THE EXPONENTIAL REPRESENTATION OF HOLOMORPHIC FUNCTIONS OF UNIFORMLY BOUNDED TYPE

THAI THUAN QUANG

(Received 4 September 2002; revised 26 February 2003)

Communicated by A. J. Pryde

Abstract

It is shown that if E, F are Fréchet spaces, $E \in (H_{ub})$, $F \in (DN)$ then $H(E, F) = H_{ub}(E, F)$ holds. Using this result we prove that a Fréchet space E is nuclear and has the property (H_{ub}) if and only if every entire function on E with values in a Fréchet space $F \in (DN)$ can be represented in the exponential form. Moreover, it is also shown that if $H(F^*)$ has a LAERS and $E \in (H_{ub})$ then $H(E \times F^*)$ has a LAERS, where E, F are nuclear Fréchet spaces, F^* has an absolute basis, and conversely, if $H(E \times F^*)$ has a LAERS and $F \in (DN)$ then $E \in (H_{ub})$.

2000 Mathematics subject classification: primary 32A10, 32B10, 46A63, 46E50. Keywords and phrases: holomorphic functions, holomorphic functions of uniform bounded type, topological linear invariants, exponential representation.

1. Introduction

Let *E* and *F* be locally convex spaces. A holomorphic function *f* from *E* to *F* is said to be of uniformly bounded type if there exists a neighbourhood U of $0 \in E$ such that f(rU) is bounded for all r > 0. By $H_{ub}(E, F)$ we denote the linear subspace of the space of holomorphic functions from *E* to *F*, consisting of all functions of uniformly bounded type. We write $H_{ub}(E)$ rather than $H_{ub}(E, \mathbb{C})$. We say that a locally convex space *E* has the property (H_{ub}) (and write $E \in (H_{ub})$) if the identity $H(E) = H_{ub}(E)$ holds.

Recently Le Mau Hai and Thai Thuan Quang [3] have shown that $H_b(E, F) = H_{ub}(E, F)$ for Fréchet spaces E, F and $E \in (H_{ub}), F \in (\overline{DN})$.

In Section 3, we extend the above result to the more general case. Namely, the property (\overline{DN}) of the space F is replaced by the property (DN) (Theorem 3.1).

^{© 2004} Australian Mathematical Society 1446-7887/04 \$A2.00 + 0.00

Thai Thuan Quang

By using Theorem 3.1, in Section 4 we prove that a Fréchet space E is nuclear and $E \in (H_{ub})$ if and only if every entire function on E with values in a Fréchet space $F \in (DN)$ can be represented in the exponential form (Theorem 4.1). The final portion of this section will deal with the exponential representation of holomorphic functions on $E \times F^*$, where E is Fréchet, $E \in (H_{ub})$ and F is nuclear Fréchet such that F^* has an absolute basis and $H(F^*)$ has a linearly absolutely exponential representation system (Theorem 4.2). The proof is based on Theorems 3.1, 4.1 and Proposition 4.3 which say that if F is a Fréchet space such that F^* has an absolute basis then $F \in (DN)$ if and only if $H(F^*) \in (DN)$.

2. Preliminaries

We may frequently use the standard notation of the theory of locally convex spaces as presented in the book of Pietsch [9]. A locally convex space always is a complex vector space with a locally convex Hausdorff topology.

For a Fréchet space E, we always assume that its locally convex structure is generated by an increasing system $\{\|\cdot\|_k\}$ of semi-norms. Then we denote by E_k the completion of the canonically normed space $E/\ker\|\cdot\|_k$ and $\omega_k: E \to E_k$ denotes the canonical map and U_k denotes the set $\{x \in E : \|x\|_k < 1\}$.

2.1. Holomorphic function Let E and F be locally convex spaces and let $D \subset E$ be open, $D \neq \emptyset$. A function $f : D \rightarrow F$ is called *holomorphic* if f is continuous and Gâteaux-analytic. By H(D, F) we denote the vector space of all holomorphic functions on D with values in F. We use $H_b(E, F)$ to denote the space of holomorphic functions from E to F which are bounded on every bounded set in E. The space $H_b(E, F)$ is equipped with the topology τ_b of uniform convergence on all bounded sets.

