8) becomes 

(3.12) max|w| = HHU < C ( | | D x H l 2 / 2 | I ^ H l 2 / 2 + I I ^ H b * IIHI2). 

If (2.11) holds and v vanishes on 3Q, we also note, using gradient notation 

|D2v||2 + ||£>v||2) l |Vv | | 6 <C( 

< C ( 

<c( 

<c( 

by [4, Lemma 2]. Hence 

(3.13) | | V v | | 6 < C ( 

by (3.11) 

by [9, p. 21] 

by (3.10) 

Av||2 + ||Vv||2) 

Àv||2 + | |V/ | | 2 + ||Vv||2) 

I 1 / 2 ! ! |Âv||2 + ||Âv||niVv||r+l|Vv||2) 
,1/2 

|Àv||2 + ||Vv||2) 

Similarly, if I?a denotes partial differentiation of order 5 = «i + a2 with respect to 
tangential coordinates defined as in [4. Chapter III], it can be shown as in Lemma 1 of 
that paper that 

| |VD> | | 6 <C( | |AZ>> | | 2 + £ ||VD2M|2) 

where j3\ + #2 = m, Bt < or,-. 

4. Statement of the Theorem. 
The conditions that a solution of (2.1)-(2.5) can be expected to satisfy are at best 

those of the theorem in [4] on initial values, for non-homogeneous data functions can 
not, a priori, be expected necessarily to reduce or remove singularities that can only 
be located, if they exist, by the construction of the solution itself. The problem now 
becomes the specification of conditions for boundary value and body force data that will 
at least preserve the same behaviour of the solutions. That this is possible is shown by 
the following 

THEOREM. Let UQ G L2(Ç1) and let r,s be non-negative integers, p an odd positive 
integer. Then ifQ. is bounded, 

(a) 1/|M|2, \\Dxw\\i e L4(0,7), and ||w,||6/5, | |B| |6 / 5 G L2(0,7) then ||u||2 G 
L°°(0, T) and \\ V u\\2 G L2(0, T). 
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(b) if for a given odd value of p > I we also have, for r > 0, s > 0, 

(4.1) \\D?1D?M\6I5£L^(0,T), 2r + s<l-{p-\) 

(4.1) \\w\\2 G L2"(0, T), \\Ds
xw\\2 e L ^ T ( 0 , T), 0<s< l-(p + 1) 

and 

(4.3) | | D ^ B | | 6 / 5 G L ^ r ( 0 , r ) , 2r + s < ^(p - 1) 

then 

(4.4) \\Dr
tD?xu\\2 e L^fcr(0,D, 0 < 2r + s < i (p + 1), 

and 

(4.5) max|£>,rD*w| G L ^ ( 0 , 7 ) , 2r + s < -(p - 3) 

(c) if for all finite p >2we have for r > 0, s > 0 

||D, rD>||6/5, ||Z)>||2, | |Z )^B | | 6 / 5 G Z/>(0, T), 

then w and B are C°°(Q X (0, T)) and (4.4) and (4.5) hold for all r,s>0. 
IfQ. is unbounded, p should be replaced by p + 2 in (4.1), (4.2) and (4.3) of(b). 

Proof of this main result will occupy the rest of this paper, frequent reference being 
made to the calculations of [4]. 

Conditions (4.1) and (4.3) also imply certain bounds in L2(0, T). By (3.7) with/? = f, 
we may write 

(4.6) ||Or75>||2 < C{ | |D^ + , w| | 6 / 5 + WWMU/s} 

for r > 0, s > 0. By (4.1) the first term on the right side is in L ^ - i (0, T) for 2r + s < 
j(p + 1) while the second term is in L̂ +2,-3 (0, T) for 2r + s < ^(p + 3) and consequently 
also in L4r+2,i (0, T) for the same values of r and s. Hence we find, with the given condition 
(4.2), that 

(4.7) WtJyxw\\2 e L ^ ( 0 , r ) , 2r + s < ^(p + 1). 

Similarly 

(4.8) WVMi < C{ \\DrtDÇlB\\6li + WDr&Me/s} 

where r > 0, s > 0. Again, the first term is in L^+s (0, T) for 2r + s < ±(p — 3) while 

the second term is in L^+2s+i (0, T) and hence also in L**** (0, T) for 2r + s < \(p — 1). 

Thus we find 

(4.9) Wt&Mï É L ^ ( 0 , 7 ) , 2r + s < l-(p - 3). 
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Henceforth it will be convenient to regard (4.7) and (4.9) on the same footing as (4.1)-
(4.3), the hypotheses of part (b) of the Theorem. 

Although slightly diffèrent versions or groupings of the hypotheses and conclusions 
for derivatives pf various orders are possible, we have chosen what appears to be the sim
plest grouping of partial derivatives, namely according to their weighted order 2r + s = 
2r + s\ + s2 + S3. For each level p = 1,3,5, . . . , all the conditions for the preceding 
weighted orders are understood to apply also, and are used in the reduction of the in
equalities that forms the main part of the following proof. Thus when p and s — s\ +S2+S3 
are given in (4.1)-(4.3) it suffices [7, Theorem 222] to consider only the highest value 
of r, namely r = [\(p — 1) — \s]. Likewise for given p and r it suffices by the em
bedding theorems to consider only the three highest integer values of s for compact Q. 
Although higher values of p appear for lower order derivatives as p increases, the entire 
scale from L2(0, T) to L°°(0, T) is equivalent in the sense of embeddings to half of one 
time derivative only. 

5. An extended Intestability Lemma. The method to be used below depends on a 
sequence of inequalities, one for each order of derivatives. With part 5) of the following 
lemma these can be used to deduce properties of integrability. The lemma, stated in full 
for completeness, is an extension to non-homogeneous inequalities of Lemma 3 of [4], 
see also [5] and [7, p. 114, 126 and 173]. Throughout assume all functions measurable: 
Q(t) will denote a generic function in Ll(0, T). 

LEMMA 1. Let a > 1,/? > 0, F(t) > FQ > 0, Fit) G Lp(0, T), F(t) continuous where 
finite, G(t) > 0, Q(t) G Ll(0, T) and Q{t) > 0. Let ]?(t) be defined a.e. and satisfy 

(5.1) F'it) + G(t) < KF"+Pit) + CFait)Qit). 

Then 
J) Fl~ait) has bounded variation on [0, 7], with non-decreasing singular part. 
2) The discontinuities at 7\ ofFl~ait) are jumps upfront value zero (F(7^) = 00), 

and the sum £* F1_a(7^ + 0) is bounded. 
3) As t —• Tk — 0, F{t) > ykitfl~a~p) where y kit) denotes the minimal retrograde 

solution of}/ = ~ia + p — l)[K + CQ(t)ya+p-1 ] which vanishes at T^. 
4) Also 

J-J2F^iTk+0)+[T^-dt 
û - i r Jo Fait) F%t) 

tYdt+C I 0(iïdt+  
(5.2) 

< K JT Fitf dt+cJT Qit) dt + b V < 00 

so that Git) < CiFa(0Gi(0 where Qx(t) G L!(0, T). 
5) Hence Git) G L^(0, T) and 

(5.3) f G(t)% dt<(K+l)[ F(t)dt+ - £ - f Q(t)dt+-^ °—. 
Jo Jo a + p Jo a + p a — 1 
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6) Finally, N(t) = CFa{t)Q{t) G L^(0 , T) with 

rT p a rT pC rT 

/ N(t)^dt< / F(tfdt+^-—\ Q(t)dt. 
Jo w ~ a + pJo w a+pJo * w 

PROOF. Omitting the non-negative term G(t) from the inequality, dividing by F°(0 
and expressing the left side as a perfect differential we find 

1 d Fl~a(t) > -KF?(t) - CQ(t). 
a - 1 dt 

The right hand side being integrable over t, we see that the negative variation NF(t) of 
Fl~a(t) [14, p. 18] is continuous and bounded over [0, T\. Hence the positive and total 
variations of Fl~a(t) are also bounded over [0, T\. This proves 1). 

Since F(t) is continuous where finite, Fl~a(t) can be discontinuous only at the level 
zero. As the range covers non-negative values only, the jump must be up; the sum of these 
jumps cannot exceed the positive variation of Fl~a(t), which is bounded over [0, T] as 
above. This verifies 2). 

To establish 3), we again omit G(t) from the main inequality and divide by F*+/7(0 
obtaining 

?-Fl-a-?(!) > -{a +p - \)[K + C^p{t)Q{t)l 
at 

The comparison of Fl~a~p(t) with yk(t) is then immediate and Fl~a~p(t) < y*(0 for 
t < Tk. This proves 3). 

Returning to the main inequality we divide by /*"(*) and integrate over (7*_i, 7*) where 
7o = 0. Extending the interval of integration on the right to T, where Tk < T for all k, and 
summing over k, we find the inequality in 4). This gives an explicit estimate for the sum 
(see 2) above) and shows that the integral is convergent. Hence G(t)F^a(t) £ Ll(0, T), 
completing the proof of 4). 

Now with Holder's inequality 5) is established as follows: 
p 

rT _2_ rT G(t)a+P _2£_ 
/ G(t)°+pdt= / -^rFity+pdt 
h Jo f(t)^-P 

~ a+pJo a+pJo F(t)a 

by Young's inequality (3.4) with/? replaced by (a+p)/ a and q by {a + p)/p. Finally 

f N(t)£~p dt < C^~p I F(t)^~p Q(t)£~p dt 

< C* [Jo
T F{tf dt) * (|o

r Q(t) dt) * < oo 

by Holder's inequality once again, so implying 6) and completing the proof of Lemma 1. 
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Note that when C = 0, part 3) goes back to [10, p. 224]. When C ̂  0, the singularity 
of F(t) has the same order if Q(t) is bounded, but may be lower if Q(t) is unbounded 
as t —• Tk — 0. Since the inequality (5.1) is not integrable over (0, T) as it is given, 
the question might arise, why the hypothesis N(t) < CF(t)aQ(t) is appropriate. This 
is, however, the best condition possible if we are to be able to integrate after division by 
F(t)a. If F(t) should have a singularity, say at T\, then a higher than integrable singularity 
becomes possible for N(t) at T\, since Q(t) may also be singular at T\. However we do 
not know in practice when singular instants may occur, so it is assumed not possible 
to predict such a coincidence of singularities of F{t) and N(t), as a hypothesis. If there 
is no singularity of F(t) at a given time, then any singularity of N(t) at that instant is 
restricted to be integrable. In the applications, this restriction of unpredictability also 
involves causality, for the occurrence of singular instants will be influenced in part by 
the prior behaviour of the impressed forces represented by N(t) = CFa(t)Q(t) in the 
inequality (5.1). 

Chapter II. Time derivatives of the gradient and Stokes operators 

6. The sequence of inequalities. With ut — vt + wt as in (2.9) the Navier Stokes 
momentum equations become 

(6. 1) Vijt + Wijt + VkVijc + WkVUk + VkWijc + WkWiÀ = -pj + I/AV; + I/AW/ + Bi(x, t). 

We multiply by v,-, contract over index / and integrate over Q, obtaining 

2 dt "V '^ + Jo.ViWi,t dx + L ViVkVi>k dx + Ja viw*vUkdx 

(6.2) + j ^ ViVkWifidx + J^ ViWkwifkdx 

= — / vtpj dx + i/ v/Av, dx + v v/Aw/ dx+ v/B,- dx. 
J\i </12 J\l JL2. 

In view of (2.2) and (2.6) we have v ^ = «w — Wkjc — 0 so the third term on the left is 

(6.3) j ^ vivait dx = - j ^ Vkivf)* dx = - - j ^ vkik(yf) dx = 0 

and the fourth term on the left of (6.2) likewise vanishes. 
The second term on the left is estimated by 

[^ V|W«,r <&| < ||v||6 ||w,||6/5 < C||Vv||2 | k , | | 6 / 5 

(6.4) < ~ l | V v | | 2
2 + ^ | | w 4 2

/ 5 

in view of Sobolev's and Young's inequalities. 
Now JQ vipidx = 0 by the orthogonality of v, to gradient fields, while 

IfvAwidxl = IfVviVwidxl < ^\\Vv\\î + K2\\Dxw\\i 
\Jil I \J£i j o 
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and 

(6.5) 
L ViBi iBidx\ < vll \B\ 6/5 

< C||Vv||2 | |B| |6 /5 

< ^ | | V v | | | + ^ | | B | | 6
2

/ 5 . 

Also 

and 

(6.6) 

j ^ v,-Av, dx = - JQ(V v)2 dx = - | | V v|| 2
2 

[ 4 V,'V*H'''-* ̂  - II v l ' 6 Hvll3 H ^ ^ l l 2 

<C||Vv||2||v|y/2||v||y2||D,w||2 

<C||Vv||2
3/2||v||^2||DHl2 

V 

Ï61 < - T I | V V | | 2
2 + ^4 | |V||2

2 | |Z),HI2 

by Young's inequality with exponents \ and 4. Similarly, 

(6.7) N^ v(-wtwa dx < 1Mb Hie PMk 

<C||v||y2||v||'/2(||D,Hl2 + ||Hl2)||D,Hl2 

<c||Vv||*/2||v||*/2(||DxHl! + IIHl!) 
<^l|Vv||2 + ^ | |v | | 2 / 3 ( | |D,HI 2

8 / 3 + IIHI2
8/3) 

V <^HVv||2
 + «6(11 V| ! + ||DHl24 + IIHl24) 

where Young's inequality has been used twice, with exponents 4 and | , then with ex
ponents 3 and | . Two integrals containing v/V/,* = (̂v,-)2*. vanish, by (2.6) and (2.11). 
Assembling these estimates, we find, after multiplication by 2 and certain cancellations 

(6.8) 

where 

dt |v||2
2 + ^l|Vv||2

2<C||v||2
2(||DxHl24+l)+^i(0 

(6.9) Nx(t) = C{\\Dxw\\22 + \\Dxw\\i + IMI2 + IHIô/5 + H*ll6/5}-

By hypothesis (a) C||Dxw||^ G Ll(09T). Hence the integrating factor 
exp(—C JQ(||DXW||2 + 1) dty is bounded above and below by positive constants: 

(6.10) 

for 0 < t < T. 

