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Abstract. A positive Liapunov exponent for the critical value of an S-unimodal
mapping implies a positive Liapunov exponent of the backward orbit of the critical
point, uniform hyperbolic structure on the set of periodic points and an exponential
diminution of the length of the intervals of monotonicity. This is the proof of the
Collet-Eckmann conjecture from 1981 in the general case.

1. Introduction
The existence of an invariant measure absolutely continuous with respect to Lebesgue
measure for maps on the interval is often connected with the existence of some
hyperbolic structure i.e. the exponential growth of derivatives of the iterations on
some subset of the interval. (But, according to [B, C], sometimes there is only
subexponential growth.)

By virtue of examples we recall the works of Lasota and Yorke [L, Y], Ruelle
[R], Misiurewicz [M] and Szlenk [Sz] where the assumed conditions, sufficient for
the existence of the absolutely continuous invariant measure, imply the uniform
hyperbolic structure over the whole interval, the image of the critical point or some
Cantor set.

In 1981 Collet and Eckmann [CE1] proved the existence of such a measure for
S-unimodal mappings which have the uniform hyperbolic structure on the image
of critical point and on the set of the preimages of the critical point i.e. satisfying
following conditions: there exist KE >0 and AE > 1 such that for all n:

d
Cl

C2

>KEkl and

>KEkE if/" (z) =

where c is the (unique) critical point of/ and / " =f°f° • • • °f n-times. Collet and
Eckmann conjectured that Cl implies C2. This has been proven [Nl] for symmetric
mappings (that means such that/(x) = / ( l — x) for xe [0,1]). In the present paper
we prove that the conjecture is also true for nonsymmetric S-unimodal mappings.

The condition Cl is fulfilled quite often [CE3], but it seems that it is not necessary
[B, C].
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426 T. Nowicki

2. Notation and technical lemmas
From now on we shall assume that the mapping/- [0; 1] -»[0; 1 ] satisfies the following
conditions:
A0: /6C 3 [0 ; l ] ; / (0 )=/ ( l ) = 0.
Al: / i s S-unimodal; that means that there exists a unique ce (0; 1) such that/ is

increasing on (0; c) and decreasing on (c; 1) and S/<0 where 5/=
f"/f-Xf'/f')2/2.

A2: / ' ( c )*0 .

We shall use the following notation: / ' = / and for « > 1 / " + 1 =/" ° / ; xn =/"(*);
Df^df/dx.

Now we quote without proof some lemmas:

LEMMA 1. [CE2, II.4]. IfSf<0 then 5/"<0. S/<0 implies that \f'\ has no positive
local minima.

LEMMA 2. [CE2, II.4]. If f satisfies Al and Cl then /|(C2,Cl) has no sinks and no
attractive periodic orbits.

Remark 3. By Lemma 2 we may assume later on that f(0) > 1 and that there is no
other fixed point of/ on (0; c).

LEMMA 4. [CE1, 2.2]. There are two constants M>0, m>0, such that for xefO; 1]

and

m\x - c\2/2 < \f(x) -f(c)\ s M\x - c\2/2.

We define x(x) by: c = c, and for x # c,f(x) =f{x) and

LEMMA 5. [N2,3.4]. For x*c, \x-c\/\x-c\<(M/m)l/2 and |/'(x)/|/'(x)|<
(M/m)3/2.

LEMMA 6. [CE1, 2.6]. / / S/<0 and Dfn\(xy)*0 then \xn-yn\>
(Df"(x)-Dr(y))1/2\x-y\.

LEMMA 7. [Nl; 7]. Suppose g e C\u, v]; Sg < 0; g'(u) = g'(v) = 0; g'\(u,v) * 0. For a
fixed xe(u,v) define a function h(t), te[u, v] by h(t) = (g(t)-g(x))/(t-x) ift^x
andh(x) = g'(x). Then h(t) has only one local extremum in (u, v) and it is a maximum.
In particular for a < t < b we have \h(t)\>min(\h(a)\; \h(b)\).