2.2. The property (DN) Let *E* be a Fréchet space with a fundamental system of semi-norms $\{\|\cdot\|_k\}$. We say that *E* has the *property* (DN) if

 $\exists p \; \exists d \; \forall q \; \exists k, \, C > 0 \quad \text{such that} \quad \| \cdot \|_q^{1+d} \leq C \| \cdot \|_k \| \cdot \|_p^d.$

2.3. Separately holomorphic function Let *E*, *F* be locally convex spaces. For a function $f : E \times F \to \mathbb{C}$, we put

$$f_x(y) = f(x, y) \text{ for } y \in F;$$

$$f_y(x) = f(x, y) \text{ for } x \in E.$$

The function f is called *separately holomorphic* if $f_x : F \to \mathbb{C}$ and $f_y : E \to \mathbb{C}$ are holomorphic for all $x \in E$ and $y \in F$ respectively.

2.4. Linearly absolutely exponential representation system Let E be a locally convex space and $\{x_k\}$ be a sequence in E. We say that $\{x_k\}$ is a *linearly absolute representation system* (abbreviated LARS) if every element $x \in E$ can be written in the form $x = \sum_{k\geq 1} \xi_k(x) x_k$, where the series is absolutely convergent.

A LARS in H(D) of the form $\{\exp u_k\}$, where u_k are continuous linear functionals on E and D is an open set in E, is said to be a linearly absolutely exponential representation system of H(D). It is denoted by LAERS.

3. Holomorphic functions of uniformly bounded type

In this section we prove the following theorem which was proved in [3] by Le Mau Hai and Thai Thuan Quang in the case when $F \in (\overline{DN})$.

THEOREM 3.1. Let E be a Fréchet space. Then $E \in (H_{ub})$ if and only if

$$H(E, F) = H_{ub}(E, F)$$

for all Fréchet spaces $F \in (DN)$.

PROOF. 1. Necessary. Since $F \in (DN)$, by Vogt [13] F can be considered as a subspace of the space $B \widehat{\otimes}_{\pi} s$ for some Banach space, where s denotes the space of rapidly decreasing sequences.

On the other hand, $B\widehat{\otimes}_{\pi}s$ is a subspace of $H_b((B\widehat{\otimes}_{\pi}s)'_b)$ and $H_b((B\widehat{\otimes}_{\pi}s)'_b) \cong H_b(B'\widehat{\otimes}_{\pi}s')$.

Given $f \in H(E, F) \subset H(E, H_b(B'\widehat{\otimes}_{\pi} s'))$, we write the Taylor expansion of f(z)at $0 \in B'\widehat{\otimes}_{\pi} s'$ for $z \in E$

$$f(z)(t) = \sum_{\substack{n \ge 0 \\ k_1, \dots, k_n \ge 1}} \widehat{P_n f(z)}(u_{k_1} \otimes e_{j_1}^*, \dots, u_{k_n} \otimes e_{j_n}^*),$$

where

$$t = \sum_{k\geq 1} u_k \otimes v_k \in B'\widehat{\otimes}_{\pi} s', \quad P_n f(z)(t) = \frac{1}{2\pi i} \int_{|\varrho|=r>0} \frac{f(z)(\varrho t)}{\varrho^{n+1}} d\varrho,$$

and $\{e_j\}$ is the canonical basis of s with the dual basis $\{e_j^*\}$, $\widehat{P_nf}$ is the symmetric *n*-linear form associated to P_nf .

Since $\{e_j\}_{j\geq 1}$ is an absolute basis, for $p\geq 1$, choose $q\geq p$ such that

$$\sum_{j\geq 1} \|e_j^*\|_q^* \|e_j\|_p < \frac{1}{(p+1)e^2},$$

where $||e_j^*||_q^* = \sup\{|e_j^*(x)|, ||x||_q \le 1\} = 1/j^q$.

