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Zeta Functions and ‘Kontsevich Invariants’
on Singular Varieties

Willem Veys

Abstract. Let X be a nonsingular algebraic variety in characteristic zero. To an effective divisor on X
Kontsevich has associated a certain motivic integral, living in a completion of the Grothendieck ring
of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi-Yau
varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant motivic
(Igusa) zeta function, associated to a regular function on X, which specializes to both the classical p-
adic Igusa zeta function and the topological zeta function, and also to Kontsevich’s invariant.

This paper treats a generalization to singular varieties. Batyrev already considered such a ‘Kont-
sevich invariant’ for log terminal varieties (on the level of Hodge polynomials of varieties instead of
in the Grothendieck ring), and previously we introduced a motivic zeta function on normal surface
germs. Here on any Q-Gorenstein variety X we associate a motivic zeta function and a ‘Kontsevich
invariant’ to effective Q-Cartier divisors on X whose support contains the singular locus of X.

Introduction

0.1

Let k be a field of characteristic zero. To a nonsingular (irreducible) variety X and
a morphism f : X → A1, both defined over k, was associated the invariant motivic
(Igusa) zeta function by Denef and Loeser [DL2]. By definition it lives in a power
series ring in one variable over the ring ML, where M is the Grothendieck ring of
algebraic varieties over k, L is the class of A1 in M, and ML denotes localization. When
X = Ad this invariant specializes to both the usual p-adic Igusa zeta function and the
topological zeta function associated to a polynomial f . (In fact in [DL2] the authors
treat an even more general invariant, involving motives instead of varieties, from
which also the whole Hodge spectrum of f at any point of f−1{0} can be deduced.)
This notion of motivic zeta function can easily be extended to an effective divisor D
instead of just a morphism f .

The authors were inspired by Kontsevich’s idea of motivic integration. In [Kon]
Kontsevich associated to a nonsingular irreducible variety X and an effective divisor
D on X an invariant E(D), living by definition in an appropriate completion M̂ of
ML. He used this invariant to show that birationally equivalent (smooth, projective)
Calabi-Yau varieties have the same Hodge numbers.
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Zeta Functions and ‘Kontsevich Invariants’ 835

0.2

There are important formulas for these invariants in terms of an embedded reso-
lution (with strict normal crossings) h : Y → X of supp D. Let dim X = d and
denote by Ei , i ∈ T, the irreducible components of h−1(supp D). To the Ei are asso-
ciated natural multiplicities Ni and νi defined by h∗D =

∑
i∈T NiEi and div(h∗dx) =∑

i∈T(νi − 1)Ei , where dx is a local generator of the sheaf of regular differential d-
forms on X. Also we partition Y into the locally closed strata E◦I := (

⋂
i∈I Ei) \

(
⋃
� /∈I E�) for I ⊂ T.
We denote the class of a variety V in M by [V ], and by analogy with the usual

p-adic Igusa zeta function we denote the variable of the power series ring over ML

formally by L−s. Then the motivic zeta function Z(D, s) of D is given by the formula

Z(D, s) = L−d
∑
I⊂T

[E◦I ]
∏
i∈I

(L− 1)L−νi (L−s)Ni

1− L−νi (L−s)Ni

and so it lives already in a localization of the polynomial ring ML[L−s]. Kontsevich’s
invariant for D is given by

E(D) = L−d
∑
I⊂T

[E◦I ]
∏
i∈I

L− 1

Lνi +Ni − 1

and can thus in some sense be derived from Z(D, s) by ‘substituting s = 1’.

0.3

One can specialize Z(D, s) and E(D) to more ‘concrete’ invariants, involving instead
of the class [V ] of a variety V in M other additive invariants as the Hodge polyno-
mial H(V ) or the Euler characteristic χ(V ) of V . With a little work one obtains for
instance from Z(D, s) the topological zeta function

z(D, s) =
∑
I⊂T

χ(E◦I )
∏
i∈I

1

νi + sNi
∈ Q(s),

which was introduced in [DL1] for X = Ad and k = C, and the invariant

e(D) =
∑
I⊂T

χ(E◦I )
∏
i∈I

1

νi + Ni
∈ Q.

0.4

Can the invariants above be generalized to singular (normal) varieties X such that
analogous formulas in terms of an embedded resolution are valid? The main problem
is whether these formulas are independent of the chosen resolution. Let D be an
effective Weil divisor on X and h : Y → X an embedded resolution of Xsing ∪ supp D
with irreducible components Ei , i ∈ T, of h−1(Xsing ∪ supp D). Can we generalize
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836 Willem Veys

the multiplicities Ni and νi? When D is Cartier (or Q-Cartier) the same expression
h∗D =

∑
i∈T NiEi makes sense. We think that the most natural generalization of

the νi are the log discrepancies given by KY = h∗KX +
∑

i∈T(νi − 1)Ei , where K·
is the canonical divisor. To this end we need in general X to be Gorenstein (or Q-
Gorenstein). Up to now the following generalizations appeared (with k = C):

(a) In dimension 2 these multiplicities are defined for arbitrary Weil divisors on
normal surfaces. In [V3] we introduced a topological zeta function and a mo-
tivic zeta function for effective divisors on normal surface germs. We could have
done this as well globally, associating to an effective Weil divisor D on a normal
surface X for which Xsing ⊂ supp D the zeta functions Z(D, s) and z(D, s), given
by the same formulas as above.

(b) In arbitrary dimension Batyrev [B2] considered the case D = 0 and associated
‘Kontsevich-like’ invariants to a log terminal X on the level of Hodge polynomi-
als and Euler characteristics. The last one, which he called stringy Euler number,
is given by the formula for e(D) in (0.3) with all Ni = 0. The invariant on Hodge
polynomial level was used in [B2] to define stringy Hodge numbers for projective
canonical Gorenstein varieties, and to formulate a topological mirror duality test
for canonical Calabi-Yau varieties.

(c) Batyrev [B3] also extended his construction to Kawamata log terminal pairs
(X,D), i.e., pairs such that KX + D is Q-Cartier and all ai > 0 in the expres-
sion KY = h∗(KX + D) +

∑
i∈T(ai − 1)Ei . On the Euler characteristic level this

invariant is given by the formula

e
(

(X,D)
)
=
∑
I⊂T

χ(E◦I )
∏
i∈I

1

ai
.

In [B3] these invariants are used to prove a version of Reid’s McKay correspon-
dence conjecture.

We should mention that Batyrev is naturally restricted to the log terminality con-
ditions above (all νi > 0 and all ai > 0, respectively) by applying motivic integration
techniques to show that the formulas above are independent of the chosen resolution;
see [B2, Theorem 6.28].

We also want to remark that E(D) is generalized in [DL3] in a different way
(see 3.5).

0.5

In this paper we extend the invariants above beyond the log terminal case to the
following general situation. Now let X be any normal Q-Gorenstein variety and D
an effective Q-Cartier divisor with Xsing ⊂ supp D. We associate first to these data
zeta functions Z(D, s), Z(D, s) and z(D, s) on ‘motivic’ level, Hodge polynomial level
and Euler characteristic level, respectively, such that the same formulas as in (0.2)
and (0.3) are valid. Then we define ‘Kontsevich’ invariants E(D), E(D) and e(D) on
the analogous levels by taking the limit for s → 1 in the associated zeta functions
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(admitting the value∞). In particular when all νi + Ni 
= 0 the formulas in (0.2) and
(0.3) are again valid.

Furthermore taking the limit for s→ −1 in the zeta functions we obtain invariants
E
(

(X,D)
)

, E
(

(X,D)
)

and e
(

(X,D)
)

of the pair (X,D) on the same levels, the last
one given by the same formula as in (0.4).

In fact we can relax our condition Xsing ⊂ supp D to LCS(X) ⊂ supp D, where
LCS(X) is the locus of log canonical singularities of X. In particular this locus is
empty when X is log terminal; so we really generalize the invariants of [B2].

0.6

In Section 1 we recall the motivic zeta function of Denef and Loeser and the invariant
of Kontsevich on smooth varieties X, generalizing the first one to effective divisors
instead of regular functions. As an introduction to singular varieties we treat the easy
case of a canonical X in Section 2; there we also consider an application to minimal
models. For Q-Gorenstein varieties X the zeta functions Z(D, s) and z(D, s) on the
level of Hodge polynomials and Euler characteristics, respectively, are constructed
in an elementary way in Section 3. We provide some examples in Section 4. The
‘motivic’ version requires more work. In Section 5 we first introduce a motivic zeta
function Z(D, J, s) on a smooth X, associated to both an effective divisor D and an
invertible subsheaf J of the sheaf of regular differential forms on X. (This can be
compared with associating a p-adic Igusa zeta function to both a polynomial and a
differential form.) Then we use this object to define the motivic zeta function Z(D, s)
for a Q-Gorenstein X in Section 6. We include an appendix indicating how to extend
the original Kontsevich invariant on smooth X to Q-divisors instead of (ordinary)
divisors, needing a finite extension of M̂.

Remark 0.7 After this work was finished we learned about the proofs of Włodarczyk
[Wł] and of Abramovich et al. [AKMW] of the weak factorization conjecture for
birational maps. Using weak factorization we can give another proof that the zeta
functions in this paper are well defined.