LEMMA 8. [CE2, II.4]. The set C_oo = U ^ 0 / " J ( c ) is deme in t°> 11-

3. Preliminary estimations
Let us denote by An the family of the intervals of monotonicity off" i.e. (a, y) e An

if and only if a,ye\JOsj<nr
J(c)v{0;l} and D/"|(a, r )^0. Let \A\ denote the

Lebesgue measure of the set Ac [0; 1].

LEMMA 9. Let a> be a sequence of preimages of c such that (0, oJ)eA;. Then there
exist two constants Ko>0 and Ao> 1 such that:

= min (|/J(0, aJ+1)|/|(0, a>)\; \fJ(aJ+\
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Proof. First observe that a° = c and aJ+i=f~x(aJ)r\(0, aJ); so such a sequence
exists. We have moreover f(aJ+1) = c. By density of €_<„, there is a ̂  such that for
j>j0: min(c1: cl-c)<\oa

J where A0 = ( / (0 ) ) I / 2 > 1. Hence for j>j0

By Lemma 7. Df(aJ+l) > P(j) > 1, and by Lemma 6

Therefore aJ < (C/A0)AQJ for all j>j0 and

min (c; Ci-c)
T A * for

We set Ko = Aô 0 mmjSJo (P(j); c; C! - c) and obtain the assertion. D

COROLLARY 10. There is a constant Kx and a sequence fiJ such that for allj( PJ; 1) 6 A,
and

min ( | / (0> + 1 ,1) | / | (^ + 1 ; 1)|; \f(PJ; BJ+1)\/\(fiJ; ^ + 1 ) | ) > X, A{.

/Yoo/ We set /3y = aJ, use Lemma 9 and Lemma 5. K1 = K0- (m/M)l/2. D
We denote by (a, b) the interval with endpoints a, b independing on their mutual
order (i.e. not necessary a < b).

LEMMA 11 [N2, 10]. Let (a, c) e An+,\An, then there are two periodic points of period
n, p and q such that:

(q,q)^(a,a)<z(p,p) and D/"|(c>p)#0.

Moreover an = dn = c.

PROPOSITION 12. Suppose thatf satisfies A0-A2 and Cl. Then there are two constants
KA>0 and \A> 1 (independent on n) such that if (a, c)e AM+1\An then

\r(a,c)\/\(a,c)\>KA\A n = l ,2

Proof. Assume first that/" is decreasing on (c, a). By Lemma 11 (c, q) c (c, a) <= (c, p)
for some periodic points q = qn and p =/?„. We study/" on the interval (a,, c,). We
have qt e (a,; c,) and /"(g,) = fli, hence by Lemma 2, ^ /"(g , ) ! > 1. By Lemma 6,
Cl and Lemma 4 we have:

(*) kn+1 - cn+1| > (Dr(g,)£>/"(Cl))1/2k," Cl & (KEA"E)I/2|<7, - cl

Now we come back to the interval (c,a) and as / has no attractive periodic orbit
we have by Lemma 5 and Lemma 1

\DT(x)\ > min (\Df"(q)\; \DT(p)\) * (m/M)3'2

for all x e (q, p). We used

PT(p) = DT-l(pt) •f(p) = Dr-l(Pt) -f(p)
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Thus

\c-q\/\a-q\ = \an-qn\/\a-q\>{m/M?/2

and

By (*), Lemma 4 and the last inequality

M\cn-an\
2/2>\cn+1-an+l\>\cn+l-qn+l\>(KE\n

E)l/2m\q-c\2/2

> (KE\n
Ey/2m(m3/2/(M3/2+rn3/2))2\a - c\2/2

Thus \cn -an\/\c-a\> KB\A where XA = A'E
/4 and

KB = K1
E

/2m2/(M2+ mMVm).

Now consider that/" is increasing on (a, c). Then it is decreasing on (c, a) and by
previous estimations and Lemma 5 we have:

\\c-a\ |c — a | \c-a\

The assertion of Proposition 12 follows for XA = KB(m/M)l/2.