For each $p \ge 1$, consider a family $\mathscr{F}_p = \{f_{p,n,u_1,\dots,u_n}\}_{n\ge 0} \subset H_b(E)$ given by

$$f_{p,n,u_1,\ldots,u_n}(z) = \sum_{j_1,\ldots,j_n \ge 1} p^n \widehat{P_n f(z)}(u_1 \otimes e_{j_1}^*,\ldots,u_n \otimes e_{j_n}^*) \|e_{j_1}\|_p \cdots \|e_{j_n}\|_p$$

where $u_1, \ldots, u_n \in W$, the unit ball of B'.

Then for each $p \ge 1$, the family \mathscr{F}_p is bounded in $H_b(E)$. Indeed, for every bounded set K in E, we have

$$\begin{split} \sup_{z \in K} \sup_{u_{1}, \dots, u_{n} \in W} \left\{ p^{n} \sum_{j_{1}, \dots, j_{n} \geq 1} \left| \widehat{P_{n}f(z)}(u_{1} \otimes e_{j_{1}}^{*}, \dots, u_{n} \otimes e_{j_{n}}^{*}) \right| \|e_{j_{1}}\|_{p} \cdots \|e_{j_{n}}\|_{p} \right\} \\ &= \sup_{z \in K} \sup_{\substack{n \geq 0 \\ u_{1}, \dots, u_{n} \in W}} \left\{ p^{n} \sum_{j_{1}, \dots, j_{n} \geq 1} \left| \widehat{P_{n}f(z)} \left(u_{1} \otimes \cdot \frac{e_{j_{1}}^{*}}{\|e_{j_{1}}^{*}\|_{q}^{*}}, \dots, u_{n} \otimes \frac{e_{j_{n}}^{*}}{\|e_{j_{n}}^{*}\|_{q}^{*}} \right) \right| \\ &\times \|e_{j_{1}}\|_{p} \|e_{j_{1}}^{*}\|_{q}^{*} \cdots \|e_{j_{n}}\|_{p} \|e_{j_{n}}^{*}\|_{q}^{*} \right\} \\ &\leq \sup_{z \in K} \sup_{t \in \text{conv}(W \otimes U_{q}^{n})} |f(z)(t)| \left\{ \sup_{n \geq 0} \frac{n^{n}p^{n}}{n!} \sum_{j_{1}, \dots, j_{n} \geq 1} \|e_{j_{1}}\|_{p} \|e_{j_{1}}^{*}\|_{q}^{*} \cdots \|e_{j_{n}}\|_{p} \|e_{j_{n}}^{*}\|_{q}^{*} \right\} \\ &\leq \|f\|_{K \times \text{conv}(W \otimes U_{q}^{n})} \sup_{n \geq 0} \left\{ \left(\frac{np}{(p+1)e^{2}} \right)^{n} \frac{1}{n!} \right\} \\ &\leq C_{p} \|f\|_{K \times \text{conv}(W \otimes U_{q}^{n})}, \end{split}$$

where

$$U_q = \{x \in s : ||x||_q < 1\} \text{ with the polar } U_q^o,$$
$$C_p = \sup_{n \ge 0} \left\{ \left(\frac{np}{(p+1)e^2}\right)^n \frac{1}{n!} \right\}.$$

Since $E \in (H_{ub})$, by Meise and Vogt [5], there exists $\alpha \ge 1$ such that the family \mathscr{F}_p is bounded in $H_b(E_{\alpha})$.

However, for every bounded set $K \subset E_{\alpha}$, $p \geq 1$, we have the following estimate

(3.1)
$$\sup_{z \in K} \sup_{t \in \text{conv}(W \otimes U_q^{\nu})} \sum_{n \ge 0} |P_n f(z)(t)|$$

$$\leq \sup_{z \in K} \sup_{\substack{u_{k_1}, \dots, u_{k_n} \in W \\ \sum_{k \ge 1} |\lambda_k| \le 1}} \left\{ \sum_{n \ge 0} \frac{1}{p^n} \sum_{k_1, \dots, k_n \ge 1} |\lambda_{k_1}| \cdots |\lambda_{k_n}| \right\}$$

$$\times \sum_{j_1, \dots, j_n \ge 1} p^n \left| \widehat{P_n f(z)}(u_{k_1} \otimes e_{j_1}^*, \dots, u_{k_n} \otimes e_{j_n}^*) \right| \|e_{j_1}\|_p \cdots \|e_{j_n}\|_p \right\}$$