1 Smooth Varieties

1.1

Let k be a field of characteristic zero; the varieties and morphisms we will consider
are assumed to be defined over k. (A variety is a reduced separated scheme of finite
type over k, not necessarily irreducible.)

We fix some terminology concerning resolution. A resolution of an irreducible va-
riety X is a proper birational morphism h : Y → X from a smooth variety Y , which is
an isomorphism outside the set Xsing of singular points of X. A log resolution or em-
bedded resolution of an irreducible variety X is a resolution h : Y → X of X for which
h−1(Xsing ) is a divisor with strict normal crossings, i.e., with smooth irreducible com-
ponents intersecting transversely. A log resolution or embedded resolution of a reduced
Weil divisor D on a normal variety X is a proper birational morphism h : Y → X from
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a smooth Y , which is an isomorphism outside Xsing ∪D, and such that h−1(Xsing ∪D)
is a divisor with strict normal crossings.

We denote by M the Grothendieck ring of (algebraic) varieties over k. This is the
free abelian group generated by the symbols [V ], where [V ] is a variety, subject to
the relations [V ] = [V ′] if V ∼= V ′ and [V ] = [V \V ′]+[V ′] if V ′ is closed in V . Its
ring structure is given by [V ]·[V ′] := [V×V ′]. We abbreviate L := [A1] and denote
by ML =M[L−1] the localization of M w.r.t. the multiplicative set {Ln, n ∈ N}.

1.2

For [V ] ∈ M we denote by H(V ) ∈ Z[u, v] its Hodge polynomial and by χ(V ) its
Euler characteristic. We briefly explain these notions.

Let first k = C. Then for a variety V we denote by hp,q
(

Hi
c(V,C)

)
the rank of

the (p, q)-Hodge component of its i-th cohomology group with compact support
and we set ep,q(V ) :=

∑
i≥0(−1)ihp,q

(
Hi

c(V,C)
)

. The Hodge polynomial of V is
H(V ) = H(V ; u, v) :=

∑
p,q ep,q(V )upvq ∈ Z[u, v].

Precisely by the defining relations of M there is a well defined ring morphism
H : M→ Z[u, v] determined by [V ] �→ H(V ).

We denote by χ(V ) the topological Euler characteristic of V , i.e., the alternat-
ing sum of the ranks of its Betti or de Rham cohomology groups. Clearly χ(V ) =
H(V ; 1, 1) and we also obtain a ring morphism χ : M → Z determined by [V ] →
χ(V ).

For arbitrary k (of characteristic zero) we choose an embedding of the field of
definition of the variety V into C. Then we can define the same morphisms H and χ
on M starting from the ep,q(V ); they are independent of the chosen embedding since
for a smooth projective V we have that ep,q(V ) = (−1)p+q dimk Hq(V,Ωp

V ).

1.3

Till the end of this section we let X be a smooth irreducible variety of dimension d
and W a subvariety of X.

In [DL2] Denef and Loeser associate to W ⊂ X and a morphism f : X → A1 an
invariant named motivic Igusa zeta function. We recall here briefly its definition but
generalize immediately to effective divisors D (instead of functions f ). We refer to
[DL2] for more details and motivation, and for the relation with the usual p-adic
Igusa zeta function.

We denote by L(X) the scheme of germs of arcs on X. It is a scheme over k whose
k-rational points are the morphisms Spec k[[t]]→ X (called the germs of arcs on X).
In fact L(X) is defined as the projective limit lim←−Ln(X) of the schemes of truncated
arcs Ln(X), whose k-rational points are the morphisms Spec(k[t]/tn+1k[t]) → X
(see [DL2] and [BLR, p. 276]). There are canonical morphisms πn : L(X)→ Ln(X),
induced by truncation. Remark also that L0(X) = X.

Now let D be an effective divisor on X. For n ∈ N we define Yn,D,W as the sub-
scheme of L(X) whose K-rational points, for any field K ⊃ k, are the morphisms
ϕ : Spec K[[t]]→ X satisfying the following conditions:
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(i) ϕ sends the closed point of Spec K[[t]] to a point P in W ;
(ii) if f is a local equation of D at P, then the power series in t given by f ◦ ϕ must

be exactly of order n. (This is clearly independent of the choice of f .)

We then denote by Xn,D,W the image of Yn,D,W in Ln(X), viewed as a reduced
subscheme of Ln(X). The motivic zeta function of D (and W ⊂ X) is

ZW (D, s) = ZW (X,D, s) :=
∑
n∈N

[Xn,D,W ]L−(n+1)d−ns ∈ML[[L−s]].

Here L−s is just a variable and in the power series ring ML[[L−s]] we abbreviate
La · (L−s)b by La−sb for a ∈ Z and b ∈ N. (When D is given by a global function f on
X Denef and Loeser denoted this invariant by

∫ ∼
W f s in [DL2].)

One can think here mainly about W as being X itself, the divisor { f = 0}, or a
point of { f = 0}. This W -formalism enables us to treat these cases together, and the
greater generality is also useful.

1.3.1

We briefly compare this with the classical p-adic situation. Let f ∈ Qp[x] =
Qp[x1, . . . , xd] and denote by |z| = p− ord p z the p-adic absolute value of z ∈ Qp.
Igusa’s local zeta function of f is

Zp( f , s) :=

∫
Zd

p

| f (x)|s |dx|

for s ∈ C with �(s) > 0, where |dx| denotes the Haar measure on Qd
p such that Zd

p

has measure 1. When f ∈ Zp[x] it is not difficult to verify that

Zp( f , s) =
∑
n∈N

card(Xn, f )p−(n+1)d−ns,

where Xn, f is the image in (Zp/pn+1Zp)d of Yn, f = {x ∈ Zd
p | ord p f (x) = n}. See

[D2] for an introduction and an overview on Igusa’s local zeta function.

1.4

There is an important formula for ZW (D, s) in terms of a log resolution of supp D.
In particular it implies the rationality result that ZW (D, s) belongs in fact already to
a certain localization of the polynomial ring ML[L−s].

Let h : Y → X be a log resolution of supp D. We denote by Ei , i ∈ T, the ir-
reducible components of h−1(supp D) and by Ni and νi − 1 the multiplicities of
Ei in h∗D and the divisor of h∗dx, respectively, where dx is a local generator of the
sheaf Ωd

X of regular differential d-forms. We partition Y into the locally closed strata
E◦I := (

⋂
i∈I Ei) \ (

⋃
� /∈I E�) for I ⊂ T. (Here E◦φ = Y \

⋃
�∈T E�.)

Theorem We have the formula

ZW (D, s) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +sNi − 1
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(where 1
Lνi +sNi−1 := L−νi−sNi

1−L−νi−sNi
). So ZW (D, s) belongs already to the localization

ML[L−s](1−L−n−Ns)n,N∈N\{0}
of the polynomial ring ML[L−s].

1.4.1

One should compare this formula with the classical formula of Denef [D1, Theo-
rems 2.4 and 3.1] for Igusa’s local zeta function Zp( f , s) of f ∈ Q[x1, . . . , xd] in
terms of a resolution h : Y → Ad of { f = 0}. Using the notation above we have for
all but finitely many p that

Zp( f , s) = p−d
∑
I⊂T

#(E◦I )Fp

∏
i∈I

p − 1

pνi +sNi − 1
,

where #(·)Fp denotes the number of Fp-rational points of the reduction mod p. See
[D1], [D2] for more details.

1.5

Here we generalize ZW (D, s) to effective Q-divisors on X. Now let D be an effective
Q-divisor on X and say that rD is a divisor for r ∈ N \ {0}. We define ZW (D, s) :=
ZW (rD, s/r), meaning by this the motivic zeta function of 1.3 for the divisor rD,
where the variable L−s is replaced by a variable (L−s)1/r . This definition is easily
checked to be independent of the chosen r, using Theorem 1.4.

Moreover Theorem 1.4 is still valid in this context. The only difference is that the
Ni , i ∈ T, are now rational numbers (of the form a/r with a ∈ N \ {0}), and one

should consider L−sNi as an abbreviation of
(

(L−s)1/r
) rNi

.

1.6

One can specialize the motivic zeta functions ZW (D, s) to more ‘concrete’ invariants
on the level of Hodge polynomials and on the level of Euler characteristics.