0 < Ax < exp ( - J* C(||Dxw|l2 + 1)dt') < A2 
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We may omit the second term on the left of (6.8) and find an explicit bound for the 
resulting first order linear differential inequality for || vljf'-

(6.11) 

|v||f(f) < ||vo||2
2exp(Cjr'(||Z)Hl24 + D<*0 

+ /J exp {C j\\\DxW\\t + Ddt^N^dr 

<VlMl22 + ^jfM(T)rfr. 

By hypothesis (a), N\(T) G Ll(0, T) so this expression is uniformly bounded on 0 < t < 
T. Hence || v||2(0 < Ko, say, in this range. 

Returning to the inequality (6.8) we can now integrate it directly, and so find 

(6.12) 
IvIlfC^ + î  ^ I I V v l l f A ^ C^To^dl^^HII + 1 ) ^ +^iViCOrf/ + INI£ 

< K7 < oo. 

Hence || V v||2 € L2(0, T) as required. This completes the case (a) of the Theorem. 
To establish the second inequality, multiply (6.1) by Av; and integrate; obtaining 

- - T H ^ H I I + / ÀvtWUdx + / ÂViVkVijcdx 
2 at •>& J& 

(6.13) + / AvtWkVijc dx •¥• / AviVkWijc dx + J ÂviWkW^dx 
J\i «/i* </i2 

= — / ÂviD idx + i/ / AvjAvj dx + v / Âv/Aw/ dx+\ AviBt dx. 

Detailed reductions of the terms are as follows: 

|^Àv,w ; > ,^ | < ||Àv||2||wr||2 < ^||Àv||2
2
 + C||w,||2

2 

< | |ÀV| | 2 | |V | | 6 | |VV| | 3 / ÀviVkVjjdx' 

<C||Âv| |2 | |Vv| |2 | |Vv| | ' /2 | |Vv I 1/2 

<C||Àv||2
3/2||Vv||2

3/2
 + C||Àv||2||Vv||2 

<^||Âv||2 + C{||Vv||2
6
 + ||Vv||2

4} 

where we have used (2.20) of [4] and Young's inequality with indices 4 and | , 2 and 2, 

I^ÀV/HW^I < ||Àv||2||w||6||Vv||3 

<C||Âv||2(||Âv||'/2 + | |Vv||^2)(| |D,Hl2 + | |Hl2)| |Vv||^2 

<^||Âv||l+AT(||z),Hl24 + IIHl24 + llftHII + lkll22)l|Vv||2
2 

U Âv,-VtW,-jt dx\ <||Âv||2||v||6||D,Hl3 

<c||Âv||2||Vv||2||D,Hl2 /2(II^HI2
1/2 + II^Hl2 /2) 

< ^ | | Â V | | 2
2 + A : | | V V | | 2

2 | | D , W | | 2 ( | | ^ H I 2 + I I ^ H | 2 ) 
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U &ViWkWij dx < IIÂvHzllHlell̂ Hb 

< C||ÀV||2||DXHI2/2(||/>H|2+ |IHl2)(||^Hl2/2+ II^Hl2 /2) 

< ^| |Âv| |f + K(\\DxW\\l + IIHIfXll^Hb + \\DM\D 

/ Avipj dx = 0 

| /QÂv;Aw^| < ^ ||Av||2
2
 + C||Aw||2

2 

1/ AvtBidxl 
|7Q 

<^||Âv||2
2
 + C||fi||2 

Collecting terms, we find 

^ | | V v | | | + ^||Àv||2
2 

<^{||Vv||2
6

 + ||vV,||2
 + (||Z)Hl24 + IIHl24 + II^Hl22 + IIHl22)l|Vv||| 

+ l|Vv||2||DH|2||D,2H|2 + ||̂ Hl23||£»2H|2 

+ l|0>||2
2
 + ||B||2

2}. 

Since 

and 

we find 

(6.14) 

where 

|Vv|||||D,H|2||^Hl2<5l|Vv||| + i||Z),Hl26+^II^Hl22 

|Dxw||2
3||D2H|2 < -\\DxW\\î + ïWfyWi 

^ | |Vv | | I + ^||Âv||2
2<Ji:||Vv||2

6
 + ^3(r) 

(6.15) N3(t) = C{|M|2
2 + ||B||2

2 + ||D2H|2
2 + \\Dxw\\% + IIHI26 + \\Dxw\\l + IMl! + 1} 

Again, multiplying (6.1) by v,-., and integrating, we have 

II v'll2 + /„ VUWU dx Vijvkvuk dx+ J vUtwkvuk dx 

(6.16) + J VijVkWtf dx + J^ vUtwkwuk dx 

— — I Vijpjdx + v VJ/AVJ dx + v v^Aw, dx+ VijBt dx. 
J\i J\l JLl J LI 

In detail, we find 

jav,tWi,dx\ < ||v,||2||W,||2 < ^ N | 2
2 + t f | H | 2

2 
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1174 G. F. D. DUFF 

j^VwV4Vad[«|<||v, | |2| |v| |6| |Vv||3 

<C| |v , | | 2 | |Vv | | 2
3 / 2 | |Â< 2 

<^I|V,||22+^I|VV||2
3||ÂV||2 

<^ I |V , | | 2
2

 + ^ | |ÀV | | | + A:||VV||2
6 

j[1VWW*Vad!c|<||v/||2||H|6||Vv||3 

<C||v,||2(||DxHl2 + ||Hl2)||Vv||2
1/2||Âv||^2 

<^l|v,||2
2 + ̂ ||Àv||2

2
+Js:{||Vv||2

6
 + |I^Hl26 + IIHl26} 16' 32 

by Young's inequality for four factors, with two small coefficients, and exponents 2, 6, 
12 and 4, 

|^V,-,V/tH>a<ft < ||v,| |2 | |v||6 | |D,M>||3 

<C||v(||2||Vv||2||D,HI2
1/2||^Hl2/2 

<^l|v,||2
2 + Jf{||^Hl22 + l|Vv||2

6
 + ||DHl!} 

\jaVijWkWij<dx\ < IN|2|Ml6||0*Hl3 

< C\\v,||2(||D,HI2
/2 + ||w||2

3/2)(||D>||2
I/2 + ||D,W||2

/2) 

<^I |V, | |2
2 + A:{||Z^HI22 + I I^HI2 6 + IIHI26)} 

^wlU2 

/ V; tPjdx = 0 

jQ vuAv, dx=-jQV v,,, V v,dx = - ~ || V v|| 

| ^V,- , ,AH-,^ | < | |v,| |2 | |D>||2 < ^||v,||2
2+tf||D2.v 

| / Q V ; , , B , ^ | < I | V , | | 2 | | B | | 2 < ^ | | V , | | ! + A:||B||2
2 

Assembling these inequalities, we find after multiplying by 2, 

(6.17) 

where 

(6.18) Afott = *{IH| 2
2 + ||£>2w||2

2 + \\Dxw\\l + l|w||2
6 + ||B||2

2} < CNi(t). 

" | l l V v | | 2 + ||v,||2 < K\\V v||| + ^||Àv||2 +JV32(0 
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As in (8.1) of [4] we now add (6.14) and (6.17) together with the result that after cancel
lation of a term in || Âv|||, 

(6.19) ( l + i / ) | | | V v | | | + i/||Av||| + | |v r | | |<^| |Vv|!2
6-fC^3(0. 

By hypothesis for p = 3, we have N3(t) G L!(0, T). We write F3(t) = 1 + || V v|| | 
and G3(t) = ^||Âv||| + ||v,||2 as in [4, §8]. Observing that N3(t) < CF3(t)

2Q(t) where 
Q(t) G L1 (0, T) we see that the hypotheses of Lemma 1 hold with/7 = 1, a — 2. Hence the 
conclusion G3(t) G L 1 / 3 ^, T) is also valid. Consequently ||Av||2 and || v,||2 G L2/3(0, T) 

as desired. This in turn, together with the similar hypotheses on w which are satisfied 
with much to spare imply ||AM||2, \\ut\\2 £ L2//3(0,7). 

For the second group of three inequalities we differentiate (6.1) once with respect to 
t, obtaining 

(6. 20) Vtjtt + Wijn + VkjVijc + VkVija + WkjVifi + WkVija 

+ VkjWijc + VkWija + Wk,tWi,k + WkWija 

= ~P,it + y Av/,r + i/Awij + Bit(x, t). 

First multiply by v,,r and integrate, finding 

2dtl 

(6.21) 

Vr|||+ jQ Vi,tWi,tt dx + y^ vUtvKtVi,k dx 

+ yQ v,-,rVkVija dx + JQ Vi,tWk,tVi,k dx 

+ JQ VijWkVija dx + y^ VijVkjWijc dx 

+ /n v,vVjkWi,kt dx + / v^w^w,^ dx + / v̂ w^w f̂o d̂ c 

— — \ V; tp it dx + v v; tAvi t dx Ja I'^'" Jçi M M 

+ v J^ vuAwUt dx + J Vi^ dx. 

Using x" < l + j t / \ 0 < # < & , j c > 0 t o retain highest powers only, we find 

\jQ
VijWUtdx\ < ||v,||6||wff||6/5 

<C| |Vv, | | 2 |K | | 6 /5 

32' 
<-l |Vv, | | 2

2
+ ^ | |w r f | | 6

2
/ 5 
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\jQVijVkjtviykdx\ < ||v,||2||Vv||2 

^ C l I V v ^ l l v ^ ^ l l V v l b 

< ^ l | V v , | | 2
2
 + ^||vf||2

2||Vv||2
4 

< ^ l | V v J | | + ii:(||v410/3
 + ||Vv||2

10) 

JQ vittVkVija dx = JQ
 vk^(vUt)

2
kdx 

= ~ J^vjck^Vijf dx = 0 

JQ vuwkviM dx = J^ wk-(vu)
2
k dx 

r i 2 

WvijWkjVtfdxl < | |V/ | |6 | |w r | |3 | |Vv| |2 

< ai^vr||2(||vv,||2
1/2||Z>JCvv,||2

1/2 + ||vi,r||2)||\7v||2 

UvijVk,tWUkdx\ < \\vt\\l\\Dxw\\2 

<c\\Vvt\\
3

2
/2\\vt\\^

2\\Dxw\\2 < 

<^l|Vvr||2
2

+^|ivr||2
2||Z)Hl24 

< ^ I | V V 4 2 + ^ ( | | V 4 1 0 / 3 + I I ^ H I 2 1 0 ) 

\JavUtvkwiMdx\ < ||vf||3||v||6||Dxwf||2 

< c|| v v.iiy2!! v,||2
1/2|| v viuii^^ib 

< ^ l | V v ? | | 2
 + /^| |v42/3 | |Vv||2

4/3 | |D^||2
4 4/3 

y Vi,fw^w/j dx\ 

JZ 

<^ l |Vv , | | 2
2
 + ^ ( | | v r | | ^ 3

 + ||Vvr + ||D,w,||2
2) 

< INIôlHMI^HU 
<C| |Vv , | | 2 | | W r | | ^

2 ( | |D^ | | y 2 + | | W , | | y 2 ) | |DH |2 

< ^ l | V v r | | 2
2 + *|M|2(||Z> tw,||2 + ||w,||2)||D,W||! 

32 

< ^| |Vv, | | | + is:(||D,W(||| + | |W/ | | i
0/3

 + ||D,wr+i) 32 
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|4/3,,| „ ,,4/3 
|2 ) | |^W,| |2 ' 

UvU,WkWiJitdx\ < ) I Vr J13 11 w | 161J Z^^Wr 112 

<C||Vv,||^2||v,||'/2(||Z),H|2 + IIHl2)||0^||2 

<^l|Vv(||2
2

+^||v,||2
2/3(||Z),Hl24/3 + 

< ^ l | V v 4 2
+ ^ ( | | D x v v , | | 2

 + | |v r | |2
1 0 / 3

+ | |DxHlf + l |vv|ir+l) 

J vupjt dx=0 

JQ vuAvu dx=- Ja(V ViJf dx = - | | V v,|| 2
2 

j^v^Aw^dx - - Ja V v,-,,Dxwu, dx\ 

< \\V V,\\2\\DXW,\\2 

<^V*Vt\\l + K\\Dxw,\\l 

|jnv,-,A-,,<&|<||v,||6||fl,||6/5 

<C||Vv,| |2 | |fi, | |6/5 

< ^ l | V v r | | 2
2
 + /f | |B ( | |

2
/5 

Combining the results of these calculations we obtain the inequality 

(6.22) | | | v , | | l +H |Vv < | | | <« :{ | | v , | | f / 3 + | |Vv | | i 0 

+ ||D,W,||2
2 + | H | f / 3 + ||0,w|i2°+ II w|l2° 

+ l|w„||6
2

/5 + l|Brll6/5+l) 

Now multiply (6.14) by 3|| V v||2 and add the resulting expressions to (6.22), obtaining 

dt H\l + ||Vv||2
6) + i/{||Vv,||2 + 3||Vv||2

4||Âv|| 

(6.23) 

where 

</f{||v(||2
10/3 + ||Vv||2

10}+M5(0 + 3||Vv||2
47V3(0 

<*(lN|2
2 + l|Vv||2

6) +M5(0 + 3||Vv||2
4^3(0 

M5(t) = K[ \\DXW,\\2
2 +1| w( | |2 '°/3 + l l^wll* 0 7 3 + \\DXW\\1° + HHIi 

(6.24) +l|w„||62/5 + l|B(|l6/5 + l |5|l2° / 3+l}-

As in (8.2) of [4] we set 

/ r 5 W = l + ||v,||2
2 + ||Vv||2

6 

and 

10 
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|2 , o | i r 7 , . l l 4 | | G5(0=||Vv^ + 3||Vv||2
4||Av||2

2 

By the hypotheses of the theorem for p = 5 we have M$(t) G Ll (0, t) and we define 

N5(t) = M5{t) + ?>\\Vv\\A
2Ni{t). 