Remark 13. By Proposition 12 there is an No such that for n > No if (c, a) € An+1\An

4. 77ie intervals of monotonicity
The intention of the following estimations is as follows: we try to generalise
Proposition 12 on all intervals (a, /3) e An+1\An. For this we assume without loss of
generality that for (a, /3) e An+1\An there is a k<n such that ak=fin = c. We write

\an-pn\_\an-pn\ \ak-pk\
\a-p\ \ak-pk\ |a-/3| '

(«k, Pk) - (c, /Zk) e An_fc+1\An_fc and the first quotient may be estimated by Proposi-
tion 12. As for the second we observe that for some (% S) e Ak, (a, /3) c (y, g) and
both (y, a) and (a, 5) belong to Afc+i\Ak. We can use Lemma 7 with g=fk and

x = -

and we reduced the estimation for an interval from An+,\An to the estimation for
an interval from Afc+1\A)t, k< n. So we could try the inductive proof. That is how
the proof goes in the symmetric case, where we can set KA = 1 in homolog of
Proposition 12. But in general KA < 1 and the constant may reappear and spoil the
exponential growth every time we use Proposition 12. So we are obliged to study
different cases as for example n — fc> No, when we can use Remark 13, change the
constant A,4 or find some other way to estimate |an-/3n|/ |a -j8|. In fact although
we shall use the above idea we shall prove that \a-p\<K\~"(K>0, A>1), and
then conclude (Proposition 19) tha t / has uniform hyperbolic structure on the set
of periodic points (i.e. there is a A > 1 such that for all s, ifps =p then |D/5(p)|> As).
This will enable us to use Proposition 3.9 [N2] which states that / has uniform
hyperbolic structure on the set of periodic points if and only if it satisfies C2.
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Before we generalise Proposition 12 we introduce some new object, which will
describe precisely the intervals (a,/3)e An+1\An.

For an x e (0; l)\C_oo we define the family g(x) of the intervals by:

n=0

Since for k < n the critical points of fk are also the critical points for / " (this
follows from Df(y) = Df"~k(yk) • Dfk(y)) we have a natural order in f(x) by
inclusion. We numerate the intervals f e£(x) accordingly fo=(0; 1) and £,+,££,

By density of €_,» we have two easy lemmas.

LEMMA 14.

(A) n f i e f W c i ( f i )=x
(b) There is a iQ = io(x) such that {0; 1} n £•„ = 0 .

LEMMA 15. For every i there is a point p' e £• SMC/I that f"'(P') = c, where nt is the
maximal n with £ e An. Moreover p' is the endpoint of£i+l.

LEMMA 16. Suppose i^i0 and let £ = (a, y). Then there are k,m<nt such that
«<c = ym = c, kr6 m. Ifm<k then k = «,-_, and m = «;_,, for some I>2.
Proof. As i a: i0 and & e U^=o An the endpoints of £ belong to C_oo. As £ e An. we
have k, m < «,, k ^ m by Rolle's theorem. We have £ <= ,̂_1 <= ,̂_2 and it is enough
to remark that a = P'~l, (/?' defined in Lemma 15). •

Let £ = (a,y) and P = p'e^. We shall denote (a, p) by | and (j8, y) by | f ,
(ak = ym = c; fc> m).

PROPOSITION 17. Suppose f satisfies A0-A2 and fnaf the assertion of Proposition 12
15 true. Then there exist positive constants KT, d,w,\T (with AT > 1) (independent on
n and x) such that for every x e (0; l)\C_cc there is a nondecreasing sequence {s,(x)}
such that for all i and all & e tj(x) we have

| > KT<r-\l and \f'(l)\/\l\ > KTds'\"i

and

B(i): \l\< (w/(\ + w))'< and | | | < (w/(\ + w))\

The idea of the proof. The proof will consist in estimating A(i) with the aid of the
decomposition described at the beginning of this section. We shall fix x and define
st in such a way that B(i) holds. We shall investigate several cases, in most of them
si+l = Sj, and rarely s,+1 = s, + l. The sequence s, counts how many times we are
obliged to reintroduce the constant d in A(i). But every time we spoil A(i) we
diminish the length of £ by a constant factor. In fact, as we shall see in Proposition
18 A(i) and B(i) together prove that |£| diminish exponentially.