(i) Let D be an effective divisor on X. Since the Hodge polynomial H(A1) = uv the
morphism H : M → Z[u, v] extends naturally to a ring morphism H : ML →
Z[u, v]uv = Z[u, v][(uv)−1] (and further to a morphism on power series rings
over these rings). We define

ZW (D, s) = ZW (X,D, s) := H
(
ZW (D, s)

)
=
∑
n∈N

H(Xn,D,W )(uv)−(n+1)d−ns,

where now we denote the variable of the power series ring over Z[u, v]uv by
(uv)−s. Using the notation of 1.4 we have the formula

ZW (D, s) = (uv)−d
∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)νi +sNi − 1

∈ Z[u, v]uv[(uv)−s](1−(uv)−n−Ns)n,N∈N\{0}
⊂ Q(u, v)

(
(uv)−s

)
.
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(ii) To specialize further to the level of Euler characteristics one takes heuristically
the limit of the expression above for u, v → 1. We briefly explain the exact
argument; see [DL2, (2.3)] for the argument starting from ZW (D, s). Let R
denote the subring of Z[u, v]uv[[(uv)−s]] generated by Z[u, v]uv[(uv)−s] and the
elements uv−1

1−(uv)−n−Ns , where n,N ∈ N\{0}. (ZW (D, s) lives in R.) By expanding

(uv)−s and uv−1
1−(uv)−n−Ns formally into series in uv−1, one constructs a canonical

algebra morphism

R→ Z[u, v]uv[s][(n + sN)−1]n,N∈N\{0}[[uv − 1]],

where [[uv − 1]] denotes completion with respect to the ideal (uv − 1). Com-
posing this morphism with the quotient map given by dividing out (uv − 1) in
this last algebra yields a morphism

ϕ : R→
Z[u, v]uv

(uv − 1)
[s][(n + sN)−1]n,N∈N\{0}.

In this last ring the evaluation u = v = 1 is well defined; we put

zW (D, s) = zW (X,D, s) := lim
u,v→1

ϕ
(

ZW (D, s)
)

=
∑
I⊂T

χ(E◦I ∩ h−1W )
∏
i∈I

1

νi + sNi
∈ Q(s).

When X = An and D is given by a polynomial f these invariants are just the
topological zeta functions Ztop( f , s) and Ztop,0( f , s) of [DL1] if we take W = X
and W = {0}, respectively.

(iii) As in 1.5 we can consider ZW (D, s) and zW (D, s) also for Q-divisors D.

1.7

Now we recall the original motivic integral, introduced by Kontsevich in [Kon], using
the notation of 1.3. We refer to [DL3] for a detailed exposition in a much more
general setting; see also the appendix. A nice introduction is [C].

We say that dim M ≤ n for M ∈ M if M can be expressed as a Z-linear com-
bination of classes of algebraic varieties of dimension at most n. We consider the
decreasing filtration (Fm)m∈Z on ML, where Fm is the subgroup of ML generated by
{[V ]L−i | dim V−i ≤ −m}, and we denote by M̂ the completion of ML with respect
to this filtration.

Let again D be an effective divisor on X. We set

EW (D) = EW (X,D) :=
∑
n∈N

[Xn,D,W ]

L(n+1)d
L−n ∈ M̂;

this expression converges in M̂ since dim[Xn,D,W ] ≤ (n + 1)d. This invariant was de-
noted as [

∫
X eD] by Kontsevich (for W = X) and as

∫
π−1

0 W L− ordt O(−D) dµ in [DL3].

In this last paper Denef and Loeser develop an integration theory for semi-algebraic
subsets of L(X) with values in M̂ such that [Xn,D,W ]/L(n+1)d is just the volume of
Yn,D,W . See also Section 5 and the appendix.
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Remark 1.8 As far as we know it is not clear whether or not the natural morphism
ML → M̂ is injective; its kernel is

⋂
m∈Z Fm. However for an algebraic variety V we

have that H(V ) and χ(V ) only depend on the image of [V ] in M̂, see 1.12.

Theorem 1.9 ([Kon], [DL3, (6.5)]) Using the notation of 1.4 we have the following
formula for EW (D) in terms of a log resolution h : Y → X of supp D:

EW (D) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +Ni − 1
in M̂.

In particular EW (D) belongs to the image of ML[(Ln − 1)−1]n∈N\{0} in M̂.

So by Theorem 1.4 we obtain that EW (D) = ZW (D)|s=1 in M̂, where the evalua-
tion ‘s = 1’ means substituting L−1 for the variable L−s.

1.10

The following important change of variables formula is a special case of [DL3,
Lemma 3.3], and was also mentioned in [Kon].

Theorem Let also X ′ be a smooth irreducible variety and ρ : X ′ → X a proper bira-
tional morphism. Let D be an effective divisor on X. Then

EW (X,D) = Eρ−1W (X ′, ρ∗D + KX ′|X)

where KX ′|X = KX ′ − ρ∗KX is the relative canonical divisor or discrepancy divisor.

1.11

It is possible to generalize the set-up in 1.7–1.10 to effective Q-divisors. We treat this
in the appendix. In particular we obtain for an effective Q-divisor D on X, such that
rD is a divisor for an r ∈ N \ {0}, an analogous invariant EW (D) ∈ M̂[L1/r]. It
is given in terms of a log resolution h : Y → X (as in 1.4) by the same formula as
in 1.9, where now the Ni belong to 1

r (N \ {0}). So EW (D) belongs to the image of

M[L−1/r][(Ln/r − 1)−1]n∈N\{0} in M̂[L1/r].
When supp D has strict normal crossings we extend in the appendix the notion of

EW (D) further to the case that all coefficients of D are > −1. Remark that then in
Theorem 1.9 (with h = IdX) all νi = 1, and our condition on the coefficients of D is
thus precisely that all νi + Ni > 0.

1.12

One can also specialize the invariant EW (D) to the level of Hodge polynomials and
Euler characteristics. We only consider expressions in terms of log resolutions (using
the notation of 1.4).
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The morphism H : M → Z[u, v] extends canonically to a morphism H :

ML[(Ln − 1)−1]n∈N\{0} → Z[uv]uv

[(
(uv)n − 1

)−1]
n∈N\{0}

⊂ Q(u, v). Since the

kernel of the natural map ML → M̂ is killed by H we can in fact consider H as a
morphism from the image of ML[(Ln − 1)−1]n∈N\{0} in M̂ into Q(u, v).

We define for an effective divisor D on X the invariants

EW (D) = EW (X,D) := H
(
EW (D)

)
= (uv)−d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)νi +Ni − 1
∈ Q(u, v)

and

eW (D) = eW (X,D) := lim
u,v→1

EW (X,D) =
∑
I⊂T

χ(E◦I ∩ h−1W )
∏
i∈I

1

νi + Ni
∈ Q.

The extended notions of EW (D) for Q-divisors of 1.11 can analogously be spe-
cialized. We obtain the same expressions where now the Ni are rational; then EW (D)
is a rational function in u, v with ‘fractional powers’. For W = X this was already
considered by Batyrev [B3].

2 Immediate Generalizations and Applications

2.1

We recall some terminology with origins in the Minimal Model Program. See for
example [KM], [KMM], [Kol].

On any normal variety V there is a well-defined linear equivalence class of canoni-
cal Weil divisors, denoted by KV . An arbitrary Weil divisor D on V is called Q-Cartier
if rD is Cartier for some r ∈ N \ {0}. A normal variety V is called (Q-)Gorenstein if
KV is (Q-)Cartier.

Let X be a normal variety and D a Q-divisor on X such that KX + D is Q-Cartier.
(In particular we can have D = 0 and then X is Q-Gorenstein.) Let ρ : Y → X be
a log resolution of supp D and denote by Ei , i ∈ T, the irreducible components of
h−1(Xsing ∪ supp D). Then we can write

KY = ρ
∗(KX + D) +

∑
i∈T

(ai − 1)Ei

in Pic Y⊗Q and ai = ai(X,D; Ei) is called the log discrepancy (with respect to the pair
(X,D)) of Ei for i ∈ T. This number ai does not depend on the chosen resolution
(it is determined by the valuation on k(X) associated to Ei). Remark that when X is
smooth and D = 0 the numbers νi defined in 1.4 are just log discrepancies.

(i) First let D = 0. The variety X is called terminal, canonical, log terminal and
log canonical if for some (or, equivalently, any) log resolution of X we have that
ai > 1, ai ≥ 1, ai > 0 and ai ≥ 0, respectively, for all i ∈ T.
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(ii) When D 
= 0 the pair (X,D) is said to be Kawamata log terminal (shortly klt) if
for some (or any) log resolution of supp D we have that ai > 0 for all i ∈ T. In
particular this implies that, if D =

∑
i diDi with the Di irreducible, all di < 1.

(See [Kol], [S] for a discussion of other log terminality notions for pairs.)
(iii) A closed subvariety C ⊂ X is called a log canonical centre of X if for some log

resolution ρ : Y → X there exists i ∈ T such that ρ(Ei) = C and ai ≤ 0. The
locus of log canonical singularities of X, denoted by LCS(X), is the union of all
log canonical centres of X. In particular LCS(X) = ∅ ⇔ X is log terminal.
(Hence a more appropriate notation for this locus, proposed by Kollár, would
be Nlt(X), indicating the locus where X is not log terminal.)

2.2

A natural idea, inspired by Theorem 1.10, to generalize the invariant EW (X,D) to a
(Q-)divisor D on a singular variety X is as follows. Take a resolution h : Y → X of
X and define EW (X,D) as Eh−1W (Y, h∗D + KY |X), whenever this makes sense, and
verify independency of the chosen resolution. So we want X to be Q-Gorenstein and
h∗D + KY |X to be effective, or at least that its coefficients are > −1 if its support has
normal crossings.

Below we treat the ‘instructional’ case that X is (Q-)Gorenstein and canonical and
D is an effective (Q-)Cartier divisor.

2.3 Definition-Proposition

(i) Let X be a Gorenstein and canonical variety and W a subvariety of X; let D be an
effective Cartier divisor on X. Take a resolution h : Y → X of X. Then we define

EW (X,D) := Eh−1W (Y, h∗D + KY |X) ∈ M̂.