Thus 

N5(t) < /^ / 3(0Ô(0 + 3/^ /3(0Ô(0 

< rf/\tmt) 

where 2(0 G L!(0,T) as required in the integrability lemma with/? = ^, a — | . 

The lemma then applies to (6.23) and we conclude G^(t) G Z>5(0, r ) so that || V v,||2 G 

Li(0,7> 

The next inequality is found if we multiply (6.20) by Av^t and then integrate, obtaining 

/ Avi^ dx+ AvUtwUtt dx + AvUtvKtvuk dx 
J\i. J\L Jiki. 

+ J AvuvkvikJ dx + J ÀvijWjcjVij dx + J AvuwkviM dx 

(6.25) + / ÂvijVkjWijc dx+ Âv/,,v*wa, dx + / AvUtwKtWi,k dx 
JQ Jn Jo. 

+ j ^ AvUtwkwukt dx 

= — / Avijpjt dx + i/ ÂvijAvij dx + i/ Àv/,rÀwI?f dx+ Âv/,,2?/,/ dx 
J\l J\L «/i* J\l 

The various terms are transformed as follows, by orthogonality and inequalities: 

j ^ AvUtvUtt dx = j ^ AvUtvUtt dx 

= -JVvijVvijtdx 

I £ 
~2 It 
^l |Vv, | | f 

\j KvijtWijn dx\ < ||Av,||2||w„||2 

< ^ I I Av^l l l+ ^11^111 

\J ÂvuvkJVi,k dx < || Av/||2 max | vr| || V v||2 

<C||Av f | |2
3 / 2 | |Vv41 / 2 | |Vv| |2 + C||Av,||2||Vv,||2||Vv||2 

<^| |Av, | |2
2
 + ^||Vvr||2

2(||Vv||2
4
 + ||Vv||2

2) 

< ^||Av,| |2
 + ̂ (||Vv^4/5

 + ||Vv||2
14

 + l) 
64 
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J ÂvijVkVijadxl < ||Âv,||2||v||6||Vv,||3 

! / 2 , 1/2 l ' /2x <C||Av ( | |2 | |Vv| |2 | |Vv, | |^^( | |Av r | |^
z

+ | |Vv, | |^ z) 

< ^ | | À V , | | | + A: | |VV ( | |2
2( | |VV| |2

4
 + | |VV| | 2

2) 

* ëiW^Wi 

•*(| |Vv,| | 
14/5 + ||Vv||2

,4 + l ) 

I/ AvijWkjVijcdx\ 

< ||Âvf||2 max | wf| || V v||2 

<C||Âv( | |2 | |(||£>^( | |2
1/2 | |D>,||2

1/2 + ||D,W,||2 + ||W,||2)||Vv||2 2 \\^xn<\\2 

\\Kvt\\
2
2 + *(||D,M>,||2 | |D2H>,||2 + ||D,w,||2

2 + | H | 2 ) | | V v| < II A,, l|2 ^ tvM n ,,, 11.11 r»2,,, II. i II n »,, I|2 t IL., ||2 
~ 64 

< v 
64 

|Avr||| + / r ( | | ^ w , | | | + H^w.lir7 5 + I|w,|l24/5 + 11^v||i4 -h l ) 

jQÂvi,tWkviMdx\ < ||Âvr||2||H|6||Vv,||3 

< C||Âvr||2(||DxHl2 + ||Hl2)||Vvr||2
1/2(||Âv,||2

l/2 + || V v,||2
1/2) 

< ^ | | Â v , | | | + ^ ( | | D H | 2
4 + IIHl24 + l)l|Vv,||2

2 

< ^| |Av, | | | + /i:(||Vvr||2
14/5-h||^vv||i4-h||vv||2

14-hi) 

M ÂvijVkjWtf dx\ < ||Âvf||2max I vf| IIOJCWJ^ 

<C||Âv l | |2
3/2 | |Vv,||y2 | |D,Hl2 + C||Âv,||2||Vv,||2||DxH|2 

<^| |Àv r | |
2

+^| |Vv, | |2
2( | |D,w| |24 + l ) 

< ^ | | Â v , | | 2
2

+ ^ - - . " 1 4 / 5 -* ( l | V v ^ 4 / 5 + | |D ,HU 4 +l ) 

UÂvijVkWijadxl 

<||Âv,||2||v||6||D,wr||3 

<C||Âv,| |2 | |Vv||2(| |D,W/ | |^
2 + | | W , | | ^ 2 ) | | ^ W , | | ' / 2 

<^| |Àv ( | |2
2+^| |Vv| |2

2( | |D^ ( | |2 + ||wr||2)||£>2w,||2 

14/5 
< ^ | | Â V , | | 2

2 + A : ( | | D > , | | 2
2 + | | D ^ | 

14/5 M 

2 +IKl2 + HVv||i4 + l 
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M ÂVj./H f̂Wtf dx\ 

< \\&vt\\2max\wt\\\Dxw\\2 

< C\\AvfIbdlD^H^2»^!^2 + \\Dxwt\\2 + ||Wr||2)||DxHI 
*^ Il Â,. I|2 , &vll n ,,, Mil r»2_, ||_ . || r\ ,,, i|2 , | | , , , | |2 \ | i n ,, 

^CHÂv.HîdlD^II^ „ , „1Z 

^-||Àv,||2
2 + /i:(||Dxwr||2||D>,||2 + ||D,w,||| + || w,|||)||D,w||2

2 

o4 
1/ .. ~ ..„ / . . ^ 

< — 
~ 64 
< — 
~ 64 

||Âv,||2
2 + *( | |D>, | |2

2 + ||D,W,||2
14/5 + || w,||2

14/5 + ||Dxw||2
14 + l ) 

Î Âv^vVifeVV/̂ ^ < ||Âv,||2||w||6||AcW,||3 

| |Z>^| |2
1 / 2 | |^w f | |2

/ 2+||Dx W r | | ) < C||Âvf||2(||l>^w||2+11^^112X11^ /̂112' Il . .... .. - -,.-

< ^||Avr | |f+ ^r(||^wr||f -H nz^^w.ll^/5^ Hẑ ^wlir-H ||W||2^-H 1) 

/ Ay/ tP it dx = 0 
^£2 

j ^ Âv/,,Av;,, dx = J fou) dx = ||Âv,||2
2 

/ Âv,-,f Aw,, d!x = / ÂvijD%Wiftdx 

< ||Âv,||2||D2w,||2 

^^IIÂv.lll+^llD^H,2 

< l|Âv,||2||ft||2 / ÂvijBijt dx\ 

- 6 4 " - — 

When combined these calculations lead to the inequality 

<^\\Avt\\* + K\\B,\\l 

(6.26) 

d— i+?H|Av,||2
2<^{||Vv,||2

14/5
 + ||Vv||2

14 ^ l | V v , | | 2
+ - , 

+ \\D2
xwt\\

2
2 + \\Dxwt\\

l
2

4/5 + ||Dxw||2
14 + Il HI24 

+ ll^||22 + ll^||2
2 + l ) . 

As in [4, § 7] we shall combine this inequality with a companion inequality of the 
ne singular index obtained when (6.20) is multiplied by viJt and integrated. Thus we 
tain 

same 
obtain 

(6.27) Ja(vUttf dx + J^ VijWijt dx + J^ vUttvKtvuk dx 

+ JQ Vi,ttVkVi,kt dx + J VijtWkjVijc dx + J VijtWkVija ~~ 

+ lvijtvk,tWi,kdx+ VijtVkWija dx + VijtWkjWijcdx 
J\i, JLi J\L 
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+ jnvUtwkwiMdx 

= — / VitttP,it dx + v vijttAvu dx + v VijAwij dx 

+ Vij,Bij dx. 
m 

These various terms should be transformed as follows; the first term on the left being 
obviously in the desired form already: 

< IKIUWh \LVi-"Wi-" 

| /Qv,-,ffV t , ,vadr| 

^ I K H 2
2 

- 3 2 l l "112 

< ||v„||2max|v,| ||Vv||2 

<C||v„||2(| |Vv r | |} 2
/2||Àvr||2

1/2 + ||Vv,||2)||Vv||2 

<3^l|v«| |2+^i(| |Vv ( | |2 | |Âv,| |2 | | l |Vv ( | | |) | |Vv|| | 

<3^ll%||2
2+^||Av,||2

2
+/: | |Vv,||2

2(| |Vv||2
4
 + ||Vv||2

2) 

<3^ l |v„ | | 2
2 +^ | |Àv, | | 2

2
+ / : ( | |Vv , | | 2

4 / 5
+ | |Vv | | 2

4
+ l ) 

\Ja VijtVkVijadx\ < ||v„||2||v||6||Vv,||3 

<C||vff||2||Vv||2(||Vv,||^2||Âv,||^/2+||Vvr||2) 

< ^ lIvrrlII+^illVvllldlV^lbHÀv.lb + IIVv,!!!) 

<3^l|v„||2
2 + ^||Âvr||2

2
 + A:(| |Vv^4 / 5

 + | |Vv| |> 4
+ l ) 

y v,-,„wt,,v(-i.k dx\ ||Vv||2 < ||v„||2max|w, _ 

|2 ( | |D^| |y 2 | |^ W ( | |*
/ 2

+ | |D, W r | | 2 

II 2 . rjr / I l r* II II , - . 2 II . II , - . 

+ lkf||2)||Vv||2 <C||v„ 

- 3^l|v„||2
2 +^i(||D,wr||2||D>,||2 + \\Dxw,\\2

2 + ||w,||f 

<^\\vn\\l 

22)l|Vv||2 < — ||v„||2
2+^(||D,wr||2 ,. .._ 

h/i:(||D2wr||2
2

+||D^,||2
4/5

+||H-r||2
4/5

 + | |Vv||]4
 + l) 

i.kt dx\ |Vv,||3 

< C||v„||2(||i>xw||2 + HHU' 
1 1/ . -

< || v„||2||w||6  

.)(||Vv,||y2||Âv,||y2 + ||Vvr||2) 
„ , . _ _ 11 0 ^ ii —. ii A n n A 

- h. IIV»II22+^IIAV'II2+^IV^II22(II^HI24 

- è l | v " l l 2 + o 4 l | A v ' l l 2 + ^ l | V v ' l l 2 " " + 

+ ||HI2
4 + i) 

i4/5 + ||D,Hli4 + l l # + i) 
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\ja Vi,ttVk,tWi,k dx\ 
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< ||vff||2max|v,| \\Dxw\\2 

14 
•0 

\J vi<nvkwu Mdx\ < ||v„||2||v||6||£>^,||3 

<C| |v„ | | 2 | |Vv| | 2( | |D ; cw r | | f | |D>, | |^ 2
 + ||Dxv,,||2) 

1 II l l O ^ , . 1 1 ^ 9 II Il ~ II II ~ \\l,ll*—, II <^IWli + ||Acw,||2
2)||Vv||2 + K(||D2w,||2||D.tw,||2- .. _ 

i| |v„||2
2
 + ^ ( | | V v | | r + | | 0 > ( | | 2

2
+ | | D , w , | | ^ 4 / 5

 + l) <3^l|v„||2
2 

y^ijtWkjWijdx] 

\jaVij,wkwiyk, dx\ 

< ||vrt||2max|wf| \\Dxw\\2 

<C| |v t f | | 2( | |D^|y / 2 | |^W , | | 2
, / 2 + ||D,W,||2 + ||W,||2)||D,Hl2 

^llv^iil + ̂ o i D ^ y ^ i i z + iiD^iil + iiwriilJiiD̂ Hb2 

1 | | v„||2 + K( | |D>, | | 2 + \\DxWt\\?
/5 + lk , | | 2

4 / 5 + \\DM\? + 1) 

< l|vw||2||w||6||D,wr||3 

< C||v„||2(||Dxw||2 + ||w||2)(||£>,wr||2'/2||D>,||2
/2 + ||D,H>,||2) 

+ K(||DlW||2
2 + ||w||2

2)(||DxH-r||2||D
2w,||2 + \\Dxwt\\l) 

1 
< 32II v„HI 

< 3̂ 11 v„||f + *(||Z>>,||2
2 + \\DM\2" + \\DA\Ï r+iiHir) 

J vutPjt dx = 0 

yn v,,„ Av,,r dx= - J^V viJt V v,-,, dx 

JQ Vijt&Wi,, dx = J vUnD
2

xwit dx < || v„||2 

<.3^IK||2
2 + *1|£2w(||2

2 

^ H V , | | 2 

|02w,||2 

/ ViflBijt dx 

< ||v„||2||B,||2 

<3^l|v„||2
2 + ^l|B,|l22 
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NAVIER STOKES DERIVATIVE ESTIMATES 1183 

From these calculations we are led to the inequality 

d. 
^ l | V v ( | | 2

2
 + | |v„ | |2

2<^(| |Vv ( | | f
/ 5

 + | |Vv| |r+ | |Z>> r | |2
2 

(6.28) + | | D l W , | | ^ 5 + \\Dxw\\? + HHir + I K I | | + ||B,||2} 

+ | | |Àv r | |
2 . 