Proof. First we define the constant mentioned in Proposition 17. We recall that
AA, KA come from Proposition 12, No from Remark 13, Kt, Ao from Corollary 10.
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We may assume KA<\. We fix Nx> No such that A " ' / 2 > 2 A " ' / 4 / K A . Let d
^ |x-y| , where 2£

d > 0 otherwise / would have a sink. Obviously d < 1.

KT = min(KA;Kl)>0.

Now we fix x € (0, l)\C_oo and prove A(i) and B(i) by induction. For j = 1, n, = 1.
We set s, =0 and A(l) is true by Lemma 9 and Proposition 12. B(l) is obvious.

Suppose that A(j) and B(j) are true for all j < i. We want to prove them for
j = i +1. If £+1 n {0,1} * 0 then i +1< io(x) (i0 defined in Lemma 14) and we use
directly Corollary 10. Otherwise both ends of £+1 are critical points of/"i+1 and we
have by Lemma 16: p = pi+1 e £+1 = (a, y) with an. = yn._,+1 = /3n.+l = c. We denote
n,+, = n; n, = fe; «,_,+, = m; n > k> m. By convention | + 1 = (a, j8); ^ + 1 = ()3, y). We
have also

(«fc; Pk) = (c, )3fc) e A^+AA,,-*,

(•ym, /3m) = (c, Pm) e An_m+,\An_m,

(7m, «m) = (C, « m ) 6 Af c_m +,\Ait-m,

and for these intervals we can use Proposition 12 and Remark 13. We shall consider
three general cases
(1) n-k>Nl,
(2.1) n-k<Nlandk-m>Nu

(2.2) «- fc<N,andfc-m<N, .
We shall divide (2.1) into four subcases and (2.2) into three subcases.

(1) n - k > ty. We set sI+1 = s,. We estimate A(i +1) for £+,.

\r'+>(l+i)\_\<*r,-pn\_\an-pn\ \ak-pk\
|£+1| |a-)8| ak-pk\ ' \a-p\

> A(X~'C>/4 • KTds'\k
T> KTds'^Xn

T

For the first quotient we used Remark 13 and (1) (N,> No) then the definition of
AT, (AT<AA

4). For the second we used A{i) and Lemma 7, as announced at the
beginning of this section. The estimation of A(i+1) for £•+, is similar as n-m>
n-k> Nt and S,>S,_,. B(i +1) follows from the fact that

and (a; y) is either |j or ^ by Lemma 16.
So we can consider the following case:

(2.1) We assume n-k =s JV, and k-m> Nt.
First we remark that as in (1) since n-m> k-m> JV, we have
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so we have to estimate A(i+l) only for £+,. But now we cannot use Remark 13
and we shall get rid of the constant KA from Proposition 12 with the "help" of the
constant w. We distinguish four subcases:

(2.1.1) \a-p\>w\y-p\and\yk-pk\>d\ak-pk\,

(2.1.2) \a-p\>w\y-
(2.1.3) |«-y8j<W| r - j
(2.1.4) \a - j3 |< w\a -p\ and \y~P\ < w\a - j8|,

(2.1.1): we set sl+1 = *,. We define ye(p;y) by \Dfk{y)\ = \yk-pk\/\y-p\. As
n — k^Ni we have lo^ — /Ŝ l &d, and

\a-y\ \a -fi\ \ak-0k\

We used Lemma 6, the assumptions of (2.1.1) and the definition of d. This gives
by definition of w, Lemma 7 and A(i)

a)\ > d3(KAd3rlKTd''Xk
T = KTds'\k

T/KA.

In order to end the estimation of A(i+1) for||+1 we observe that |an — fin\/\ak— /3fc|s
KA\T k by Proposition 12 and that KA will be simplified in the product of two
quotients. B(i+1) is obvious as in (1).

(2.1.2): we assume n-k^Ni, k-m>Nl, \a - /3 |> w\a -)8| and \yk-fik\^
d\ak-0k\. We set S1+1 = 5,. B(i + 1) is obvious by B(i) and A(i"+1) for £+1 is
already done. We estimate A(i+1) for ^ + , . Again we estimate only \ak -flk\/\a -p\
and then we use Proposition 12.