(ii) More generally let X be Q-Gorenstein and canonical and W a subvariety of X;
let D be an effective Q-Cartier divisor on X. Say rKX and rD are Cartier for an
r ∈ N \ {0}. Take a resolution h : Y → X of X. Then we define EW (X,D) ∈
M̂[L1/r] as above.

Proof (i) The divisor h∗D + KY |X is effective since KY |X is effective, which is equiva-
lent to X being canonical. Let now h ′ : Y ′ → X be another log resolution of X. Since
two such resolutions are always dominated by a third it is sufficient to consider the

case that h ′ factors through h as h ′ : Y ′
π
−→ Y

h
−→ X. Then by Theorem 1.10 we

have

Eh−1W (Y, h∗D + KY |X) = Eπ−1h−1W

(
Y ′, π∗(h∗D + KY |X) + KY ′|Y

)
= Eh ′−1W (Y ′, h ′∗D + KY ′|X).

(ii) Completely analogous, using the extended theory for Q-divisors mentioned
in 1.11.
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When h : Y → X is a log resolution of supp D we have the same formula as
in Theorem 1.9, where the νi must be generalized according to their meaning as
log discrepancies. More precisely, denoting the irreducible components of
h−1(Xsing ∪ supp D) by Ei , i ∈ T, we set h∗D =

∑
i∈T NiEi and KY = h∗KX +∑

i∈T(νi − 1)Ei . Then h∗D + KY |X =
∑

i∈T(νi + Ni − 1)Ei and so

EW (X,D) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +Ni − 1
,

where d is the dimension of X.

2.4

With essentially the same arguments, but needing more material from the appendix,
we could introduce EW (X,D) for a Q-Gorenstein variety X and a Q-Cartier divisor
D on X such that the pair (X,−D) is klt. (Check that this is more general than the
case in 2.3!) On the level of Hodge polynomials this would be possible using [B2,
Theorems 6.27 and 6.28]. We do not pursue this here; our invariants EW (X,D) in
Section 3 and EW (X,D) in Section 6 cover this case anyhow.

2.5

In the rest of this section we present an application on minimal models, taking k = C.
Recall that an irreducible projective variety V is called a minimal model if V is

terminal and KV is numerically effective (shortly nef ), i.e., the intersection number
KV ·C ≥ 0 for any irreducible curve C on V . The Minimal Model Program predicts
the existence of a minimal model in every birational equivalence class C of nonnega-
tive Kodaira dimension; furthermore one should be able to transform every smooth
irreducible projective variety in C by a finite number of divisorial contractions and
flips to a minimal model.

In dimension 2 it is well known that each such class has a unique minimal model,
which is moreover smooth (then divisorial contractions are just blowing-downs and
flips do not occur). In dimension 3 the existence and desired property of minimal
models were proved by Mori; here it is crucial to allow terminal singularities, and
minimal models are not unique in a given birational equivalence class of nonnegative
Kodaira dimension. In dimension ≥ 4 the Minimal Model Program is still a major
conjecture in algebraic geometry and is becoming a working hypothesis.

It is natural and important in this context to look for invariants which are shared
by birationally equivalent minimal models. In [Wa] Wang proved that birationally
equivalent smooth minimal models have the same Betti numbers, using the following
result [Wa, Corollary 1.10].

Proposition 2.6 Let f : V ��� V ′ be a birational map between two minimal models.
Then there exist a smooth projective variety Y and birational morphisms ϕ : Y → V ,
ϕ ′ : Y → V ′ such that ϕ∗KV = ϕ

′∗KV ′ .
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(In fact Wang only needs V and V ′ to be terminal varieties for which KV and KV ′

are nef along the exceptional loci of f in V and V ′, respectively, to conclude.) This
result has more interesting consequences.

Theorem 2.7 Let V and V ′ be birationally equivalent minimal models. Then

(i) EV (V, 0) = EV ′(V ′, 0), and
(ii) if V and V ′ are smooth, then [V ] = [V ′] in M̂.

Proof (i) Take V
ϕ
←− Y

ϕ ′

−→ V ′ as in Proposition 2.6. Then by Theorem 1.10 (and
its generalization in 1.11) we have

EV (V, 0) = EY (Y,KY − ϕ
∗KV ) = EY (Y,KY − ϕ

′∗KV ′) = EV ′(V
′, 0).

(ii) For any smooth variety X we have that EX(X, 0) = [X].

As a corollary birationally equivalent smooth minimal models have the same
Hodge numbers and a fortiori the same Betti numbers. In particular this is true for
smooth Calabi-Yau varieties. See also [B1, Theorems 1.1 and 4.2].

2.8

Assuming the Minimal Model Program in some dimension d we can use Theorem 2.7
to define a birational invariant. For any birational equivalence class C of nonnegative
Kodaira dimension the expression E := EX(X, 0) is independent of a chosen minimal
model X. Looking at 2.3 it is given by the following formula in terms of any log
resolution h : Y → X of any minimal model X of C. Denote by Ei , i ∈ T, the
irreducible components of h−1(Xsing ) and set KY = h∗KX +

∑
i∈T(νi − 1)Ei . Then

E = L−d
∑
I⊂T

[E◦I ]
∏
i∈I

L− 1

Lνi − 1

in some integral extension of M̂. Using weak factorization (see Remark 0.7), we can
consider E more precisely in a suitable localization of an integral extension of M.

One could extract ‘minimal stringy Hodge numbers’ from (the Hodge polynomial
version of) this invariant, see [B2]; and maybe it is related to a ‘minimal cohomology
theory’ as explained in [Wa].

3 Singular Varieties; On the Level of Hodge Polynomials and Euler
Characteristics

3.1

Our aim in this paper is to associate zeta functions and ‘Kontsevich’ invariants to ef-
fective Q-Cartier divisors D on arbitrary Q-Gorenstein varieties X for which Xsing ⊂
supp D, generalizing the notions in Section 1. In this section we realize this on the
level of Hodge polynomials and Euler characteristics in a fairly elementary way. The
more general case on the level of the Grothendieck ring will be treated in Section 5.
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3.2

We fix notation for this section. Let X be a Q-Gorenstein variety and D an effective
Q-Cartier divisor on X. (When dim X = 2 we only need that X is normal and
D can be any effective Weil divisor with rational coefficients, see [V3].) For a log
resolution h : Y → X of supp D we denote by Ei , i ∈ T, the irreducible components
of h−1(Xsing ∪ supp D) and we put E◦I := (

⋂
i∈I Ei) \ (

⋃
� /∈I E�) for I ⊂ T. We also

set h∗D =
∑

i∈T NiEi and KY = h∗KX +
∑

i∈T(νi − 1)Ei . Remember that now the
νi ∈ Q and they can be negative or zero.

In the sequel we will again consider arbitrary subvarieties W of X. One can think
mainly about W being for example X, supp D, Xsing or a point of Xsing .

3.3 Definition-Proposition

Let X be a Q-Gorenstein variety of dimension d and W a subvariety of X. Let D be
an effective Q-Cartier divisor on X such that Xsing ⊂ supp D. Take r ∈ N \ {0} with
rKX and rD Cartier.

(i) The zeta function ZW (D, s) = ZW (X,D, s) is the unique rational function in the
variable (uv)−s/r and with coefficients in (the fraction field of) Z[u, v][(uv)1/r]
such that for n� 0

ZW (D, n) = Eh−1W (Y, nh∗D + KY |X),

where h : Y → X is a resolution of X.
(ii) Let h : Y → X be a log resolution of supp D. With the notation of 3.2 we have

that

ZW (D, s) =
1

(uv)d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)νi +sNi − 1
.

Proof Let hi : Yi → X be resolutions of X for i = 1, 2. We first show that the defining
expressions for ZW (D, n) using Y1 and Y2 are equal when n � 0. Take n such that
nh∗i D + KYi |X is effective for i = 1, 2 (here we need that Xsing ⊂ supp D), and take a
resolution h : Y → X of X dominating both Y1 and Y2.

↘

↙↘

↙ 
ϕ1 ϕ2

h

h2h1

Y1

Y

Y2

X

Then by Theorem 1.10 (for Q-divisors and on the level of Hodge polynomials) we
have for i = 1, 2 that

Eh−1
i W (Yi , nh∗i D + KYi |X) = Eϕ−1

i h−1
i W

(
Y, ϕ∗i (nh∗i D + KYi |X) + KY |Yi

)
= Eh−1W (Y, nh∗D + KY |X).
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Choosing now h : Y → X as a log resolution for supp D we have that

Eh−1W (Y, nh∗D + KY |X) =
1

(uv)d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)νi +nNi − 1
.

Hence for n � 0 the stated rational function in (ii) indeed yields Eh−1W (Y, nh∗D +
KY |X) when evaluating in s = n (i.e., in (uv)−s/r = (uv)−n/r).

Finally this rational function must be unique since a polynomial over the domain
Z[u, v][(uv)1/r] can have at most finitely many zeroes.

Definition 3.4 With the same notation as in 3.3 we define the topological zeta func-
tion of D as

zW (D, s) = zW (X,D, s) :=
∑
I⊂T

χ(E◦I ∩ h−1W )
∏
i∈I

1

νi + sNi
∈ Q(s).