By adding together (6.26) and (6.28) and cancelling a term on the right side in || Âv,||2, 
we find 

d + i ' ) | | | V v , | | 2
2 + i/||Âvr||2

2 + ||vtt||2
2 

< i f { | | V v ^ 4 / S
 + | |Vv| |2

1 4
+ | |^W / | |2

2
 + ||DxW/||»

4/5 

(6.29) + ||w|l24 + \\DM\\A+ IKHI+ Pri l l + 1}. 

We now multiply inequality (6.14) by 5|| V v||f and add it to (6.29), thus finding 

| { ( l + ^ | | V v , | | | + | |Vv||2
10}+H|Av,||2

2
+ | |vr,| |

2
+5||Vv|||| |Av||2

2 

(6.30) <Ar{||Vv,||2
l4/5+||Vv||2

14}+Af7(0 + 5||Vv|||Ar3(0 

<^(l|Vv r | |2
2 + ||Vv||2

10)7/5+W7(0 + 5||Vv|||W3(0 

where 

(6.31) A/7(f) = /^{||05w,||| + | |^vv,|y4 /5 + ||0Jcvv||i4+||w||i4 + ||vv„||| + ||JBr||| + 1}. 

Again following (8.4) of [4] we set 

F 7 (0 - l+ ( l+ i / ) | |Vv , | | 2
2 + ||Vv||2

10 

G7(0 = i/||Av,||2
2 + ||vrr||2

2
+5||Vv||2

8||Âv||2
2. 

By the hypotheses of the theorem for p = 7 we have Mq{t) G Ll(0, T) and we now define 

W7(0 = M7(0 + 5||Vv||2
8||W3(0. 

Thus 

N7(t) = ^ / 5 ( 0 Q ( 0 + 5^ / 5 (0G(0 < ^'\t)Q{t) 

where Q{t) G Ll(0, T) as required in the lemma on integrability with/? = \, a = | . The 
lemma can now be seen to apply to (6.30) and we may conclude: G7(0 G L1/7(0, T). 
Hence both ||Av,||2 and ||v„||2 lie in L2/7(0,7). 

As in [4, § 8] an induction on the order of time derivatives can now be started. 
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1184 G. F D. DUFF 

7. Inequalities for Higher Orders of Time Derivatives. The first six inequalities 
illustrate and initiate a cycle of relationships among space derivatives of orders 0,1 and 
2 that leads to the desired estimates. The induction process to be described now extends 
these relationships to time derivatives of higher order. We follow the method of [4, § 7,8] 
as modified in the preceding section. 

The momentum equations (6.1) differentiated r times with respect to t take the form 

Dr;x vt + Dr;x wt + é [) {&tVkDr
t-

jviM + &twkD
r
t-

Jvuk 

(7.1) + DÏtvkD
r
t
 jwt,k + D>twkD

r
t
 jWi,k) 

= -Dr
tpj + vDr

tAvi + uDr
tAwt + Dr

tBt. 

Multiply by DJV,- and integrate over £1, obtaining after some routine calculations 

l-Dt\\D]v\\2
2+v\\Dyv\\l 

X* 

+ tivkUT1™* + tiwtÛT'wi*} dx 

- J D>,D,r+1 Widx-v J D,rV ViD\DxWi dx + J DJV.-D ,̂- dx 

The last three terms on the right side can be transformed as follows: 

(7.2) 

\f Dr.ViD
r;{Widx < ||DH|6||£>r'Hl6/5 

<c\\jyyv\\2\\iyrlH6/5 
<^WVV\\2

2 + K\\D^W\\1I5 

| ^ D ; V V , D ^ W , ^ | < ||D,rVv||2||D,rDxH|2 

< 
22r+4 |z>,rVv||2

2 + /i:||D^Hl22 

IjOiDfH, dx < ||D,rv||6||D,rB||6/5 

<C||D;VV||2 | |D^| |6 / 5 

Certain terms withy = 0 in the sum will vanish by the divergence property: 

jaD
r,viVkD

r,vuk dx=X-jn vk(D
r,Vi)

2
k dx 

= ~\ JavKk{D
r,Vi)

2 dx = 0 

and likewise 

j a Dr
tViWkD

r
tvuk dx=--fa wKk{Dr,Vi)

2 dx=0 
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However there are now two terms withy — 0 that do not vanish, namely 

I^D^ViDX^I < ||D,rv||3||v||6||D(
rD^||2 

<C(||DHI^ / 2 | |^Vv||^2
 + ||DH|2)||Vv||2||D^w||2 

^ ^ 4 l l ^ V v l l 2 2 + ^ll^v|l2 /3||Vv||2
4/3||D^HI2

4/3 

+ ^ I |D ;V | | 2 | |VV| | 2 | |Z )^H |2 . 

and likewise 

WDr
tViWkD

r
tWi,k dx\ 

< ^\\Dyv\q+K\\DrM\h\\DMÛ+\H\b\\Dr
tDxw\\l 

+ Ar||D,v||2||D,H|2KD,w||2. 
For the terms with 0 < j < r we follow the estimate (7.14) of [2] in this way: 

\j(p
r,viD>tvkD

r-ivukdx\[ 

<||DH|6||Z>îv||3||Dr;Vv||2 

<C||Z)?Vv||2(||D{v||y2||o;Vv||^2
 + ||D{v||2)||Z)ryVv||2 

^ ^ l l D ' V v l l 2 + ^ l l ^ | | 2 | | ^ V v | | 2 + ||zyrv||2
2)||DrVv||| 

and likewise 

1185 

< 
22r+4 

\J^Dr
tvrtvkD

r
t-

jWi,kdx\ 

Dr
tVv\\2

2 +K(\\DÎrt\2\\rfiDM\2 +||^w||2
2)||Dr7'Vv| 

< 
22r+4 

\jj)\viiytwkD
r-jwukdx\ 

^ V v l l f + ̂ l l ^ v l b l l ^ V v l b + l l zyH l^ l lDr^w l l l 

< 22r+4 

Finally the terms with j = r become 

D;Vv||2
2 + JCdlDJHWI DJZMb + ||Zy(v,||2

2)||DrD^||2
2 

\jaD
r
lViD'tvkviMdx\ < ||DH|4

2||Vv||2 

<C||DHI2
1/2||^Vv||2

3/2||Vv||2 

< 
22r+4 

|D ;VV| | | + ^||D;V||2
2||VV||2

4 

\jaD
r,ViD

r
tWkVi,kdx\ < ||D>||6||D>||3||Vv|| 
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1186 G. F. D. DUFF 

< C||D;VV||2(| |D>||*/2 | |D^HI2 /2 + l|£»>||2)||v v||2 

^ ^ l l D r V v | | 2
2
 + ^(||DHl2||£>^w||2 + ||0>|l2)||Vv||2

2 

\jaD
r
tViD

r
tvkwiJ(dx\ < ^ I I ^ V v l l l + ^ll^vlllllD.wlb4 

\JnD
r
tViD

r
tWkWi<kdx\ < ^ | | D , r V v | | 2

2 + ,S:(||0>||2||Z),rDJCH'||2 + ||£>H|2
2)||Z>H|2

2 

Assembling these calculations, we find after certain cancellations of terms containing 
\\Dr

tV v|| | the following inequality: 

Dr||D>||2
2

+HlArVv||2 

^cfUD^dlVvl l^ l lD^ + IIHI,73) 

+ ||z)HI2
2/3||£'^HI2

4/3(IIVv||2
4/3

 + ||z),Hl24/3) 

n^ +ëii^vii2||zyfvv||2(!iz)r-/vvii2
2+iiz)rJD,vviii) 

{'•J) j=\ 

+ E ||^w||2 | |zyAw||2(| |A r"yVv||2
2

+ \\Dr,-jDxw\\22) 

+ (||Arw||2||Ar^Hl2 + llArHl22)(l|Vv||2
2
 + ||D,HI2

2) 

+ II A r+1w||2
/5 + | |A r^w||2

2 + \\D'tB\\l,5 + 1}. 

For the purposes of calculation, it is convenient at this stage to attribute to derivatives 
of w the same formal singular index (reciprocal power of integrability) as derivatives of 
v: thus || V v||2 and ||A;w||2 have formal singular index | , ||DJ"D£v||2 and ||DJ*Z)Jw||2 have 
formal singular index \{Ar + 2s — 1). The highest singular index of each such term on 
the right side of (7.3) is then the sum of the indices of its factors and is Ar + 1. Young's 
inequality in the form (3.5) then applies with the singular index playing the role of the 
weight w for each factor. Resolving each product of terms on the right side of (7.3) into 
a sum of powers of the factors, we find (7.3) takes the form 

< r ik 

D,||DH|2
2 + HlArVv||2<c{EI|oJv||f 

7=1 

r—\ . 8r+2 r Sr+2 

+ EII#Vv| i r+EPW' 
(7.4) 7=0 7=1 

r Sr+2 

+ E I I ^ H i r +ll̂ +1HI6
2/5 

|8r+2 

Note particularly the incorporation of the term HDJX^wlH in the last sum on the right 
hand side; the corresponding term in v is now present only on the left side. 
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We now write this inequality in the form 

{
r 8r+2 r— 1 8r+2 «. 

E W^Mir + E ll^Vviif + A W O 
y=l 7=0 ' 

where 
(7.6) 

(
r Sr+2 r 8r+2 

7=1 7=0 
11/5 + 1 1 * * + ll^ll6

2 /5 + l ) 

and C denotes the constant in (7.5). 
Note that the hypotheses of the Theorem for p = 4r + 1 imply M^r+\ (t) G Ll (0, T). 
Next multiply (7.1 ) by Dr

tAvi and integrate over Q: we obtain after routine calculations 

±|l|z>;vv||2
2-HI^Âv||2

2 

(7.7) = ( Dr
tKviDr^Widx- f DfatfAwjdx- f Dr

tÂviDr
tBidx 

J\i JLl J\l 

+ Z v̂tZ "̂-7w/jk + DiwikDTVjk) dx 

The various terms may be treated as shown: 

\jQjyt^EFlWidx\ < \\rrt&vi\\2\\iy?lw\\2 

< 
22r+5 iD^U + KWD^wM 

I f Dr
tAviDr

tAwidx\ < I f D'AvilXDlwidx 
\JQ. l l I \Jn l T x 

< | |^Âv,-| |2 | |D^2H|2 

< 
22r+5 

|^Àv| |2
2

+^| |D, rD>| |2 

j^ÀvtfBidx^ < | | ^Àv| | 2 | | ^B| | 2 

< 
22r+5 

| D ; A V | | 2
+ ^ | | D ; B | | 2

2 . 

F°r./ < [f ] (where [x] denotes the greatest integer less than or equal to x) we write 

|^D;Àv,-zyfv*Drv<&| 

<||^Âv| |2 | |zy rv| |6 | |DrVv| |3 

< C||Z^Àv||2||DJVv||2(||Z>r'Vvll^'llD^Âvll,1/2 + ||DT'Vv||2) 

< 
22r+5 \DTM\l +^ | | ^Vv | | 2 ( | |DrVv | | 2 | |D rAv | | 2 + | | A ^ V v||2) 
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The corresponding term with \j\ < j < r is handled differently: 

| j^D^Âv^v tDp'vi J tdr| 

< ||Z>,rÂv||2max |zyrv| HA^Vv| |2 

<C||D?Âv||2(||/y;Vv||^2||D{Âv||^2 + ||D{Vv||2)||Dry'Vv||2 

< ^-5WM\l +K(||Z>',Vv||2||Zy,Âv||2 + ||DJVv||2
2)||DrVw||2

2. 

Because the involutory change of the summation index y into r —j converts each of these 
expressions into the other, the summation can be reduced to the first half range provided 
all terms are doubled. The sums with mixed v and w factors behave similarly but with a 
crossover: forO <j< [§| 

| j^Âv,D{wtDry 'vad!c| 

<l|D>||2||z);'w||6||orvv||3 
< C\\Dr

tÂv\\2(\\Di
tDxw\\2+ ||£>!w||2)||£)rVv||2

1/2||£>;'Àv||^2 

< ^ | | D > | | 2
+ A : ( | | D ' A v v | | 2

2
 + | |D>||2

2) | |DrVv||2 | |DryÀv||2 . 