\*k-Pk\_\7k-ak\ \<*k-Pk\ \y-a\_ hk-Ckl bm-aml
\a-p\ \y-a\ |yk-afc| \a~P\ \ym-am\ \y-a\

a="J- (AV4)*"" • «rrfJ'AT • ̂  KTds'kk
T/KA.

We used the fact that k-m>Nt>N0, Remark 13, the definition of Nt, A(i-l)
with Lemma 7 for the interval |-y- a| and S,_/+1 s 5,. We conclude A{i +1) for |j+i
as in (2.1.1).

https://doi.org/10.1017/S0143385700004569 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004569


432 T. Nowicki

(2.1.3): we assume n-k<Ni,k-m> Nx,\a-B\^w\y-B\ and \y-B\> w\a -&\.
We set s1+1 = 5,.

\<*k-pk\_\<*k-yk\ \<*-y\ K ~ f o L K Xkds \«-P\ + \P-y\ d
\a-B\ \a-y\ ' \a -B\' \ak -yk\ ~ T T ' \a-fi\ 1

> M S ' A ? •{\ + w)-d^KTds>kk
T/KA.

We used A(i) for the interval | a - y | , (2.1.3) and the definition of w and the
definition of d. Now we proceed as in (2.1.1) and obtain A(i + l) for £•+,.

(2.1.4): we assume n - k< JV,, k - m > N1, \a - B\ < w|y - 0 | and |-y - B\ < w|« ~^l-
For the first time we are obliged to set s,+1 = s,- +1. A(i +1) for |f+1 is obvious as

now dS/ > ds'+1 and we can use (1). We have to prove A(i +1) for £•+, and B(; +1).
We begin with B(i+1). We have | a - y | = | a - j8 | + |y-)3| and by (2.1.4)

(**) |a--y|

Hence

as we applied B(i) to the interval (a, y). This proves B(i+1). Now for -4(i+1) for
| j + , we estimate directly using (**).

\an-pn\Ja-y\ _K~yfc| \an-pn\^ w+l |afc-yfc| d
\a~P\ \a~P\ \a-y\ \ak-yk\~ w \a-y\ 1

> \2
T

N>KTds'\k
Td> KTds>"\"T.

We used the definition of AT, n -fc< N,, A(i) applied to the interval (a, y), the
definition of d and the definition of si+l. This proves A(i+1) for £+, and ends the
case (2.1). Now we consider the case (2.2) n — k < iV, and A: — m s iV,.

(2.2.1) n-k<Ni, fc-m<N, and | a - /3 |> w|y —/3|. We set Sf+1 = Sf. First we
remark that pkef~(n~k)(c), thus by definition of d: |yk-y3fc|>d> d|ak-)8fc|. Now
we can prove /4(i +1) for | j + 1 as in (2.1.1). As for ^+, we have

\y»-Pn\_ \yn-Pn\ \ym-Pm\ l y t - f e L g .»-», ^ /|orfc — >8fc|
| y - /3 | | y m - p M r i y M - i 8 j ' \y-p\ ~ A A ' l ' \ \a-/3\ ' a'

< KAA"T-md2KTds'\k
T(KAd3r1> KTds^\n

T.
We used Proposition 12, the definition of d, again (2.1.1) to estimate \ak-[ik\/\a-fi\
the inequalities of (2.2.1) then the definition of kT and w. B(i+\) is obvious.

(2.2.2): we assume n-k<Nx, fe-m<7V, and \a - B\-<\y - B\w and |y-/3|>
w|a-)3|. Similarly as in (2.2.1) we have |am-/3m|> d|)8m -ym| . We set s,+, = s, and
prove A(i + 1) for ^+, as we proved A(i + l) for |i+1 in (2.1.1). The proof of ̂ (i + l)
for ii+1 goes as in (2.1.3).