We can justify this definition either by an analogous proof or by obtaining zW (D, s)
from ZW (D, s) by a limit argument as in 1.6.

3.5

In the following we extend Kontsevich’s construction EW (X,D) to Q-Gorenstein va-
rieties X. We should remark here that in [DL3] Denef and Loeser also generalized in
a different way EW (X,D) to (arbitrary) singular varieties X. We consider their point
of view as more ‘integrational’ and ours as more ‘geometrical’. Our idea is simply to
substitute s = 1 in ZW (D, s) when this makes sense or, more generally, to take the
limit for s→ 1.

Definition 3.6 Let X be a Q-Gorenstein variety and W a subvariety of X. Let D be
an effective Q-Cartier divisor on X such that Xsing ⊂ supp D. Take r ∈ N \ {0} with
rKX and rD Cartier. Then we put

EW (D) = EW (X,D) := lim
s→1

ZW (X,D, s) ∈ Q(u1/r, v1/r) ∪ {∞}.

Remarks (1) By lims→1 we mean taking the limit (uv)−s/r → (uv)−1/r . This is well
defined since ZW (D, s) is a rational function in the variable (uv)−s/r over a field.

(2) If there exists a log resolution h : Y → X of supp D for which νi +Ni 
= 0 for all
i ∈ T, then, because of the formula in 3.3 (ii), we obtain EW (D) from ZW (D, s) simply
by substituting (uv)−1/r for (uv)−s/r . (We formulate this below as Proposition 3.7.)
If on the other hand there does not exist such a log resolution, then in general we
will have EW (D) = ∞. However there are cases where our definition then yields an
element in Q(u1/r, v1/r), see Example 4.1.
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Proposition 3.7 Let W ⊂ X and D be as in 3.6. Let h : Y → X be a log resolution of
supp D for which νi + Ni 
= 0 for all i ∈ T (using the notation of 3.2). Then

EW (D) =
1

(uv)d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)νi +Ni − 1
.

So indeed we extended Kontsevich’s invariant for smooth X on the level of Hodge
polynomials (1.12).

3.8 Definition-Proposition

Let W ⊂ X and D be as in 3.6. We define

eW (D) = eW (X,D) := lim
s→1

zW (X,D, s) ∈ Q ∪ {∞}.

Let h : Y → X be a log resolution of supp D for which νi + Ni 
= 0 for all i ∈ T. Then

eW (D) =
∑
I⊂T

χ(E◦I ∩ h−1W )
∏
i∈I

1

νi + Ni
.

3.9

Next we introduce analogous invariants for pairs (X,D), which will coincide with
Batyrev’s stringy E-function and stringy Euler number for klt pairs [B3].

3.10 Definition-Proposition

Let X be a Q-Gorenstein variety and W a subvariety of X. Let D be an effective Q-
Cartier divisor on X such that Xsing ⊂ supp D. Take r ∈ N \ {0} with rKX and rD
Cartier.

(i) We put

EW

(
(X,D)

)
:= lim

s→−1
ZW (X,D, s) ∈ Q(u1/r, v1/r) ∪ {∞}.

(ii) Let h : Y → X be a log resolution of supp D. Using the notation of 3.2, let ai ,
i ∈ T, denote the log discrepancy of Ei with respect to the pair (X,D). Then, if
ai 
= 0 for all i ∈ T, we have

EW

(
(X,D)

)
=

1

(uv)d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈I

uv − 1

(uv)ai − 1
.

Remark By lims→−1 we mean taking the limit (uv)−s/r → (uv)1/r .

Proof If νi − Ni 
= 0 for all i ∈ T, then, because of the formula for ZW (X,D, s) in
3.3 (ii) this limit procedure just means substituting (uv)1/r for the variable (uv)−s/r .
Clearly we obtain the stated formula for EW

(
(X,D)

)
since ai = νi − Ni for i ∈ T.
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3.11

When the pair (X,D) is klt and for W = X Batyrev introduced in [B3] the same
invariant as the stringy E-function of (X,D), denoted by Est (X,D). (We do not re-
cover his invariant completely as a special case of EW

(
(X,D)

)
because Batyrev only

requires KX + D to be Q-Cartier.) Analogously the invariant eX

(
(X,D)

)
below was

baptized stringy Euler number by Batyrev and denoted by est (X,D).

3.12 Definition-Proposition

Let W ⊂ X and D be as in 3.10. We define

eW

(
(X,D)

)
:= lim

s→−1
zW (X,D, s) ∈ Q ∪ {∞}.

Let h : Y → X be a log resolution of supp D for which νi−Ni 
= 0 for all i ∈ T. Then,
denoting by ai the log discrepancy of Ei with respect to the pair (X,D), we have

eW

(
(X,D)

)
=
∑
I⊂T

χ(E◦I ∩ h−1W )
∏
i∈I

1

ai
.

3.13

In Definition-Proposition 3.3, and hence in all subsequent constructions, we required
the effective divisor D to satisfy Xsing ⊂ supp D. We needed this to assure that for a
resolution h : Y → X the divisor nh∗D+KY |X would be effective for n� 0. However,
using A5 in the appendix, it is in fact sufficient to require that supp D contains the
locus of log canonical singularities LCS(X) of X.

3.14 Definition-Theorem

Let X be a Q-Gorenstein variety of dimension d and W a subvariety of X. Let D be
an effective Q-Cartier divisor on X such that LCS(X) ⊂ supp D. Take r ∈ N \ {0}
with rKX and rD Cartier.

(i) The zeta function ZW (D, s) = ZW (X,D, s) is the unique rational function in the
variable (uv)−s/r and with coefficients in (the fraction field of) Z[u, v][(uv)1/r]
such that for n� 0

ZW (D, n) = Eh−1W (Y, nh∗D + KY |X),

where h : Y → X is a log resolution for supp D.
(ii) With the notation of 3.2 for h we have that

ZW (D, s) =
1

(uv)d

∑
I⊂T

H(E◦I ∩ h−1W )
∏
i∈T

uv − 1

(uv)νi +sNi − 1
.
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Proof We proceed analogously as in the proof of 3.3, but now working only with log
resolutions h : Y → X of supp D. Then for n� 0 the coefficients di = nNi +νi−1 of
nh∗D + KY |X all satisfy di > −1. Indeed any exceptional component Ei of h for which
νi ≤ 0 satisfies h(Ei) ⊂ LCS(X) ⊂ supp D, and hence Ni > 0 for such an Ei . So in
this case the invariant Eh−1W (Y, nh∗D + KY |X) is well defined by A5 and Theorem A6.

Remark In the formula above the ‘denominators’ νi + sNi are thus always nonzero
since either νi > 0 or Ni > 0.

3.15

We can also extend all invariants which we considered in 3.4–3.12, i.e., zW (D, s),
EW (D), eW (D), EW

(
(X,D)

)
and eW

(
(X,D)

)
, to the case that only LCS(X) ⊂

supp D.
In particular when X is log terminal and D = 0, then our invariants EX(0) and

eX(0) are precisely the stringy E-function Est (X; u, v) and stringy Euler number est (X)
of Batyrev [B2].

4 Examples

In this section we present a number of examples, first in dimension two and then
in higher dimension, for which we compute the invariants introduced above. Recall
(see (0.4 (a)) that in dimension two we can consider more generally Weil divisors
instead of Cartier divisors.

4.1

Let 0 ∈ X be a normal surface germ with minimal resolution h : Y → X such that
h−1{0} = E0 ∪ Eg , where E0 and Eg are nonsingular curves of genus 0 and g ≥ 2,
respectively, intersecting transversely. So h is already a log resolution of X. (This sin-
gularity is quasihomogeneous.) Let E be a nonsingular curve (germ) in Y intersecting
Eg transversely in one point and disjoint from E0. Denote D = h(E); so D is a prime
Weil divisor on X through 0 and h is also a log resolution of D. See Figure 1.

Let −κ0 and −κg denote the self-intersection number of E0 and Eg on Y , respec-
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tively; we have that κ0 ≥ 2 and κg ≥ 1. We will treat the germs 0 ∈ X for which
N := 2g − κg − 1 > 0 in order to compute z0(ND, s) and e0(ND) for the effective
Weil divisor ND on X.

We denote as usual h∗ND = NE + N0E0 + NgEg and KY = h∗KX + (ν0 − 1)E0 +
(νg−1)Eg . The following relations are well known (see for example [V3, Lemma 2.3]):{

κ0N0 = Ng

κ0ν0 = νg + 1
and

{
κgNg = N0 + N

κgνg = (ν0 − 1) + 2− 2g.

A short computation yields the expression for N0, ν0, Ng and νg in terms of our data
κ0, κg and g:{

N0 =
N

κ0κg−1 =
2g−κg−1
κ0κg−1

ν0 =
−2g+κg +1
κ0κg−1

and

{
Ng =

κ0N
κ0κg−1 =

κ0(2g−κg−1)
κ0κg−1

νg =
κ0(1−2g)+1
κ0κg−1 .