The corresponding leading term for [§] < j < r is in the complementary term 

<||D,rÂv||2 max|zy(v|||£>r'/'£>xH'||2 

<C||D;Àv||2 | |Or^vv||2(||Z)!Vv||* /2 | |/yrÀv||^2
+ | |Zy,Vv||2) 

<^\\D\Kv\\l + K\\DrJDM\li\W^v\\2\\D/M\2 + IloiVvH2) 

which resembles the preceding when y is mapped into r—j and vice versa. 
Consequently all leading terms in the four sums on the right side of (7.7) can be 

expressed as sums over the lower half-range 0 < j < [̂  1. We thus find after multiplying 
by 2, and cancelling a large group of terms containing HD^ÂvHf, 

D,\\D^v\\l + \v\\DrM\l 

< C{E( I | 0 |Vv | | | + \\titDM\l + | |D(Hl i ) l l^Vv | | 2 | |Z r y Av| | 2 

(? '8) + E f l l ^ v v||f + WDXW\\1 + \WM\l) 

• (||Dr-''l>xw||2||DryD2H'||2 + \\DTJDzw\\2) 

+ | |Dr1HI2
2 + l l^z) 2 H| 2

2 + | | ^ B | | 2
2
 + i}. 
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Whereas all the terms containing w can now be expressed simply as powers of the norms 
involved, by use of Young's inequality, the terms in ||DJ"Av||2 must be treated more del
icately, as in [4, § 7,8]. Thus we express the term with j = 0 in the first sum in (7.8) as 
follows, where 7 is a real number with 0 < 7 < 2 that will be specified later: 

(7.9)(||VV||2
2 + ||DXH|2

2 + IIHI22)II^VV||2||D;ÀV||2
4 

<^(2-7)«/| |^Âv|| |+A:| |Z^Vv||2
2(| |Vv||2

4+||D,Hl2 + IIHl24)-

The remaining terms with 1 < j < [5 ] of the first sum are written in the form 
(7.10) 

(||Zy,Vv||2
2 + \\ri,Dxw\\l+ \\ritw\\î)\\Dr

t-
JVv\\fti x \\DrrVv\\f^\\iy-jKv\\2 

(
8r+6 8r+6 8r+6 8r+6 x 

iizy,vv|ir +WDxw\\r +n^Hi r +\\Dr
t-

jvv\\rj)+') 
1 *j -~ , 

+ II nrj v v\\4<r_;)+1 II nr~J\v\\2 

4r3C v v l l 2 \\ut av\\2' 

Here the constant Cq depends on r andy, the C in the denominator is the constant C in 
(7.8), and the last term has the index 8r + 6. With these precautions we can now write 
(7.8) in the following special form: 

A||D?Vv|| | + (^ + - i - ) | |^Av| | 2 

< c{||DfVv||2
I ; îT+||Vv||| rM, + ||Dxw|L 

[ 5 ] 8r+6 8r+6 8r±6 

+E(iio;vviir +w,DxW\\r +\wA\r 

I tSl , 11 Y7 „ | | 8r+^ , || n ,Â,\\ 8r+6 

(7.11) j=i 
. 8r+6 

+ ||Dr;Vv||2
4<^)+l +\\DrrJDxw\\?r-M' +\\Dr

t-
JD2

xW 

+ ||Dr1w||2
2

+||^D2w||2 + ||/)^||2
2
 + l} 

+ AEiiorvv| i r^i iDrÀvii2 . 
^^ j=o 

To be combined with (7.11) is another inequality formed by multiplying (7.1) by 
Df+lvt and integrating over Q. This takes the form, after routine calculations: 

(7.12) | A | | ^ V V | | 2 + 110,̂ 111 

: - j J j f l T ' v i E V\{ri,vklft
 jvUk+Di

twkD
r
t
 jvik 

+ D>,vkÛTJWi* + D>tWkDrJWi*\ dx 

+ f D?1 Vi(-Dr
tpj + vDr

tAvi + i/Dr
tAWi + Dr

tB) dx. 
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Now $çiDr*xViDr
tpjdx = 0 by orthogonality, since D[+1v/ is solenoidal and vanishes on 

3Q, and Dr
tpi is a gradient. Also 

I / Dr
t
+lViDr

tAvidx\ = I / Dr
t
+lViDr

tÂvidx\ 

< iiDr'vibii^Àvib 

< 
22r+5 1^111 +*||#Av||£ 

I f D^ViD'Awidxl = I f D^ViD'Dlwidx 
\Ja I \Ja 

< \\Dr;\\\2wtDiw\\2 

^ ^ ^ l l ^ ' v l l l + ̂ llo^HlI, 

\JQD^viD
r
tBidx\ = \\D^v\\2\\D';B\\2 

" ( 2 - ' l , ) . l F V * l . . l l 2 < 
22r+5 D?\\\l+K\\Dr

tB\\l 

Since D[+1 v is solenoidal vanishing on d£l, we can remove the gradient part of the other 
factor in the first two of this last group. This could also, if desired, be done for the last 
of these terms, retaining only Bt where B; = #/ + V (3. 

Again, we have 

|E U jQDr;\dlvkD
r
t-

jvi,kdx\ 

<c(Eiior'vii2iiD;v||6||Drvvii3 

(7.13) + t ||£»r1v||2inax|zy;v|||Z>p'"Vv||2) 

l ' /2 | | I 1/2 ^Cl lDr 'v lbEII^VvlbdlDrVvl l^ l lDrAvl l^^ l lDrVvlb) 

<^iiz)r^ii22+cEii^vv|ii(iiDr7vv||2||Dr'Àvii2+iiDryvv||2
2ii) 

7=0 26 

while 

(7.14) l é \\ jL^1v,-[D(wtpr-'va+D(vtDrw]^| 
7=0 y / 

< C | E | | ^Vv | | 2
2 ( | |Z>r^Hl2 | |Z ) r^w | | 2 + ||DTy'DxW||2

2) 
!/=0 

+ E ||/>5Vw||2
2(||z>;-,Vv||2|iz>ryÂv||2 + \\D\-'V v||2

2)| 
y=0 ! 
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Combining these formulas together with a version of (7.13) in which w replaces v in all 
but the first factor Dr

t
+lvt, we find using (7.8) in conjunction with the foregoing calcula

tions, 

*A || 0^111 + 711*011! 

< i/||DfÂv||2
2 + c{ | |D?Vv | | r + | | V v | | r * + | |D l W | | ! 

[ j J 8r+6 8r+6 8r+6 

+E(n^vviir +\\ritDxW\\r +\WA\r 

8 r ^ + ||w||2
8r+6 

(7.15) 
y"=i 

8r+6 . 8r+6 

+iiz?rv viir- + iiDr^w|ir»+' + \\v-Ji*M\r*s) 
+ ||Dr1w|l22 + II^D>||2

2 + ||D;/3||2
2 + l 

1 [§1 . «y + TjZ\\Drjvv\\ri)*,\\DrjMî-
Now we add (7.11) and (7.15) to obtain the inequality 

( l + ^ A l l ^ V v l l ^ l j I l D ^ v l l f + HDr'vllf) 
8r+6 _ , 

8r+6 

4 

!
8r+6 i i^vv | i r '+ i ivv | l 2 

[ ^ . 8r+6 

+ £(IWVv||2 
(7.16) 

4/+1 
„ ^ V K,|: 

+ iiDrvv|i2^)} 
1 L j J 

^EII^Vvlir- l lA^Avlb 

+ M4r+3(0 

where 

/ ^2J 8£+i 2k 

(7. i7) M4r+3(t) = c(ii£>,w||2
8^+g \w,DxW\\r + iizy;Hi2* 

t§] 

+E(iior^w|ir-+iiDrz)>iir)+3) 7=0 

+ IIDT'HI! + I I^HII + ||D;B||2
2 + H I ! " 6 +1) 

and C denotes the constant in (7.16). We observe that the hypotheses of the Theorem for 
p = Ar + 3 imply that M4r+3(t) G L1 (0,7). 
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8. The Induction on Orders of Time Derivatives. The result of the Theorem has 
been shown in § 6 for r < 1 and s < 2, that is, for the derivative norms || v\\i, || V v||2, 
|| Av||2 and hence ||D^v||2; ||vr||2, ||Vvf||2 and ||Dxvf||2, together with ||vf/||2. Using these 
results as a starting point, we now set up the induction on r, assuming the result of 
the Theorem holds for a given r and demonstrating its truth for r + 1. Thus we as
sume ||D?Vv||2 e L2(4/l+1)_,(0,r)and ||D?Av||2, ||Z)f+1v||2 G L2(4h+3)~\0,T) for h = 
0,1,2, . . . , r- 1. 

As in [4, § 8] we define recursively for r — 2,3 . . . , functions 

(8.1) F4r+l(t) = \\Dr
tv\\ï + l ^ F g ( 0 + F g 3 ( 0 

(8.2) G4r+l(0 = ï/II^Vvlll + F é i W ^ - i C O + ^ è s W ^ - s W , 

and now also 

(8.3) A W O = Af4rfi(0 + F a ( 0 t f 4 ^ ^ ^ 

Likewise, for the second stage necessary at this induction step, we also define 
4r+l 

(8.4) / W O = (1 +i/)||/);Vv||2
2 + F4t_

3
1(0 

(8.5) G4r+3(t) = ^\\DrM\2 + HAr+1v||2
2 + %^FÙi(t)G*^i(t) 

(8.6) N4r+3(t) = M4r+3(t) + j—^F^W^iit) 
4 r + l 
4 r - 3 ~ 

As in [4, § 8] the singular index of Fq(t) is in general q — 2, and the singular index of 
Gq{t) is q, for every odd positive integer q. The definitions for q — 3,5,7 are given in 
§6. 

To show that N4r+l (t) and N4r+3(t) satisfy the condition N(t) < CF(tfQ(t) of the 
Integrability Lemma is a necessary part of the induction step. This was initiated in § 6 
for r = l,s = 0 and s = 1. To establish this result for N4r+i(t) we note that by the 
induction hypothesis a = 4r/4r— 1, 

N4r-3(t) = F4r_3 ( 0 ^ 0 ( 0 

and 
N4r-i(t)=F4r-l(t)^Q(t). 

Hence by (8.1) 

N4r+l(t) < Q(t) + FÊ!3(t)(F4r^(t)^Q(t)) 

+ FÈ3(t)(F4r.3(t)^Q(t)) 

(8. 7) < Q(t)\ 1 + ̂ 4 , - 3 ( 0 ^ + ̂ 4r-l ( 0 ^ 

<Q(t) 1 +F4r+1(r)4'-' '*-' +F4r+i(04r-''4 '-

<Q{t)-F4r+l(t)*= 
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4r+2 To show the same induction result for #4r+3(0 we have a = |^y and by (8.4) 

A W ) <Q(t) 

= 0(0 

l + c - F 4 r _ i ( 0 4 - 3 -F4 r-i(04 r = 3 

4r 

l + c - F 4 r _ i ( f ) 4 ' 

(8.8) I 4r— 3 4r+2 

1 +c-F 4 r + 3 (0 T O " j ; : : r i 

= o ( 0 F 4 r + 3 ( 0 ^ 

Thus the induction on r is completed for this condition in the lemma. 

The basic inequalities for the preceding stage of the induction are 

(8.9) 

and 

(8.10) 

KrM) + G 4 r - 3 (0 < C F 4 r _ 3 ( f ) ^ + N4r.3(t) 

Kr-i(t) + ^ — j G 4 r - i ( t ) < C F 4 r _ , ( 0 ^ + NArs(t) 

so we regard these inequalities as established. Multiply (8.9) by | ^ - j F£^3(t) and (8.10) 

by 47z|F4r_i(/)4r-3 and add both to (7.5). Thus we obtain 

D, \Dr
tv\\2

2 + ^—jF4r-i(t)^ + F4r-3(tp 

4r-

(8.11) 

+ Ï / | | D [ V V | | 2
2 + F 4 r _ , ( 0 ^ G 4 r _ 1 ( f ) + — - F 4 r _ 3 ( f ) ^ G 4 r _ 3 ( 0 

r r 8r+2 r— 1 8r+2 

< CIE u ^ u r + E n^vviir +F4r-3(o^+F4r_iw^ 
4r - 1 _A_ 4r - 7 _a_ 

+ M4 r + i(0 + -F4r^3(t)*r-iN4r-3(t) + rF 4 r _i (0 4 - 5 W 4 r - i (0 
4r — 5 4r — 3 

The last three terms on the right are together less than N4r+i(t). 

By means of the relations 
8r+2 4 , 4 , 

ll/^vlir1 <F4j+l(t)fc <F4j+5(t)^ 

< - - - < F 4 r _ 3 ( 0 ^ , J = 1 r - 1 , 

and 
4r+i 

) 4y+5 l l ^ V v l l f <F4j+3(tW <F4j+1(tV 

< • • < F 4 r _ i ( 0 ^ , . / = 0 , l , . . . . r - 1 

we can show the right hand side of (8.11 ) is bounded above by 

8r+2 4 r + j 4 r — 7 4r+' 

CtllD^H^-1 + F4 r_3(f)^ + -j—rF4r_i(0^] +N4r+X{t) 

(8.12) 

4 r - 1 

< C[||D,rv||2
2 +F 4 r _ 3 ( f )^ + ^ " 4 ^ - 1 ( 0 ^ ] ^ +N4r+X{t) 

4r- 1 

CF4r+[(t)^+N4r+l(t). 
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Thus we have shown that 

(8-13) r4rf l(f) + G4r+i(0 < CF4r+l(t)^ +iV4r+i(0. 

which is the counterpart of (8.9) at the next higher value of r. Observing that F4r+i (t) G 
Z,4^T(0, T) by hypotheses of the induction for p — 4r — 1, we see that the hypotheses of 
the Integrability Lemma for F4r+1(0 and N4r+\(t) are fulfilled withp = -^-^,a-{-p= | ^ j 
so a = 1 + ^ ~ . Hence ^ = ^ j - so G4r+Î(0 G L^r(0,7) and ||Z>f\7 w||2 must belong 
to L^TT(0, T). This now also shows that F4r+3(0 G L ^ ( 0 , 7 ) . 