 $\times \|e_{j_1}\|_p \cdots \|e_{j_n}\|_p \bigg\} < \infty.$

Put

where

(3.2)
$$g(z, t) = \sum_{n \ge 0} P_n f(z)(t)$$

with $z \in E_{\alpha}, t \in (B \widehat{\otimes}_{\pi} s)'$.

From (3.1), it follows that the right-hand side of (3.2) converges and defines a separately holomorphic function on $E_{\alpha} \times (B \widehat{\otimes}_{\pi} s)'$.

 $C_{K} = \sup_{\substack{z \in K \ u_{1,\ldots,u_{n} \in W \\ n > 0}}} \sup_{q \in W} \left\{ p^{n} \sum_{\substack{j_{1,\ldots,j_{n} \geq 1} \\ j_{1,\ldots,j_{n} \geq 1}}} \left| \widehat{P_{n}f(z)}(u_{k_{1}} \otimes e_{j_{1}}^{*},\ldots,u_{k_{n}} \otimes e_{j_{n}}^{*}) \right| \right\}$

It is easy to see that g is bounded on every bounded set on $(B\widehat{\otimes}_{\pi} s)'$. By Galindo, Garcia, Maestre [1] the holomorphic function of bounded type

$$\widehat{g}: (B\widehat{\otimes}_{\pi}s)' \to H_b(E_{\alpha})$$

which is induced by g, can be factorized through a Banach space by an entire function of bounded type. Because every ball in a Banach space is bounded we infer $f \in H_{ub}(E, F)$.

2. Sufficient. In the case $F = \mathbb{C}$, by hypothesis we obtain $E \in (H_{ub})$.

The theorem is proved.

4. The exponential representation

First we recall that a locally convex space E has the property (H_u) and write $E \in (H_u)$ if every holomorphic function f on E is of uniform type. This means that there exists a continuous semi-norm ρ on E such that f can be factorized holomorphically through the canonical map $\omega_{\rho}: E \to E_{\rho}$, where E_{ρ} denote the space associated to ρ .

$$\leq \sup_{z \in K} \sup_{\substack{u_1, \dots, u_n \in W \\ n \geq 0}} \left\{ p^n \sum_{j_1, \dots, j_n \geq 1} \left| \widehat{P_n f(z)}(u_1 \otimes e_{j_1}^*, \dots, u_n \otimes e_{j_n}^*) \right| \right. \\ \times \|e_{j_1}\|_p \cdots \|e_{j_n}\|_p \right\} \sup_{\sum_{k \geq 1} |\lambda_k| \leq 1} \left\{ \sum_{n \geq 0} \frac{1}{p^n} \sum_{k_1, \dots, k_n \geq 1} |\lambda_{k_1}| \cdots |\lambda_{k_n}| \right\} \\ \leq C_K \sum_{n \geq 0} \frac{1}{p^n}$$

Thai Thuan Quang

In [7] Nguyen Minh Ha and Nguyen Van Khue proved that a Fréchet space E is nuclear and $E \in (H_u)$ if and only if every holomorphic function on E with values in a Banach space B can be written in the form $f(x) = \sum_{k\geq 1} \xi_k \exp u_k(x)$, where the series is absolutely convergent in the space H(E, B) of holomorphic functions on E with values in B equipped with the compact-open topology.

In this section we shall consider the above result in another situation with the note that if $E \in (H_{ub})$ then $E \in (H_u)$ and if F is Banach then $F \in (DN)$. Namely, we are going to prove the following:

THEOREM 4.1. Let E be a Fréchet space. Then E is nuclear and $E \in (H_{ub})$ if and only if every holomorphic function on E with values in a Fréchet space $F \in (DN)$ can be written in the form $f(x) = \sum_{k\geq 1} \xi_k \exp u_k(x)$, where the sequences $(\xi_k) \subset F$, $(u_k) \subset E^*$, the dual space of E, and the series is absolutely convergent in the space $H_b(E, F)$.