Remark that ν0 + N0 = 0 (which, as you can guess, is forced by our choice of N);
nevertheless e0(ND) will be a rational number. We have by definition that

z0(ND, s) =
1

ν0 + sN0
+

1

(ν0 + sN0)(νg + sNg)
+
−2g

νg + sNg
+

1

(νg + sNg)(1 + sN)

=
1 + (κ0 − 2g)(1 + sN)

(νg + sNg)(1 + sN)
.

The fact that ν0 + sN0 cancels in the denominator is a general fact; see [V3, 2.2].
Plugging in the expression for νg and Ng yields

z0(ND, s) =
(κ0κg − 1)[1 + (κ0 − 2g)(1 + sN)](

1− 2κ0g + κ0(1 + sN)
)

(1 + sN)
(with N = 2g − κg − 1)

and

e0(ND) = lim
s→1

z0(ND, s) =
(2g − κ0)(2g − κg)− 1

2g − κg
.

One can analogously compute Z0(ND, s) and E0(ND).

4.2

Let 0 ∈ X and h : Y → X be as above with g = 1 (instead of g ≥ 2). Now let E ′ be
a nonsingular curve germ in Y intersecting E0 transversely in one point and disjoint
from E1, and denote D ′ = h(E ′). See Figure 2.

One easily computes (see [V3, 2.5]) that

z0(ND ′, s) = −
κ0κ1 − 1

1 + sN
and thus e0(ND ′) = −

κ0κ1 − 1

1 + N
.

Now choose N = κ0 − 1. It is easy to verify that then ν1 + N1 = 0; so as in 4.1 we
could not have defined e0

(
(κ0−1)D ′

)
by the usual formula. However in this example

our definition on the level of Hodge polynomials yields E0

(
(κ0 − 1)D ′

)
=∞.
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Figure 2

4.2.1 Remark

One could argue whether in Definition-Proposition 3.8 (and analogously in 3.12) it
is more appropriate to introduce eW (D) as limu,v→1 EW (D). When EW (D) 
= ∞ this
amounts to the same, but when EW (D) = ∞ we then would miss some interesting
values of eW (D) as in 4.2 above.

4.3

Let X be the quadric hypersurface {xy − zw = 0} in A4. The origin 0 is the only
singular point of X. Blowing up 0 yields a log resolution h1 : Y1 → X of X, which is
an isomorphism outside h−1{0} and with E1 = h−1{0} ∼= ({xy− zw = 0} ⊂ P3) ∼=
P1 × P1.

(a) Consider the divisor D = E + E ′ on X, where E and E ′ are the zero sets of
the functions z − w and y on X, respectively. Remark that E is irreducible and that
E ′ consists of two irreducible components. We want to compute z0(D, s). In this
example we will use the same notation for divisors and their strict transforms by
blowing-ups.

In Figure 3 we present the intersection configuration of E1, E and E ′ on Y1. The
variety Y1 is naturally covered by 4 affine charts, each isomorphic to A3. In the ‘main
chart’ the exceptional surface E1 and the strict transforms E and E ′ are given in affine
coordinates x, z, w by

E1 : x = 0,

E : z − w = 0,

E ′ : z · w = 0

(in the other charts E and E ′ do not intersect).
We obtain a log resolution h of D by composing h1 with the blowing-up h2 : Y2 →

Y1 of the curve E ∩ E ′(∼= A1) in Y1. The exceptional variety E2 of h2 is isomorphic to
A1 × P1; the intersection configuration of E2, E1, E and E ′ is presented in Figure 4.

Denoting as usual h∗D = E + E ′ + N1E1 + N2E2 and KY = h∗KX + (ν1 − 1)E1 +
(ν2 − 1)E2, one easily verifies that (ν1,N1) = (2, 2) and (ν2,N2) = (2, 3). The
contributors to z0(D, s) are E◦1 , (E1 ∩ E2)◦, (E1 ∩ E)◦, (E1 ∩ E ′)◦, E1 ∩ E2 ∩ E and
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E1 ∩ E2 ∩ E ′. Now χ(E◦1 ) = 0 and the other Euler characteristics are obvious; then

z0(D, s) =
1

ν1 + sN1

(
−1

ν2 + sN2
+

3

1 + s
+

3

(ν2 + sN2)(1 + s)

)

=
4

(2 + 3s)(1 + s)
.

Also e0(D) = lims→1 z0(D, s) = 2
5 and e0

(
(X,D)

)
= lims→−1 z0(D, s) =∞.

(b) Now consider the Q-divisor D = NE + N ′E ′ with N > 0, N ′ > 0, N 
= 1,
N ′ 
= 1 and N + N ′ = 2. The morphism h : Y2 → X in (a) is of course still a
log resolution of D. The only difference with the data in (a) is that here h∗D =
NE + NE ′ + N1E1 + N2E2 with N1 = N + N ′ = 2 and N2 = N + 2N ′ = 2 + N ′. So

z0(D, s) =
1

ν1 + sN1

( −1

ν2 + sN2
+

1

1 + sN
+

2

1 + sN ′
+

1

(ν2 + sN2)(1 + sN)

+
2

(ν2 + sN2)(1 + sN ′)

)

=
1

2 + 2s
·

8 + 16s + 8s2(
2 + s(2 + N ′)

)
(1 + sN)(1 + sN ′)

=
4(1 + s)(

2 + s(2 + N ′)
)

(1 + sN)(1 + sN ′)
.

And then e0(D, s) = 8
(4+N ′)(1+N)(1+N ′) and e0

(
(X,D)

)
= 0.

4.4

Fix d ∈ N, d ≥ 3. Take a homogeneous polynomial F in d + 1 variables of degree
a ≥ 2 such that {F = 0} ⊂ Pd is nonsingular.

Let X be the hypersurface in Ad+1 given by the zero set of F; so X is the affine
cone over {F = 0} ⊂ Pd and the origin is the only singular point of X. Let D
be the intersection of X with a general hyperplane through the origin in Ad+1. The
blowing-up h : Y → X of the origin yields a log resolution of X, which is moreover
a log resolution of D. We denote the strict transform of D by E, and the exceptional
variety of h by E1. Notice that E1 is isomorphic to {F = 0} ⊂ Pd. We try to give an
impression of this situation in Figure 5.

As usual we denote KY = h∗KX +(ν1−1)E1 and h∗(ND) = NE+N1E1 for N ∈ Q ,
N > 0. One can verify that ν1 = d + 1− a and N1 = N .

To compute zX(ND, s) we need the Euler characteristics of the varieties Y ◦, E◦, E◦1
and E ∩ E1 (which stratify Y ). Since X and D are affine cones we have that

χ(E◦) = χ(D \ {0}) = 0 and χ(Y ◦) = χ(X \ D) = 0.

Now E1 is a nonsingular hypersurface of degree a in Pd, yielding

χ(E1) = (1− a)

(
(1− a)d − 1

a

)
+ d
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Figure 5

(see for example [Hirz]). And because D was chosen to be general we have moreover
that E ∩ E1 is a nonsingular hypersurface of degree a in Pd−1; so

χ(E ∩ E1) = (1− a)

(
(1− a)d−1 − 1

a

)
+ d − 1.

Then finally χ(E◦1 ) = χ(E1)− χ(E ∩ E1) = −(1− a)d + 1 and

zX(ND, s) = z0(ND, s) =
χ(E◦1 )

ν1 + sN1
+

χ(E ∩ E1)

(ν1 + sN1)(1 + sN)

=
−(1− a)d + 1

d + 1− a + sN
+

(1− a)
(

(1−a)d−1−1
a

)
+ d− 1

(d + 1− a + sN)(1 + sN)

=
(1− a)

(
(1−a)d−1

a

)
+ d + s

(
1− (1− a)d

)
N

(d + 1− a + sN)(1 + sN)
.

A (not very exciting) calculation shows that there is no cancellation in this expression,
except when d = 3 and a = 2 or 3, in which case zX(ND, s) is

2

1 + sN
and

9

1 + sN
,

respectively. Taking limits we obtain

eX(ND) =
(1− a)

(
(1−a)d−1

a

)
+ d +

(
1− (1− a)d

)
N

(d + 1− a + N)(1 + N)
if d + 1 + N 
= a

and

eX

(
(X,ND)

)
=

(1− a)
(

(1−a)d−1
a

)
+ d +

(
(1− a)d − 1

)
N

(d + 1− a− N)(1− N)
if

{
d + 1 
= a + N

N 
= 1.
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5 Zeta Functions Associated to Divisors and Differential Forms

5.1

In the p-adic theory of Igusa’s local zeta functions one also associates this invariant
to both polynomials and differential forms, see e.g. [L, III3.5]. Let f ∈ Qp[x] =
Qp[x1, . . . , xd] and w ∈ Ωd

Ad , i.e., w = gdx where g ∈ Qp[x] and dx = dx1∧· · ·∧dxd.
Then, with the notation of 1.3.1,

Zp( f ,w, s) :=

∫
Zd

p

| f (x)|s |g(x)| |dx|.

With the notation of 1.4 let ν ′i −1 be the multiplicity of Ei in the divisor of h∗w. Then
(for f ∈ Q[x]) the same formula as in 1.4.1 is valid when we replace νi by ν ′i .