To establish the corresponding results for ||DJ*Âv||2 and \\Dr
t
+l v|| | we multiply (8.10) 

by ^~ F4r-\(t)*^ and add to (7.16) wherein 7 is set equal to ~~. This leads to 

A[(l+z/)||Dr
rVv||2

2 + F 4 r _ 1 ( 0 ^ ] 

8r+6 n , t j l . 8£+6 . 8r+fa 

<c{HD;vv|ir +nvv|ir+6
+E(ii^vviir +iiDrvv|irj>') 

7 = 1 

+ À E iior;'v v\\r*\\DrrH\\+AWO 
'+r 7=0 

+ ^ r - l W ^ f e - i W ^ +^4r-l(f)l 
4r — 3 L J 

(8.14) 

4/-+ 3 

+ F4r-i(0
4r-"3 +M4r+3(0. 

Thus the right hand side of (8.14) is bounded above by 

C 
8r+6 d % l 2 J . 8r+6 . 8r+6 

|D;V v||r + II v v\\!"*+F4r_, « ^ + E(ll#v v|ir + uz^v v||2— ) 

1 [ j ] 

(8.15) + - ^ i / £ | |Dr ; Vvl l f^ 1 IIA^ÂvHl + A W O 
4 r y=i 

Again, we have the properties 
8r+6 4 , . -

(8.16) ||DfV vl|2
4j+' < F4j+3(t)^ < F4j+7(t)^ 

4r+3 4r+3 

< F4/+n(0*'t9 < ' • • < F^- iW"- ' 

and 

j | D r V v | j 2 — ||Dr7Av||| 

(8. 17) 

< HDp'V v||2*^' F4(r„j)+7,(t)*^GMr-j)+i(t) 

<•••< \\DPV v\\^F4r„5(t)^G4r^(t) 

<F4r-i(t)^G4r-i(t) 
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Hence the terms containing ||Z)r
r_;Av||2 in (8.15) can be majorized by small multiples of 

Ffr-iit)*^G4r-i(t) and so cancelled against a small part of the corresponding term on 
the left side in (8.14). Choosing this small multiple as indicated in (8.15) and using the 
inequality 

rr i 1 4 r + l / 4 r + l \ 2 _ o i 

[I\Â?< 4^7~U^37 ' r=2,3,... 
we now find from (8.14) and (8.15) 

D r [ ( l + l / ) | |DH| 2
2 +^4r - l (0 S ] 

(8.18) + ^ {\WM\l + ll^vlH + ~ F^(t)G^(t)} 

< C[(l +I/)||D;Vv||2
2 + F 4 r - 1 (0^ ] 4 r + 1 + A W 0 

This establishes the second basic inequality (8.10) for the next induction step, in the form 

(8.19) F<4r+3(t) + ^ ± i G 4 r f 3 ( 0 < CF4r+3(t)%iï + N4r+3(t) 

By the hypotheses of the Theorem for p — 4r + 3, we see that M4r+3{t) as given by 
(7.17) is in L*(0, T). Hence, by (8.8), N4r+3(t) satisfies the conditions of the Integrability 
Lemma. Thus the lemma applies to (8.19) with/7 = -^ and a = 1 + 4^-. It follows that 
G4r+3(0 e L ^ (0,7) and thus \\Dr

tAv\\2 and ||Df
r+1v||2 G L&(09T). 

Now le t / denote the viscosity potential of v, which is a solenoidal vector field van
ishing on d£l, as in (2.18) of [4]. As in Lemma 1 of [4] we have the estimate 

(8.20) ||V/HI < C||Vv||2(||Av||2 + ||Vv||2) 

and its time derivative analogues 

(8.21) ||D;V/||2
2 < C||D (

rVv||2(| |D>||2 + | | D ^ V | | 2 ) . 

Hence | |D'V/| |2 G L^rr (0, T) which follows from the preceding results. By an estimate 
of Ladyzhenskaya [6, p.21] we have 

(8.22) ||D,'AD,-v||f < C(||Dr
rAv||2

2 + | | D ^ v||2
2) 

< C(\\DrM\l + II W i l l + ||D?V v||2
2) € LM0,T) 

This establishes the result ||DJ"Djv||2 G L ^ ( 0 , T) and shows that the result of the Theo
rem is valid for v, w, and their first and second order space derivatives, together with all 
orders of time derivatives of these quantities; i.e. for r = 0,1,2,. . . and s = 0,1,2. 

As in [4, § 9] we also have by (3.12) and the hypotheses of the Theorem for p = 3, 

(8.23) max>| < c ( | | V u\\l
2

,2\\D2
xu\\l

2
/2 + | |M||2) eLl(0,T) 

while for r — 1,2,... and the hypotheses of the Theorem for p = Ar + 3, 

(8.24) max|D,rn| < c(\\D\Vu\\\l2\\D\D2
xu\\\12 + ||D,ri<||2) G L ^ ( 0 , 7 ) 

This establishes the maximum norm result of the Theorem for s — 0. 
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Chapter III. Estimates for Tangential and Normal Derivatives 

9. The Pressure Potentials. To estimate space derivatives of order higher than the 
second, we again make use of tangential coordinate systems as introduced in [2, § 10]. 
Substituting (2.9) into (2.7) and (2.8) we find, in view of (2.6) 

(9.1) Ap = -vukvu - IvtfWkj - wukwKi + BUi. 

Taking only the normal component of (2.8) while noting that v vanishes on d£l, as well 
as (2.12) 

(9.2) TT- = — ŵ  —-ni + i/fl|ÀV| + i/riiAwi 
on oxk 

— Wijtii + Bint. 

Hence we may write 

(9. 3) p = b\ + b2 + 2/?3 + b4 + i/f\ + i/f2 +/3 

where the various pressure terms indicated are defined as follows. Noting (2.12) we set 

(9.4) Afti =-Vtfvu; - ^ = 0 
an 

A, db2 dwt 

Ab2 = —WijcWk/, — = -wk-^—rii 

A63 = -vukwk/, — = 0 

3« àx̂  

M>3 

3/î 

A£4 = B,,,(x ,0; 
db4 

on 

Afi=0 ; 
dn 

= ft/Av; 

Af2 = 0; 
dn 

= «/Aw, 

46 = 0; 3/3 
dn 

= - W / , , / 1 1 

and observe that each pressure term is defined up to a constant which can be specified 
by setting the average value over Q to be zero if O is bounded. It can be shown that 
each of the seven listed Neumann problems has data that satisfy the necessary condition 
JQ AW dx = JaQ ^ ds and we leave the verification to the reader. 

Observe that b\ and/i satisfy exactly the same conditions as b and/ in ( 11.1 ), ( 11.2), 
(5.1) and (5.2) of [4], except that v now replaces u in these conditions. Hence we may 
adopt for b\ and /1 the results of Lemmas 7 and 8 of [4] and their time derivative versions 
as in Lemma 8r there, with v of course replacing u in these estimates. Similarly, replacing 
u by w in Lemma 7 of [4], we obtain the estimate for/2. 

https://doi.org/10.4153/CJM-1991-068-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-068-0


NAVIER STOKES DERIVATIVE ESTIMATES 1197 

To estimate b^ we proceed as follows, using the commutation formula (10.17) of [4] 

IIVKHW = 4 ^ b ^ 1 dS ~ Ja Kb2Aiyab2 dx 

+ E TpD3Dlflb2+ £ ^ 0 ^ 2 + £ Tpti0{D\+D2
2)b2\dx 

(9.5) = 4/Q(V,/y^2K(w, g ) * - \jaD°b2ViD«{Wk g ) * 

+ / 0 £ > 2 { È ^ ( > w , , ) + E ^D3jy0b2+ E c;&8b2 
• / " 7 = 0 fis'™ as-~ 

3<a 

The permutation of derivatives in the second integral deserves some comment. We have 
the commutation formulae 

(9.6) Ds
aVtw = V , D > + £ gjVifyw 

7=0 

(9.7) V,-D> = K^iW + £ © ^ V ' w 

7=0 

where V; = /z/A. The coefficients gj,gj are composed of positive or negative integer 
multiples of derivatives of log hi which are independent of r near the pole and hence 
bounded and smooth everywhere. Thus 

(9.8) 

a v dx, dxk ) to8J v 9x, ax* / 

Expanding the expression by means of (9.6), we see that the integral of the second term 
on the right hand side of (9.5) is bounded in magnitude by an expression 

(9.9) WKHe • CE E llV^wlbHV,^ w||3 
7=0£-0 
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Thus, in the same way as in (11.18) of [2] 

|/nD>2.v,/ya(v^£>H 
[ * j 

< c\\ V D M E E HD^HbllVDjr'Hb 
;=(K=0 

1, 

4' 

+ 

y=0^=0 
< T I I V D > 2 | | 2

2
 + E E llD^wiiKn^zy-^ibll^^Hb 

vzy^HII)} 
A reduction similar to a part of the foregoing shows that the term in (9.5) containing 
coefficients A^ has a similar bound which can thus be combined with the preceding by 
adjustment of the constant C. The terms with coefficients B^,Cf^ and El are treated as 
in the proof of Lemma 7 of [4]. 

Finally, since by (9.6) we have 

j=o \J/ e=o 

it follows that the first integral on the right side of (9.5) is bounded as follows by (9.6): 

\fnv,iyab2-D
x
a(wk^)dx\ 

dwty 
< | | V , . D > 2 | | 2 | | Z ^ ( H ^ ) | | 2 

<C||V£>>2||2( E WgW.UD^Wih 

+ £ max|D^w,|||DxD^w||2) 
o<j+t<s xeQ y M ) 

<C||VD>2 | |2{ £ | |D^W | |2(II^D>| |^ 2 | |Z^D«Hl2 1 / 2+II^Hl2) 
• j+e<s 

+ E (IIMHI2 II^HHI2 ' + ||Av^Hl2 + ll4Hl2)-|I^Hl2 
o</<[fj 

< 
1, vz)>2||2

2 + c £ I I^HIICl l f t^^ lbl l^Hb + I I ^HI I ) 
0<j+t<s 

: f f ] 

+ c E (iiz>^zx,w||2j!z>5z^wi|2 + |)^Jcz>^w|||-+- ||z^w|||)i|^v/>^w| 
o<j+t<s 
0<t<\%] 
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Assembling these results, we find that (9.5) becomes after cancellations, 

\\^KH\l<c±Y:\\DxD
l
aw\\l 

j=Qt=0 

X (| |D,DMW||2 | |D,2D'-^- | |2 + \\DxD>^W\\l + \\D>M\Ï) 

(9.10) + C , E | | V D ^ 2 | | 2
2 

(=0 

By evaluation successively for s = 0,1,2,3, . . . and successive substitution of the earlier 
formulas into (9.10), we find as in Lemmas 7 and 8 of [4] 

LEMMA 2. For s = 0,1,2,. . . we have 

(9.11) 
iV/Mlf < C± £ ||D,D<HI2

2(ll W ' ^ l l / ^ 
j=0i=0 v 

I II 
W 2 

+110,̂ -^111 +||/)Jr'H||) 

As in Lemma 8 of [4] we state the corresponding form of the result for time derivatives 
of order r without detailed calculation: 

LEMMA 2R. For r,s = 0,1,2,3, . . . w£ have 

!lArVD>2||2
2 

r s li+r-2h] 

<cEE E llo^HII 
/ç i2) h=oj=o e=o,t<s 

+ \\DrhiyM\l) 

Here C depends on r and s hut not on w. 

By entirely similar derivations we obtain for b^ the estimates in 

LEMMA 3. For s = 0,1,2,. . . we have 

| | V / y > | | | < c è S ( l | O x ^ H I I ( l | V ^ v | | 2 | | Â D ' - ' v | | 2 + £ HV*v||!) 
j=0t=0K 0<j~l 

(9.13) +1| VD^viiKii^Djr'HUII^^Hb + II W ' H I f + ll^-'HIl)) 

and 

LEMMA 3R. For r, s — 0,1,2, ...we have 

KVDj.M! 
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r s lJ2+r-2h]t 

^ E E E (ll^VDiv < _ 
7=0y=0 £ =0,£ <s l 

(9.14) (\\Dr,-hViy-(v\\2\\DrhÂiy-ev\\2 + £ | | D T * V D ^ V | | 2
2 ) 

V*V7 r>^ ,,112/11 nr-hr\ n M „ , I L I I r%r-hrylrj-l, 
+ \\^VDiv\\2

2(\\DrhDxiy^W\\2\\Dr'1DlD'^W\\2 

+ \\Dr
t-

hDxiya-
ew\\2

2 + \\Drt-
hiy~>w\\22)} 

where C depends on r, s /?«/ nor orc v or w. 

To estimate h$ we have 

I IVD^I I ! = L D ° b 4 ^ t r d S - LDS"b4ADS"b4dx 

= ( Kb^Btmds- [ iyab4(iyaAb4+ E TpiysAb4 

+ -£ B^D3D>pb4 + £ C%DÏgb4+ £ ^d0(D}+D\)b4)dx 

= ^ V,D>4 • D^B,- dx + fQiyab4 • V,zyafî, dx 

- f iyab4{Ds
aBu+ J2 ^Di

gBi,i+ Y, ëa
0D3iyab4 

Jil l 0<a 0<a 

(9.15) + £ ^DJ,*4 + £ ^ 4 < ° î +D2)^} dï 
0<a 0<a ' 

< il VD>4 | |2 | |Z)^ | |2 + | |D>4||6 | | V D ^ | | 6 / 5 

+II^>4||6{II^VAII6/5+CSJ: IIZ^VAII6/5} 

+ c E | | v ^ 4 | | 2
2 

< Il VZ>L*4||2{||Z>L |̂|2 + c|| vz>i«||6/5 + e g || v/y^lU/s} 
J=0 

+ E I | V D ; M ! 
7=0 

where we have again used (9.6) and (9.7) to interchange orders of V and D'à, as well as 
calculations of commutator terms like those leading to Lemma 2. 