PROOF. First we prove sufficiency of the theorem.

Let $\{p_{\alpha}\}$ be a fundamental system of semi-norms on E. To prove the nuclearity of E, for every continuous semi-norm ρ on E write the canonical map $\omega_{\rho}: E \to E_{\rho}$ in the form $\omega_{\rho}(x) = \sum_{k\geq 1} \xi_k \exp u_k(x)$ in which $\sum_{k\geq 1} \|\xi_k\| \exp \|u_k\|_B^* < \infty$ for every bounded set B in E. This follows from the hypothesis and the property (DN) of the space Banach E_{ρ} . Then

$$\omega_{\varrho}(x) = d\omega_{\varrho}(0)(x) = \sum_{k\geq 1} \xi_k u_k(x)$$

for $x \in E$ and $\sum_{k>1} \|\xi_k\| \|u_k\|_B^* < \infty$ for every bounded set B in E.

Now we prove that there exists a continuous semi-norm $\beta > \rho$ in E such that

$$\sum_{k\geq 1} \|\xi_k\| \exp \|u_k\|_{\beta}^* < \infty.$$

Indeed, if this does not hold, for every α we have $\sum_{k\geq 1} \|\xi_k\| \exp \|u_k\|_{\alpha}^* = \infty$. Hence for every α there exists k_{α} such that $\sum_{k\leq k_{\alpha}} \|\xi_k\| \exp \|u_k\|_{\alpha}^* > \alpha$. This inequality implies that for each $k \leq k_{\alpha}$ there exists x_k^{α} with $\|x_k^{\alpha}\|_{\alpha} \leq 1$ such that

$$\sum_{k\leq k_{\alpha}} \|\xi_k\| \exp |u_k(x_k^{\alpha})| > \alpha.$$

Put $B = \{x_1^1, \ldots, x_{k_1}^1, \ldots, x_1^{\alpha}, \ldots, x_{k_{\alpha}}^{\alpha}, \ldots\} \cup \{0\}$. Then B is bounded in E and

$$\sum_{k\geq 1} \|\xi_k\| \exp \|u_k\|_B^* > \alpha \quad \text{for every} \quad \alpha \geq 1.$$

This is impossible, because $\sum_{k\geq 1} \|\xi_k\| \exp \|u_k\|_B^* < \infty$.

By the same argument as above, there exists a continuous semi-norm $\beta > \varrho$ in E such that $\sum_{k\geq 1} \|\xi_k\| \|u_k\|_{\beta}^* < \infty$. This means that the canonical map $\omega_{\beta\varrho} : E_{\beta} \to E_{\varrho}$ is nuclear. Hence E is nuclear.

Now, since E is nuclear, to prove $E \in (H_{ub})$ by [4] it suffices to show that if E is a topological subspace of a locally convex space G with a fundamental system of continuous semi-norm induced by semi-inner products then every $f \in H(E)$ has an extension $g \in H(G)$.

Given $f \in H(E, \mathbb{C}) = H(E)$, by the hypothesis, we can write

$$f(x) = \sum_{k\geq 1} \xi_k \exp u_k(x)$$

such that $\sum_{k\geq 1} |\xi_k| \exp |u_k(x)| < \infty$. Applying the Hahn-Banach theorem to $u_k \in E^*$, $k \geq 1$, there exist $\hat{u}_k \in G^*$ such that $\hat{u}_k|_E = u_k$ and $||\hat{u}_k||^* = ||u_k||^*$, for all $k \geq 1$. Then the function $g(x) = \sum_{k\geq 1} \xi_k \exp \hat{u}_k(x)$ defines a holomorphic function on G and $g|_E = f$.