We also want to introduce this notion on the level of the Grothendieck ring of alge-
braic varieties as in 1.3. Our motivation in this paper is that we will use it to construct
on a Q-Gorenstein variety X an invariant ZW (X,D, s), generalizing ZW (X,D, s) in
3.3, on the level of the Grothendieck ring. Furthermore we will need this notion in
future work.

5.2

We fix notations for this section. Let X be an irreducible nonsingular variety of di-
mension d and W a subvariety of X. Let D be an effective divisor on X and J ⊂ Ωd

X

an invertible subsheaf of the sheaf of regular differential d-forms Ωd
X on X.

We will only consider the situation where supp J ⊂ supp D; we motivate this
below.

5.3

First we rephrase the definition of ZW (D, s) in terms of the motivic volume µ of [DL3,
3.2] or [DL4]. Denote by C the family of subsets of L(X) of the form π−1

n An for
some n ∈ N and constructible subset An of Ln(X). We call these cylindrical subsets
as in [B2] or [DL4]. There exists a unique additive measure µ : C → ML satisfying
µ(π−1

n An) = [An]
L(n+1)d for An as above. (In fact this map is denoted by µ̃ in [DL3] and

there µ is a map from the more complicated family of semi-algebraic subsets of L(X)
to M̂.) For A in C and α : A → N a bounded function with cylindrical fibres one
defines the integral ∫

A
L−α dµ :=

∑
n∈N

L−nµ(α−1{n}) ∈ML.(5.3.1)

Now re-examining the definition of ZW (D, s) in 1.3 we have, with the notation intro-
duced there, that µ(Yn,D,W ) = [Xn,D,W ]L−(n+1)d and hence

ZW (D, s) =
∑
n∈N

µ(Yn,D,W )L−ns ∈ML[[L−s]].
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5.4

The following construction is a special case of [DL3, 3.5]. To the sheaf J is associated
as follows a measure µ J on C, such that µΩd

X
= µ.

For P ∈ X let dx and gPdx be local generators of Ωd
X and J, respectively, around P.

Denote then by ordt J : L(X) → N ∪ {∞} the function assigning to ϕ in L(X) the
order of the power series given by gπ0(ϕ) ◦ ϕ. For A in C we define

µ J(A) :=

∫
A

L− ordt J dµ =
∑
�∈N

L−�µ(A ∩ {ordt J = �}).

Indeed the sets {ordt J = �} are cylindrical. For arbitary A the right hand side above
is only defined as an element in M̂; however we will only consider sets A for which
the sum over � is finite and then µ J(A) ∈ ML. Replacing µ by µ J we can consider
analogous integrals as in (5.3.1).

The following change of variables formula is a special case of [DL3, 3.5.2]. (It
follows immediately from [DL3, 3.3] of which Theorem 1.10 is a special case.)

Proposition 5.5 Let X ′ be another irreducible smooth variety and ρ : X ′ → X a
proper birational morphism. For A in C and α : A → N a bounded function with
cylindrical fibres we have that

∫
A

L−α dµ J =

∫
ρ−1A

L−α◦ρ dµρ∗ J.

Definition 5.6 To the data of 5.2 we associate the motivic zeta function

ZW (D, J, s) = ZW (X,D, J, s) :=
∑
n∈N

µ J(Yn,D,W )L−ns

=
∑
n∈N

(∑
�∈N

L−�µ(Yn,D,W ∩ {ordt J = �})
)

L−ns ∈ML[[L−s]].

We explain why the sum over � is finite. For any fixed n we have that Yn,D,W =∐
�∈N∪{∞}(Yn,D,W ∩{ordt J = �}). But our condition supp J ⊂ supp D implies that

{ordt J =∞} = L(supp J) ⊂ L(supp D) = {ordt D =∞},

hence we have that Yn,D,W ∩{ordt J =∞} = ∅ and so Yn,D,W is the countable union
of the cylindrical sets Yn,D,W ∩ {ordt J = �}, � ∈ N. Then this union is finite by [B2,
Theorem 6.6].

Theorem 5.7 Let X ′ be another irreducible smooth variety and ρ : X ′ → X a proper
birational morphism. Then

ZW (X,D, J, s) = Zρ−1W (X ′, ρ∗D, ρ∗ J, s).
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Proof This is a consequence of Proposition 5.5.

Theorem 5.8 Let h : Y → X be a log resolution of supp D. Denote as usual the ir-
reducible components of h−1(supp D) by Ei , i ∈ T. We set h∗D =

∑
i∈T NiEi and

div(h∗w) =
∑

i∈T(ν ′i − 1)Ei, where w is a local generator of J. Then

ZW (D, J, s) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lν
′
i +sNi − 1

.

Remark Let as in 1.4 dx be a local generator ofΩd
X and div(h∗dx) =

∑
i∈T(νi−1)Ei .

Say w = gdx and div(h∗g) =
∑

i∈T MiEi . Then ν ′i = νi + Mi for i ∈ T.

Proof One can adapt the proof of [DL2, Theorem 2.2.1] completely to this more
general setting with the sheaf J.

5.9

The notion introduced above is sufficient to introduce zeta functions on the level of
the Grothendieck ring for Gorenstein varieties. To cover the case of Q-Gorenstein
varieties we need ‘sheaves of multivalued differential forms’. We briefly describe this
generalization.

Now let J ⊂ (Ωd
X)⊗m be an invertible subsheaf of the m-fold tensor product of

Ωd
X , still satisfying supp J ⊂ supp D. We define

µ J1/m (A) :=

∫
A

L−
ordt J

m dµ =
∑
�∈N

L−�/mµ(A ∩ {ordt J = �}) ∈ML[L1/m]

for the sets A in C for which the last sum is finite. Then the motivic zeta function is

ZW (D, J1/m, s) = ZW (X,D, J1/m, s)

:=
∑
n∈N

µ J1/m (Yn,D,W )L−ns ∈ML[L1/m][[L−s]].

Theorem 5.8 easily generalizes to this setting, but now the ν ′i ∈
1
m (N \ {0}).

5.10

Finally as in 1.5 we can generalize further to Q-divisors. Now if D is an effective Q-
divisor on X, such that rD is a divisor for an r ∈ N\{0}, we define ZW (D, J1/m, s) :=
ZW (rD, J1/m, s/r). Again Theorem 5.8 generalizes, with now the Ni ∈

1
r (N \ {0}).

https://doi.org/10.4153/CJM-2001-034-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-034-1


860 Willem Veys

6 Singular Varieties; On the Level of the Grothendieck Ring

6.1

In this section we generalize the zeta function of 3.3 to the level of the Grothendieck
ring. In order to focus on the main idea we first treat the essential case, being an
effective Cartier divisor D on a Gorenstein variety X. For a normal variety V we
denote its canonical sheaf (corresponding to KV ) by ωV ; we have that ωV is invertible
or ω⊗m

V is invertible for some m ∈ N \ {0} precisely when V is Gorenstein or Q-
Gorenstein, respectively.

Also in the sequel I(F) denotes the sheaf of ideals associated to an effective divisor
F on a nonsingular variety.

6.2 Definition-Proposition

Let X be a Gorenstein variety of dimension d and W a subvariety of X. Let D be an
effective Cartier divisor on X such that Xsing ⊂ supp D.

(i) The motivic zeta function

ZW (D, s) = ZW (X,D, s) := Zh−1W

(
Y, h∗D, h∗ωX ⊗ I(ah∗D), s− a

)
where h : Y → X is a log resolution of supp D and a ∈ N, a� 0.

(ii) Let h : Y → X be a log resolution of supp D. With the notation of 3.2 we have
that

ZW (D, s) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +sNi − 1
.

Proof We first explain the right hand side of our definition. Since Xsing ⊂ supp D
we have that supp(h∗ωX) ⊂ supp(h∗D), yielding for a � 0 that h∗ωX ⊗ I(ah∗D)
is an invertible subsheaf of Ωd

Y . So to this sheaf and the effective divisor h∗D we can
associate the motivic zeta function of 5.6. The substitution ‘s− a instead of s’ means
replacing the variable L−s by La(L−s).

Now we show independency of the chosen resolution; it is sufficient to consider

another log resolution h ′ : Y ′ → X that factors as h ′ : Y ′
ϕ
→ Y

h
→ X. By Theorem 5.7

we indeed have that

Zh−1W

(
Y, h∗D, h∗ωX ⊗ I(ah∗D), s− a

)
= Zϕ−1(h−1W )

(
Y ′, ϕ∗h∗D, ϕ∗(h∗ωX)⊗ ϕ∗

(
I(ah∗D)

)
, s− a

)
= Zh ′−1W

(
Y ′, h ′∗D, h ′∗ωX ⊗ I(ah ′∗D), s− a

)
.

Let η and f be local generators of ωX and I(D), respectively. Then (h∗ f )a(h∗η) is a
local generator of h∗ωX⊗I(ah∗D) and its divisor of zeroes is

∑
i∈T

(
(νi−1)+aNi

)
Ei .