Hence by Young's inequality once more we find 

(9. i6) || VVMW < C{||D^||2
2 + E II v/)^||6

2
/5} + C E II v / w 2 

/5 T ^ Z - , II v "au4\\2' 
i=0 j=0 

By (4.8) this leads as before to 
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LEMMA 4. For s = 0,1,2,. . . we have 

(9.17) l|VD>||2
2<C{||5||6% + EI |V^ | | 6

2
/ 5 }. 

Since the definition of b^ is linear in B, we can, as is the case with Lemma 7 of [4] 
and with/, simply insert the symbolic factor D\ in every term of this estimate to obtain 
the general case. 

The final estimate is for/3. We have 

in view of À/3 = 0. Substituting the boundary condition, we find the surface integral 
becomes 

- Jm &ahiya WiJm ds = -jn ^,KhK wu dx 

From (9.7) we see that the second integral equals a sum of expressions the first of which 
vanishes because wtj — 0. Estimating by (3.3) and (3.7), we find 

LEMMA 5. 

(9.18) | |VD^3 | |2<cèll^^| |2 + CEI I^^^ | | 6 / 5 . 
7=0 j=0 

The corresponding formula for time derivatives is also valid. 

10. Tangential Derivative Inequalities. To construct inequalities for the estima
tion of Dr

tiyav we set u — v + w in (2.1) and differentiate r times with respect to t,sa 

times with respect to £a where s — s\ + S2, and so obtain, after commuting A and Z>̂ , 

r s r\ s Dr;xiya{Vi + w,) + E E ( J I. J W ( n + v ^ r ^ V a + Witk) 
= - Dr

ttya(bx,i + b2,i + 2bXi + b4,i + vfu + vf2J +/3,,) 

+ vDr
tMfa{vi + wi) + vSYJA

a
0D

r
tMyg{vi + wi) 

(10.1) j=o 

+ v £ Ba
0D

r,D3d0(Vl + Wi) + vJ2 Ca
aD

r
tri0(v, + Wi) 

+ " E EpD^iD] + D2
2)(Vi + wt) + fftffaBi. 
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For the first inequality at this level, multiply by Dr
tiya v,, contract over /', integrate over 

£2 and integrate by parts the terms containing the Laplacian. This yields 
(10.2) 

l-D,\\Dr
tiyav\\l + JaiytiyaViDr^iyaWi. dx + Hl^vz>>| |2

2 

= -JnD^aVipo h hD^a(vk + wk)D
r
t-

hDs-\v,jc+wLk)dx 

- farrtiyaViiytiya(bij + b2J + 2bXi + bAi + Vfu + vfXi +f3J)dx 

- v Ir v• ETMviVyy D>,-+£A^VD^V,- + Wi))dx 
JH ;_fx 

+ v f Dr
tD

s
avt(Y: Ba

pD
r
tD3iyp(V|- + wt) + J2 CjMDlp (v, + w,)) dx 

+ v f Dr
tD

s
a vt £ E%Dr

tiy0 (D\ + D2
2){vi + wt) dx 

JU 7=0 

+ J^iytiyaviiytiyaBidx 

Let us denote the first three integrals on the right side as I\,l2,h, and the terms with 
B, C and E coefficients U, 1$ and I§ respectively, the last term being I7. In I\ we treat the 
products in the order vV v, wV v, vDxw and wDxw respectively; thus I\3hj will denote the 
integral term over vV w with given values of h andy*. We note that Iuoo and /1200 vanish, 
as in preceding cases, by the divergence theorem, after permutation of V* and Ds

a in the 
third factor. By (9.6) the lower order terms arising from this commutation take the form 

fe 8k f Dh
tKv«(Vit + wk)D

r
tVkiyavt dx\ 

5 - 1 

7=0 

< C| |D^v | | 2 {( | |Vv | | | | |Âv | | | + ||Vv||2 + \\DxW\\hD2M\l + \\DxW\\i) 

(10.3) x ||D,rV££- Hb 

+ E(l|Vv||2 + ||DxHl2)(||o^/yav||2
i||D;Âzyav||2

i + £ | | D , ' V ^ V | | 2 ) } . 
j=0 0<a 

In the third and fourth terms of the same group we find, after a similar permutation, and 
using (3.12) 

L ê gjDr
tD>i(Vk + w^Dy^Wt dx 

Jn v=0 

<C\\DÎDs
av\\2{ || Vv| | l | |Av|i | + ||DXHI1II^>III + ||/),w||2}||D;VDLv 

s ' 1 ] ? 
+ X:(ilVv||2 + ||i^,vv||2x||z>rvz>^w||2-||^^z>^w||| + H^^/^wiU) 

Other terms of the double sum I\ will be estimated as in § 12 of [4], and are accompanied 
by lower order terms that need not be treated explicitly on every occasion. 
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The 7 terms arising from h are also treated as in § 12 of [4] and may then be substituted 
with the aid of Lemmas 7 and 8r of [4] and Lemmas 2r, 3r, 4 and 5 of the preceding § 10. 

The first term in h may be bounded: 

|/3i| = \JçîD
r
tVDs

aviDyDs
awidx\ 

(io.4) < | | D ; V D > | | 2 | | D ; V D > | | 2 

< ^\\^^a4î^c\\iytDxffaw\\l 

The remaining terms in 1$ are bounded by 

C ' g H ^ V D ^ I b d l ^ V Z ^ v l b + \\DrtDxD>aW\\2) 

+ ct(\\Dyiyav\\2
2 + \\Dr

lDxiyaW\\2
2). 

Also 

7=0 

j=0 Jn 

< e g ||D(
rVD>||2(||Z)[VZ^v||2 + H^D^Hb) 

j=0 

Dr
tVD°av\\l + CY,{\\Dr,VDi

0v\\2
2 + \\iytDxD>pW\\ï) 

~ 22™+5 , = 0 

while /s, It, have similar bounds. 
Finally, 

(10.7) |/7 | < i |D^Z>>| | 6 | |D^B| | 6 / 5 

Likewise, the additional term on the left side of (10.2) can be estimated as follows: 

(io.8) | Jaiy,iyav^ffaWtdA < ^ | | D ; V D > | | 2 + C||D;+1D>||6
2

/5. 

The companion inequality is now formed by multiplying (10.1) by Dr
tAiy~lVi after 

changing s into s — I throughout, then integrating over Q. After routine calculations we 
find 

iD,||D^Z>TMl2+/Q^ 

= - J^AD^v"^ h (* ~ ^D'Mv, + wk)D
r
t~

hD^-\vt,k + wuk)dx 
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- J^ Dr
tMy~x vtD^-'ibu + b2,i + 2bXi + b4J + vfu + vfa +/3ï/) <fc 

(10.9) +1/ / Dr
tADs-lvl{Dr

tADs
a'

lwl^^A^D^Jv^wd} dx 
Jil 7=0 

" 7=0 y=0 

+ i/ / D^My-'v-YElW(^î + D2
2)(Vi + w,)Jx 

+ y Dr
tÂDs-lViDr

tD
s-lBi dx 

As before denote the first three integrals by Ji,J2 and ^3, the terms with B, C and E 
coefficients by J4, J s and J^, and the last integral by Jq. 

As in § 12 of [4], we apply the L6(Q) norm to the factor Dh
tiyavk or D^dawk in 7j, 

when 2h +j < r + | , otherwise we apply to it the L°°(Q) norm; the resulting expression 
being as in (12.13) of [4] where u — v in the first factors, and u — v + w in the second 
and third factors of each term. 

The seven terms in J2 are also treated according to Lemmas 7 and 8r of [4] and Lem
mas 2r 3r 4 and 5 of the preceding § 9. 

In 73 we note that the A operators on the second factors can be estimated, as in ( 12.17) 
of [4], by Stokes and gradient terms, the latter yielding zero for the first term, in which 
orthogonality of gradients and solenoidal fields of L can be invoked. 

For J4 we have 

Iy41 < cv f \Dr,Kiy-'v,-| £ \Dyiyjvi + Wi)\dx 
Jii

 j=o 

< C||^ÂDJT'v||2 E ( l | 0 ^ ^ v | | 2 + \\D'tDxLypW\\2) 
(10.10) J=° 

< ^ 5 II^ÂoT'vIl! 

+ C E ( I | O ^ ^ V | | 2
2 + \\iytDxDl^\\l). 

7=0 

Similar estimates hold for J5 and J(, while for Jj we find 

do . I D \J7\ < \\Dr,Àiy-\\\2\\D
r
tiy~lB\\2 

< ^n^Àor'viii+ciiD^-'fiiii-
Also the additional term on the left side of (10.9) can be estimated: 

\JnD
r
lÀiy-l

ViD^iy~lwidx\ < \\Dr
tÀiy-'v\\2\\DfD^w\\2 

(10.12) < ^\\D-tMy-\\\l + c\\D^iya>w\\i 
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Adding together (10.2) and (10.9) we find after these reductions and multiplying 
by 2, 

D,{ miyav\\l + H^vor'vlll + -2v{ ||D;VD>||2
2 + ||D;ADT' V||2

2} 

^{(II^D^Hl + llD^VDr'vlll) 

x (||Vv||2
4 + \\Dxw\\A

2 + ||Vv||2||Âv||2 + ||£>xw||2||£>2>v||2 + 1) 

+ 1 ? ||Ofzyav||2 | |D?VD'av||2(||JDr''V^v||2
2
 + ||JDr'!^^v,||2

2) 
h,£J>0 

2h+J2>r+t 

+ ""E / " 1 ( I I^VDM| 2 | |D?AZ)M| 2 + E ||D?V^V||2
2) 

(10.13) x (II^VZ^vlH + \\Dr
t-

hDxiyaw\\i) 
r,s-\\j/2+r-2h} 

+ E E (\\Dh
tVDiv\\l + \\Dh

tDxDiw\\l) 
hj=0 t=0,£<s 

x(||Dr'!V/>'-«v||2||Dr',ÀD'-%||2+ E II^VDJ- 'vHl) 
p<a 

5 - 1 

7=0 P<a 

+ E ll^;Mv||2
2 + E \\DyK42

2 + EII Wrvllf 
7=0 

5 - 1 

7=0 7=0 

+ E \\Dr
tDxiyaw\\2{ \\Dr

tDxD>aw\\2 + IIDr
tiyaw\\2} 

7=0 

+ E WD&aMll + E ll̂ vz>Lw||2
2 + 1 II W H I f } 

7=0 7=0 7=0 

+ M £ ' ii/>^vv||2||/)^z^w||2(iiz)r^vz)r7vii! + HAr~^^r7w|i2
2) 

hj,£>0 
2h+j>r+ | 

+ " " 1 f ' " V ? û X H l 2 | | ^ X v v | | 2 ( | | O r A V D r ' v | | 2
2 + ||DrftD,D^w||2

2) 
Mj*>0 

2/i+ ^ >'+ ^ 

r f J - l [ / /2+r -2 / i ] 

+ E E i\\Dh
tVD^v\\l + \\Dh

tDxD^\\l) 

{\\D]-hDxD>^W\\2\\D'rhD2
xD>a

t
W\\2 + | |Dr / !£»X"^ll22 | |or ' ,

JD^w||2
2} 

- l [ / /2+r-2/ i ] 

+ £ £ (II^X i,.,l|2 

/ y=0 £=0,^<5 
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x(iiflr*vDsr'vii2|iDr*ÂD'̂ v||2+ E I I ^ V D ^ V H ! ) 

+ \\DyDiv\\i(\\DrhDxiy^w\\2\\DrhD2
xiy-e

w\\2 

+ \\DrhD^-e
w\\2

2\\D:-hi>-twf2)} 
r,s-l\j/2+r-2h] t 

II r\hT7 r%mr>\, 
1Î6/5J + E £ { l l ^ ^ l l l + £ ll^vz)^||6
2

/5} 
hj=0 t=0,£<s m=0 

r , 5 - l \j/2+r-2h] 

+ £ E {||D?vzy,v||2(||/)^v||24-Ell^vzy,v||2) 

+ ||DfD^Hl2(||0?^Hl2 + ||D?Dx4 w||2)} 

+ è m+lKM\i+ii^^r'win + H w*n6
2

/5 

+Eiior1^Hi6/5 
7=0 

+ E ll^+1^vv!|6
2

/5 + ||DT,/>rIHl22 + WK-1B\\2
2 +1} 

7=0 

11. Tangential Derivative Estimates. As in the initial value problem [4, §3] we 
now apply Young's inequality to the various products of derivative norms on the right 
hand side of the main inequality (10.13). Up to this stage, the functions v and w have 
appeared essentially in a symmetric way in many of the sums on the right hand side. 
But while the above process of bounding by powers of all the norms should be carried 
out completely for all terms in w, this will not be done for all products containing v. 
As in [4, § 13], the terms containing Stokes operators acting on v are accompanied by 
powers of the corresponding gradient norms, which should be retained in such a way 
that no power of a Stokes operator norm in v or its time and tangential derivatives higher 
than the square appears on the right side. After the cancellation against the left side of 
any remaining terms in ||DJ"VD^v||| and HD'AD^vHf, this yields an inequality of the 
following form, where a prime on the summation sign again indicates omission of the 
upper right corner term h = r, j = s in the first two occurrences, and h = r, j = s — 1 
in the third. The body force terms are carried over without significant change apart from 
being expressed as powers of derivative norms. For h = j = 0 replace Ah + 2/ — 1 by +1 
henceforth. 