(2.2.3): we assume «- fc<N, , fc-m<N, and \a-B\<\y-B\w and |y - )8 |^
|a - B\w. We set for thesecond time si+1 = s, +1 and for both fj+1 and ̂ +1 we repeat
the proof of (2.1.4) for ii+l. This ends the proof in the case (2.2) and hence the
proof of Proposition 17. •
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5. Consequences
PROPOSITION 18. Under the assumptions of Proposition 17 there exists a constant
AN > 1 (independent ofx and i) such that for all xe (0, l)\C_oo and every i

if fief(x) then |£|<KA^\

where K>0 is a constant independent of i.t

Consider

by Proposition 17, A(i) we have

We have two possibilities: either

-\og(KTds'\n^)

and in this case

or

and then

-log(KTds<\"j)<(log \T)/2,

We take i, such that

for i > », and hence for i > /, we have

— logd+ilogAT<0 and — > K = —> K r :
n, 4 log d

But in this case we have by B(i)

In order to finish the proof we set

The constant K is adjusted according to i\. D

t E. Vizinescu pointed out that in fact K does not depend on x.
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LEMMA 19. Suppose that f satisfies A0-A3 and there is AN > 1 such that for all x there
is a constant K(x) such that for all i:

if 6e£(x) then | | , |<X(x)A^.

Then f has uniform hyperbolic structure on the set of periodic points: i.e. if p =ps then
\Df(p)\>\s

N.

Proof. Suppose that Lemma 19 is not true. Then there exists a periodic point p of
period 5, ps =p, such that \Dfs(p)\ = A1 < A V we may assume Df(p) > 0, otherwise
we take p and 25. Take a,/3 6lJo<,<s/"'(c) s u c n t n a t Pe(a>P) a nd there is no
smaller interval of such a property. We construct the intervals (aJ; pJ) by a = a,
j8' = /3 and aJ+l=rs(aJ)n(aj;p) and j8'+1=.Ts(j3')n(p, )3J). By virtue of Lem-
mas 1,2 and Df(p) > 0 such interval exists for every/ By Lemma 1 Df(p) > Df(x)
either for all x e (a1, p) or for all x e (p, jS1). Suppose the first possibility holds (the
other case is similar). Then for every j Dfs(p) > Dfs(y) for all y e (aj, p). In order
to prove it we decompose

Dfs(y) = Jf\ Df(yrs)

and as by construction of aJ for every 0 < r < j

yrse(aJ-r,p)c:(.a\p)

we have Dfs(y)<(Dfs(p))> = Dfj(p). Hence

Now consider {(p). We have for all j(aJ, pJ) e £(p) with (or7; j8J) = £O) and obviously
|s • j - TJI(>)| < s. Hence by the assumption

A V > T r 7 - F A » ' where L= sup | /(x) | .
A. (p) • L xs(O,l)

The factor \f(a) —p\/K(p)L* does not depend onj so the last inequality contradicts
A < \N. This proves Lemma 19. •

COROLLARY 20. / satisfies C2.

Proof. By Proposition 3.9, [N2]. For S-unimodal functions C2 is equivalent to
uniform hyperbolic structure of the set of periodic points. •

COROLLARY 21. There exist a constant A > 1 such that for every n and every g e An,

Proof. This follows from Proposition 5.2 [N2] which states that Cl and C2 imply
uniform exponential diminution of length of the intervals of monotonicity. •

COROLLARY 22. There are constants K>0 and A > 1 such that for every x e (0; 1 )€_<»
and every i if & € £(x) then |/"'(fi)|/|fi| > K\\

Proof. One has to remake the proof of Proposition 17 and everytime when A(i) has
to be spoiled (i.e. si+i = s, +1) by adding a factor d one apply directly Corollary 21

-(£)|sd. •
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6. Final remarks
The last three corollaries show that there are no differences between hyperbolic
properties of S-unimodal functions satisfying Cl depending on symmetry. One
would like to show this through a difieomorphic conjugation of a unimodal function
/ with symmetrical unimodal function g (with g = h°f°h~l, where h(x) =
(l + x-x)/2), but the S property may not be conserved.

Proposition 17 does not need Cl but only the assertion of Proposition 12, which
is true for example for / with uniform hyperbolic structure on periodic points and
a weak assumption: |D/fc(c,)| > K\JJ"/2n = 1,2,... [N2,3]. It is tempting to prove
Proposition 12 only with C2.
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