Hence Theorem 5.8 (with h = IdY ) yields the stated formula for ZW (D, s), which also
proves independency of the number a.
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6.3

Now let X be Q-Gorenstein and say that mKX is Cartier for some m ∈ N \ {0}. We
define ZW (X,D, s) just as in 6.2, interpreting the expression h∗ωX ⊗ I(ah∗D) as an

abbreviation of
(

h∗(ω⊗m
X ) ⊗ I(mah∗D)

) 1/m
(see 5.9). Now ZW (X,D, s) lives in a

localization of ML[L1/m][L−s] and is given by the same formula as in 6.2 (with now
the νi ∈ Q).

When D is an effective Q-Cartier divisor we set as usual ZW (D, s) := ZW (rD, s/r)
if rD is Cartier for an r ∈ N \ {0}. Then in full generality we have the following.

6.4 Definition-Proposition

Let X be a Q-Gorenstein variety of dimension d and W a subvariety of X. Let D be
an effective Q-Cartier divisor on X (with rD Cartier for an r ∈ N \ {0}) such that
Xsing ⊂ supp D. The motivic zeta function

ZW (D, s) = ZW (X,D, s) := Zh−1W

(
Y, h∗(rD), h∗ωX ⊗ I(arh∗D), s/r − a

)
where h : Y → X is a log resolution of supp D and a ∈ N, a � 0. We have the same
formula as in 6.2.

Of course ZW (D, s) specializes to the zeta function ZW (D, s) of 3.3.

6.5

Finally we consider for arbitrary Q-Gorenstein varieties X ‘Kontsevich’ invariants
EW (D) and EW

(
(X,D)

)
on the level of the Grothendieck ring, which specialize

to EW (D) and EW

(
(X,D)

)
of 3.6 and 3.10, respectively. Notice first that in 6.4

we have, by the formula for ZW (D, s) in terms of a log resolution, that it already
belongs to the localization of a polynomial ring ML[L1/r][L−s/r] with respect to
(1 − L−α−βs)α∈Q,β∈Q>0 . Morally we again take limits for s → 1 and s → −1 to
define EW (D) and EW

(
(X,D)

)
, respectively.

Definition 6.6 Let X be a Q-Gorenstein variety of dimension d and W a subvariety
of X. Let D be an effective Q-Cartier divisor on X such that Xsing ⊂ supp D. Take
r ∈ N \ {0} with rKX and rD Cartier.

(i) If ZW (D, s) belongs to the localization of ML[L1/r][L−s/r] with respect to
(1− L−α−βs)α∈Q,β∈Q>0 ,α+β �=0, then we put

EW (D) = EW (X,D) := ZW (D, s)|s=1.

Otherwise we put EW (D) = EW (X,D) :=∞.
(ii) If ZW (D, s) belongs to the localization of ML[L1/r][L−s/r] with respect to

(1− L−α−βs)α∈Q,β∈Q>0 ,α�=β , then we put

EW

(
(X,D)

)
:= ZW (D, s)|s=−1.

Otherwise we put EW

(
(X,D)

)
:=∞.
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Here the evaluations s = 1 and s = −1 mean substituting the variable L−s/r by
L−1/r and L1/r, respectively, yielding a well defined element in M̂[L1/r].

Proposition 6.7 Consider the same data as is 6.6.

(i) Suppose there is a log resolution h : Y → X of supp D for which νi + Ni 
= 0 for
all i ∈ T (using the notation of 3.2). Then

EW (D) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +Ni − 1
.

(ii) Suppose there is a log resolution h : Y → X of supp D for which all log discrepan-
cies ai , i ∈ T, with respect to the pair (X,D) satisfy ai 
= 0 (using the notation of
3.2). Then

EW

(
(X,D)

)
= L−d

∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lai − 1
.

Appendix

A1

In this appendix let X be a smooth irreducible variety of dimension d and W a sub-
variety of X.

In 1.7–1.10 we described the Kontsevich invariant EW (D) ∈ M̂, associated to an
effective divisor D on X, and we mentioned its important properties. Here we will
generalize this notion to effective Q-divisors; if rD is a divisor for an r ∈ N \ {0} we
obtain an invariant EW (D) in a finite extension M̂[L1/r] of M̂, and we treat analogous
properties. We also introduce this invariant for a Q-divisor D =

∑
i diDi (with the

Di irreducible) such that all di > −1 and supp D =
⋃

i Di is a divisor with strict
normal crossings. This is used in 3.14.

A2

First we describe the ring M̂[L1/r]. Consider the integral ring extension ML ↪→
ML[L1/r] := ML[X]

(Xr−L) , where L1/r is the class of X in this quotient. Each element a ∈

ML[L1/r] has a unique expression of the form a =
∑r−1

i=0 aiLi/r or a =
∑r−1

i=0 a ′i L−i/r

with ai, a ′i ∈ML.
We extend the decreasing filtration (Fm)m∈Z on ML, introduced in 1.7, to the ring

ML[L1/r]. Let F ′m, m ∈ Z, be the subgroup of ML[L1/r] generated by{ r−1∑
i=0

[Ai]

Lni
L−i/r

∣∣∣ dim Ai − ni ≤ −m for i = 0, . . . , r − 1

}
.

(So indeed Fm =ML ∩ F ′m.) We take the completion M̂ ′ of ML[L1/r] with respect to
this filtration (F ′m)m∈Z; then we have an injection M̂ ↪→ M̂ ′.

One can verify that M̂ ′ ∼= M̂[L1/r], where the right hand side can be interpreted

either as the subring of M̂ ′ generated by M̂ and L1/r , or as M̂[X]
(Xr−L) .
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A3

We will use the following notation. Let D be a prime divisor on X. Then ordt D :
L(X) → N ∪ {∞} assigns to ϕ ∈ L(X) the order of the power series in t given
by f ◦ ϕ, where f is a local equation of D at π0(ϕ). For a Q-divisor D =

∑
i diDi

(with the Di prime divisors) we then define ordt D : L(X)→ Q ∪ {∞} by ordt D :=∑
i di ordt Di .

Definition A4 Let D be a Q-divisor on X and r ∈ N \ {0} such that rD is a divisor.

(i) If D is effective we define for n ∈ N the subscheme Yn,D,w of L(X) and the
subscheme Xn,D,w of Ln(X) as in 1.3 with only the following adaptation: now f
is a local equation of the divisor rD (instead of D). Then we set

EW (D) = EW (X,D) :=
∑
n∈N

[Xn,D,W ]

L(n+1)d
L−n/r ∈ M̂[L1/r].

In terms of the motivic volume µ of 5.3 we can describe EW (D) as

EW (D) =

∫
π−1

0 W
L− ordt D dµ :=

∑
n∈N

µ
(
π−1

0 W ∩
{

ordt D =
n

r

})
L−n/r.

(ii) In general we say that ordt D : L(X)→ 1
r Z ∪ {∞} is integrable on π−1

0 W if∫
π−1

0 W
L− ordt D dµ :=

∑
n∈Z

µ
(
π−1

0 W ∩
{

ordt D =
n

r

})
L−n/r

converges in M̂[L1/r]; we then denote this invariant again by EW (D).

A5

An important case of this last definition occurs when D =
∑k

i=1 diDi with the Di ir-

reducible, all di > −1, and supp D =
⋃k

i=1 Di a divisor with strict normal crossings.
For J ⊂ {1, . . . , k} denote D◦J := (

⋂
j∈ J D j)\(

⋃
� /∈ J D�) and MJ := {(m1, . . . ,mk) ∈

Nk | m j > 0⇔ j ∈ J}. Then one can compute that∫
π−1

0 W
L− ordt D dµ = L−d

∑
J⊂{1,...,k}

(L− 1)| J|[D◦J ∩W ]
∑

(m1,...,mk)∈MJ

L−
∑

j∈ J (d j +1)m j ,

which converges in M̂[L1/r] since all d j + 1 > 0. See [B2, Theorem 6.28] and [C,
Theorem 1.17].

Theorem A6 Let also X ′ be a smooth irreducible variety and ρ : X ′ → X a proper
birational morphism. Let D be a Q-divisor on X. Then ordt D is integrable on π−1

0 W if
and only if ordt (ρ∗D + KX ′|X) is integrable on π−1

0 (ρ−1W ); and in this case

EW (X,D) = Eρ−1W (X ′, ρ∗D + KX ′|X).
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Proof The proof of [DL3, Lemma 3.3], based on the crucial and difficult [DL3,
Lemma 3.4], can be adapted to this setting. See [B2, Theorem 6.27] for an analogous
statement and proof when W = X. We also remark that when D is an effective Q-
divisor (implying that both functions are integrable), then one can prove the stated
equality using the equality in [DL3, Lemma 3.3].

Theorem A7 Let D be a Q-divisor on X (with rD a divisor for an r ∈ N \ {0}) such
that ordt D is integrable on π−1

0 W . Using the notation of 1.4 we have the following
formula for EW (D) in terms of a log resolution h : Y → X of supp D:

EW (D) = L−d
∑
I⊂T

[E◦I ∩ h−1W ]
∏
i∈I

L− 1

Lνi +Ni − 1
in M̂[L1/r].

In particular EW (D) belongs to the image of ML[(1− L−n/r)−1]n∈N\{0} in M̂[L1/r].

Proof This follows from A5 and Theorem A6. One can also adapt [DL3, (6.5)].
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1–22.

[M] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for
simplicity. Inst. Hautes Études Sci. Publ. Math. 9(1961), 5–22.
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