D,{ WtDlv\\l + | |^VZ>r 'v | | f } + ~{ | ! ^ V D > | | I + II^ÂDT1 v|||} 

<CrA | | D ^ v | | 2 ™ + l lD^VD- 'v l l^ ' - 1 

r,S ? 4r+2s+\ 

hj=0 
r*s ~,4r+2s+\ S—2 

+ £ ' ||z>?vz>>||2— ' +^£| |zWv| |2
2 

hj=0 j=0 
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r,S~ 1 4{/-ft)+2(5-j-l) 

+ E ' ll^?vzyav||2 -*-' II^Az>av|i2
2} 

hj=0 

r,S ry 4r+2s+l r,S—\ j4r+2s+± 

+ Cr,{ £ ||D?ZyaW||2-*- + E \\D^DxDlaw\\2^ 
hj=0 hj=0 

r,s-l 
II r^hr\2r\i ... 11 " 4A+2/+3 , v ^ II nr+1 rV ...II 

6/5 
+ E II^XHI2

4^+ 3 +EllAr+1^vv"2 

(11.1) 11,7=0 ;=0 

+EiiDr1Ox/yaHil/5+ii^r1^r1Hi22 

+ E ^ I I ^ A 2 + llo?vzyafl||6
2
/5) +1} 

hj=0 

The presence of the unit term on the right side enables us to reduce the total number of 
terms by bounding lower powers of any norm by means of a constant plus a higher power 
term. Thus only the highest powers, having formally the singularity index 4r+2s+1 need 
to be retained, except in the case of the Stokes operator terms. As in [4, § 13], the constant 
Cr>iS on the right side of (11.1) will be henceforth fixed in value. 

We now define, for r — 0,1,2, • • • and s — 0,1,2, • • -, as in [4, § 13]. 

5 r • S + 1 // 4r+->s-l 

(11.2) F„(t) = || W r v H f + \\Dr,VDs-\\\l + - Y, E FhjW** 

** h=0j=0 

^ hj=0 

GrAO = H\\Dr
tVDs

av\\l + IIZ^ÂD^vHf) 

JL £±> » 4r + 2s — 1 ^-tH^-j) 

(.,.3, + £ 5 S^Tf"«> -'-' G-"» 

/i=0./=0 

Here the double prime on the summation sign denotes omission of the terms h — rj — s 
and j = s + 1. Terms in which 4r + 2s — 1 < 0 or Ah + 2/ — 1 < 0 are also omitted. We 
also define 

5 "sJXnAr + 2s-\ «r-HMs-j) 

4 a=o./=o 4/i + 2/ - 1 

(11-4) + Q , E E ^ j ( 0 
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where Mr^s(t) denotes the nonhomogeneous term 

r,S j 4r+2s+\ 

(11.5) hj=0 

+ E H ^ V D ^ * * ' 
ftj=0 
r,S— 1 9 4r+2s+l 

+ E I I ^ D H I * 4 ^ 3 

A,/=0 

+ E \\DrrD>aw\\lh + g ||Ar+1^4wll6/5 

+ IIOT'DT'Hll + U W ^ / s + Il W ^ + 1-

As in (12,4) of [4] we note the relations 

r\ 4r+2s+1 4 9+1 

| |D?VZyav||2
2^' <FhJ+l(t)àfc 

(ii .6) u\\D>;Kiyav\\l<Ghj+^t) 

v\\D*\7 D>av\\2 «"*' \\DlAiyav\q<Fhj+l(t) — ' GhJ+l(t). 

As in [4, § 13] we can show that (11.1) can be expressed in the standard form 

d 4/-+25+1 

(H.7) -jfrA^ + GrAt) < KnsFrA0^ + NrAt) 
at 

with the aid of previous inequalities of the same type. To do this we proceed by in

duction on s, assuming Fns(t) G L^2^T(0 , T) and showing by Lemma 1 that Gr,s(t) G 

L^2TT(0, T). Thus we assume (11.7) for r < r\ and s < s\ + 1, and for r = r\ and 

s < s\ and deduce it for r — r\, s = s\. To do this change r, s in (11.7) to h J, then mul-

tiply by | If^Ej^jCO 4*+2/"1 and add for /z = 0,1, - - r;y = 0,1, • • • s + 1 but omitting 

h — rj — s and s + 1, to (11.1). Also add on (11.7) with s replaced by y and multiplied 

by |Cr>J, for h — 0 , 1 , . . . , r and j = 0 , 1 , . . . , s but omitting h — r,t — s. 
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This yields, with the aid of ( 11.6), 

DtFrAt) + ^ ( 0 + CrtS £ 'Ghj(t) 
4 hj=0 

9 4r+2s+] 9 4r+2s+1 

<CrA ||D[D>||2
2— + II^VDr^H,2 — 

'£+} 4r+2s+l 

+ 2J2 FhJ(t)^-i 

+ £ 'FhJ+l(t)®ft + / E ||^AZ>LV||2
2} 

( 1 1 - 8 ) l ^ 1 / 4(r-/,)+2(.-j-l) 

+ Ô E Fhj+i(t)—*v*—GhJ+i(t) 

5 ^ „ Ar + 2s - 1 4^+i 5 ££, , . 4„^+i 

^£,£=0 W + ZZ—1 L h i = 0 

5 A i±i " 4r + 2^ — 1 Mr-h)+2(s-j) 

h=0j=0 

Now the Stokes operator terms on the right are majorized by the sum of Ghj(t) function 
terms on the left and so can be canceled off against them in the inequality. Also the sum 
on the right side of ( 11.8) containing the products of F and G terms is less, term by term, 
than the corresponding sum in (11.3). Hence this term will cancel against \Gr,s(t) on the 
left hand side of (11.8) without changing the sign of that inequality. Thus we now obtain, 
as in (13.8) of [4] and with the aid of (13.5) 

r v—1 
, 4r+2s+\ If .. 4r+2s+\ 

DtFr,s(t) + Gr,s(t) < C{Fr,s(t)û^ + 2 £ FhJ(t)^^ 
hj=0 

9 i l l / 4r+2,+ l 

(11.9) + - £ FhJ+l(0^^ 
4 hj=0 

*A ^ 4 4r+2s+l _ 

h=0j=0 

<CFr,(t)^ +Nr,s{t) 

and this establishes (11.7) for the given values of r, s. 
Next we show that the conditionNr?5(0 = Fr^(t)a Q\(t) holds, where Q\{t) £ L*(0, T) 

an(^ a ~ 4r+252-i • ^ e a s s u m e m e hypotheses of the Theorem for a given p, and let r, s be 
non-negative integers such that p = Ar + 2s + 1. Then it is a straightforward matter to 
verify that Mr^(0 G Ll(0, T). 

By the induction hypothesis for earlier stages, 

i+ i (11.10) NhJ(t) = Fhj(ty
+^QhJ(tl 
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where QhJ(t) € L1 (0, T) and h = 0, l , . . . , r ,7 = 0,1,2, . . . ,5+1 with ft = rj = s, s+\ 
omitted. Now, by ( 11.4) 

5 JL £±i // 4(r~h)+2(s-j)+4h+2j 

Nr,s(t) - QrAÛ + 7 E E Fhj(t)—W=i QhJ(t) 
4 h=0j=0 " 

+ cr,sJ2ZFhj(t)m^TQhJ(t) 

5 i , ? i « 4/H-2/-1 4/-+2.V 

4 /!=07=0 

^_ s~[ 4h+2j-\ 4r+2s 

+ Q* E E ^ ( O ^ ^ v^Qhjit) 
h=0j=0 

5 r S^\ » 4r+2s 

< QrAO + T E E FrAO^^Qhjit) 
4 h=0j=0 

(11.11) + Q / E FrAt)£Ë*Qhj(t) 

4r+2s 

< CQx(t)FrAt)^ 

This shows the condition of the lemma is satisfied, and the lemma therefore applies to 
(11.9). Hence Gr,,(0 G L^kr (0 , r ) and this now yields | |D, rVD>||2 and 
IID^AD^"1 v||2 e L^fer(0, T) as required. 

Since this induction has already been shown for s = 0,1 and all r in § 8, the induction 
over s will run separately for each value of r, for all positive integers s, and subsequently 
for r = 0,1,2, • • • in succession for all applicable values of r and s. 

Because ||D[D^v||2 < C||Dr
rVD^_1v||2, it follows that this norm will have been es

timated at the preceding stage in s so that ||D^D^v||2 G L4^2^(0, T). We have therefore 
estimated ||D[Z>^v||2, ||DJ"VD^v||2 and ||Z>J*AZ>̂ v||2 which latter has been shown, as in 
§ 14 of [4], to be equivalent to estimating \\Dr

tDiDjDs
a v||2- Thus all tangential derivative 

norms, together with their first and second space derivative norms, have been estimated 
as required, for v. As these results hold for w by hypothesis, they now hold for u — v + w. 

Likewise, by (3.12) we have 

max|D f
rD>| = H D ^ w l U 

< C ( | | D ; V D > | | | | | ^ A D > | | | 

+ \\Dr
tD^u\\i\\Dr

tADs
au\\l 

+ | |D;D>| |2) G L ^ ( O , J ) 

with corresponding results for v and w separately. As in (14.2) of [4] only derivatives 
with respect to time and tangential variables are present on the left side in (11.12), but 
no normal derivatives as yet. 

https://doi.org/10.4153/CJM-1991-068-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-068-0


NAVIER STOKES DERIVATIVE ESTIMATES 1211 

12. Normal Derivatives of Higher Order. Remaining to be estimated are the 
L2(Q) norms of the partial derivatives containing three or more normal derivations. 

By (4.7) the desired conditions hold for w at every stage of calculation since p > 7 
for every step involving a third order space derivative. Repeating the calculations of [4, 
§ 15] we find the third normal derivative of u is bounded as desired, and the same result 
then automatically follows for v = u — w. As in [4, § 15] the main calculation can be 
done by induction on the normal order, the only new circumstance being the presence of 
body force terms in the vorticity equation. Since the Laplacian and the body force term 
appear as separate linear terms in the momentum equations, the normal derivative of u 
under study after any number of differentiations will always have exactly two orders of 
space derivatives more than the body force terms. 

Thus if h, k, are integers such that 2h +j — \{p — 3), then Ah + 2/ + 3 = p so that by 
(4.9) || Df}dxB\\2 £ L2(0, T). By the estimates of [4, § 15] and the remark above, it follows 
that || Dh

t D^x «||2 £ L4h+2J-] (0, T) and this is the highest derivative norm guaranteed by the 
hypotheses of the Theorem, since Ah + 2(j + 2) = p + 1 so that 2h + (j + 2) = ±(p + 1), 
as stated in (4.7). The result for the maximum norm then follows in the usual way. This 
completes the proof of part (b) of the Theorem. 

Finally, the proof of part (c) of the Theorem is immediate when (b) is proved for all 
odd p > 0. Continuity of any given derivative of w or B is a consequence, for example, 
of inclusion in L6 / /5(Qx (0,7)) of all partial derivatives of order four higher. 

13. Unbounded domains. The analytical operations involved in our application 
of the basic Integrability Lemma are the differentiation with respect to t for the space 
integral defining F(t), and the integration by parts of a term containing the Laplacian. 
For a bounded domain Q., our smoothness hypothesis on the solution u(x, t) makes the 
justification of these operations straightforward and elementary. When the domain Q is 
unbounded, however, further considerations of uniform convergence and integrability 
appear. Here we describe a justification of these operations based on the unified integra
tion approach of McShane [11]. The necessary conditions for infinite domains require 
that the value of p in Theorem 1 be increased by 2 relative to bounded domains. 

For brevity we treat only one stage of the induction, namely the derivation of (6.14), 
leaving to the reader the adaptation of the method to later stages. We accordingly choose 
p — 5, and note that the hypotheses of Theorems 1 and 2, and Corollaries 1 and 2, of [9, 
Chap. 4, § 2] will be satisfied if we consider a time interval Ek : 7V_i < t < Tk wherein 
w(x, t) is regular and a suitable initial instant ti G Ek is chosen (such ti are dense in Ek). 

We now consider the nonlinear terms such as v^v/̂  and any other quadratic terms as 
non-homogeneous terms placed on the right hand side of the Navier-Stokes equations. In 
applying the above results for compact subsets of Ek we may assume that the prior stage 
(6.8) of the induction has been established and || v||2 and || V v||2 are therefore bounded 
and continuous functions of t therein. 

By the uniqueness Theorem 2 of [9, p. 89] the solution described there must coincide 
with u = v+w of the present paper. It now follows from Theorem 1 and from Corollaries 1 

https://doi.org/10.4153/CJM-1991-068-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-068-0


1212 G. F. D. DUFF 

and 2 of [9, Chap. 4, § 2] in succession that Àv, Àv, Drv, vu V vt and V p are all elements of 
L2(Q) with norms depending continuously on tin Eu, hence locally uniformly convergent 
there [9, p. 529, Theorem 2]. 

To justify the operations in (6.13) we may now note that differentiation with respect 
to t as in 

—F3(t) = — | |Vv| | | = 2 [ Vv-Vvtdx 
dt dr "2 Jo. 

is justified by the absolute convergence, locally uniform with respect to t by [8, p. 529, 
Theorem 2], of the integral on the right side [11, p. 137 and p. 259]. Likewise the inte
gration by parts in 

/ V v • V vt dx = — / Av • vt dx — — / Àv • vt dx 

can be justified term by term using absolute convergence in the one-dimensional integra
tion by parts Theorem 9.4 of [11, p. 126] and the results on iterated integration of [11, 
Chap. 4, §4, pp. 261-273 or §7, pp. 300-304]. These results now justify the first term 
on the left of (6.13). As the remaining terms are obtained directly, our demonstration is 
complete. 
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