Now, assume that E is nuclear and $E \in (H_{ub})$. By Theorem 3.1, we have $H(E, F) = H_{ub}(E, F)$. Then every $f \in H(E, F)$ is of uniform type. It implies that there exists a continuous semi-norm ρ on E and a holomorphic function g on E_{ρ} such that $f = g\omega_{\rho}$. Take a continuous semi-norm $\beta > \rho$ on E such that $T = \omega_{\beta\rho}$ is nuclear. Write

$$T(x) = \sum_{j \ge 1} t_j u_j(x) e_j$$

with $a = \sum_{j \ge 1} |t_j| < \infty$ and $||u_j^*|| < 1$, $||e_j|| < 1$, $e_j \in E_{\varrho}$, $u_j \in E_{\beta}^*$ for $j \ge 1$. Consider the Taylor expansion of g at $0 \in E$

$$g(x)=\sum_{n\geq 0}P_ng(x),$$

where

$$P_n g(x) = \frac{1}{2\pi i} \int_{|t|=r} \frac{g(tx)}{t^{n+1}} dt$$

Choose two sequences $\{\xi_k\}$ and $\{\alpha_k\}$ in \mathbb{C} such that

(4.1)
$$z = \sum_{k\geq 1} \xi_k \exp(\alpha_k z)$$

for $z \in \mathbb{C}$ and

(4.2)
$$C_r = \sum_{k\geq 1} |\xi_k| \exp(r|\alpha_k|) < \infty$$

for all r > 0. Such sequences exist by [2]. Formally, we have

$$(gT)(x) = g(Tx) = \sum_{ng \in 0} P_n g(Tx) = \sum_{n \ge 0} P_n g\left(\sum_{j \ge 1} t_j u_j(x) e_j\right)$$
$$= \sum_{n \ge 0} \sum_{j_1, \dots, j_n \ge 1} t_{j_1} \cdots t_{j_n} u_{j_1}(x) \cdots u_{j_n}(x) \widehat{P_n g}(e_{j_1}, \dots, e_{j_n})$$
$$= \sum_{n \ge 0} \sum_{j_1, \dots, j_n \ge 1} t_{j_1} \cdots t_{j_n} \widehat{P_n g}(e_{j_1}, \dots, e_{j_n})$$
$$\times \left(\sum_{k \ge 1} \xi_k \exp \alpha_k u_{j_1}(x)\right) \cdots \left(\sum_{k \ge 1} \xi_k \exp \alpha_k u_{j_n}(x)\right)$$
$$= \sum_{n \ge 0} \sum_{\substack{j_1, \dots, j_n \ge 1 \\ k_1, \dots, k_n \ge 1}} t_{j_1} \cdots t_{j_n} \xi_{k_1} \cdots \xi_{k_n} \widehat{P_n g}(e_{j_1}, \dots, e_{j_n})$$
$$\times \exp[\alpha_{k_1} u_{j_1}(x) + \dots + \alpha_{k_n} u_{j_n}(x)]$$

where $\widehat{P_ng}$ is the symmetric *n*-linear form associated to P_ng .

It remains to check that the right-hand side is absolutely convergent in H(E, F). For each r > 0, take $s > C_r ae$. Since

$$\|P_ng(e_{j_1},\ldots,e_{j_n})\|_q\leq \left(\frac{n^n}{n!s^n}\right)\|g\|_{s,q}$$

where

$$||g||_{s,q} = \sup\{||g(x)||_q : ||x|| < s\}$$

and without loss generality by the nuclearity of E, we may assume that g is bounded on every bounded set in E_{ρ} . We have

$$\|g(Tx)\|_{q} \leq \sum_{n\geq 0} \sum_{\substack{j_{1},\ldots,j_{n}\geq 1\\k_{1},\ldots,k_{n}\geq 1}} |t_{j_{1}}|\cdots|t_{j_{n}}||\xi_{k_{1}}|\cdots|\xi_{k_{n}}| \\ \times \|\widehat{P_{n}g}(e_{j_{1}},\ldots,e_{j_{n}})\|_{q} \exp[r(|\alpha_{k_{1}}|+\cdots+|\alpha_{k_{n}}|)] \\ \leq \|g\|_{s,q} \sum_{n\geq 0} \frac{C_{r}^{n}a^{n}n^{n}}{n!s^{n}} < \infty$$

for ||x|| < r.

The theorem is proved.

In order to complete this section we will prove the following:

THEOREM 4.2. Let E and F be nuclear Fréchet spaces such that F^* has an absolute basis. Then

(i) $H(E \times F^*)$ has a LAERS if $H(F^*)$ has a LAERS and $E \in (H_{ub})$;

(ii) conversely, if $H(E \times F^*)$ has a LAERS and $F \in (DN)$ then $E \in (H_{ub})$.

The proof is based on Theorem 3.1 and the following:

PROPOSITION 4.3. Let F be a Fréchet space such that F^* has an absolute basis. Then $F \in (DN)$ if and only if $H(F^*) \in (DN)$.

PROOF. Sufficiency is obvious because F can be considered as a subspace of $H(F^*)$.

The proof of necessary condition is based on the results of Ryan [10] which introduces a convenient system of semi-norms defining the topology of $H(F^*)$.

Assume that $F \in (DN)$ such that F^* has an absolute basis $\{e_j^*\}$. By the open mapping theorem, the topology of F can be defined by the system of semi-norms

$$|||x|||_{k} = \sum_{j \ge 1} |e_{j}^{*}(x)|||e_{j}||_{k},$$

where $\{e_j\}_j$ is the sequence of coefficient functionals associated to $\{e_j^*\}$. Choose $p \ge 1$ such that (DN) holds. Since $\|\cdot\|_p$ is a norm, we have $\|e_j\|_p \ne 0$, for $j \ge 1$. Hence

$$\|e_j^*\|_q^* \le \|e_j^*\|_p^* \le \frac{1}{\|e_j\|_p} < \infty, \quad \forall j \ge 1, \forall q \ge p.$$

Moreover, by the definition of (DN) and by the equality

$$|||e_{j}^{*}|||_{q}^{*} = \frac{1}{|||e_{j}|||_{q}}, \quad \forall j \geq 1,$$

there exists d suct that for every q there exist k, C > 0 such that

(4.3)
$$|||e_j^*|||_q^{*1+d} \ge C |||e_j^*||_k^* ||e_j^*||_p^{*d} \quad \forall j \ge 1.$$

For each $k \ge 1$, put

$$F^*(k) = \left\{ x^* \in F^* : |||x^*|||_k^* = \sum_{j \ge 1} |e_j^*(x)| |||e_j^*|||_k^* < \infty \right\}.$$

It is easy to check that $F^*(k)$ is a Banach space and $\{e_j^*\}$ is also an absolute basis for $F^*(k)$. On the other hand, since $F^* = \bigcup_{k=1}^{\infty} F^*(k)$ and every bounded set in F^* is contained and bounded in some $F^*(k)$, we conclude that the topology of $H(F^*)$ can be defined by the system of semi-norms $\{\|\cdot\|_{k,r} : k \ge 1, r > 0\}$, where

$$||f||_{k,r} = \sup\{||f(x^*)|| : ||x^*||_k \le r\}.$$

[9]

By applying results of Ryan [10], we obtain, for every $f \in H(F^*)$, the representation

$$f(x^*) = f\left(\sum_{j\geq 1} t_j e_j^*\right) = \sum_M b_m(f) t^m$$

which converges absolutely and uniformly on every bounded set in F^* , where

$$M = \{ (m_1, m_2, \dots, m_n, 0, \dots), m_i \in \mathbb{N}, i = 1, 2, \dots \},\$$

$$b_m(f) = \left(\frac{1}{2\pi i}\right)^n \int_{|t_1|=\varrho_1} \cdots \int_{|t_n|=\varrho_n} \frac{f(t_1 e_1^* + \dots + t_n e_n^*)}{t_1^{m_1+1} \cdots t_n^{m_n+1}} dt$$

with $dt = dt_1 \cdots dt_n$.

Since for every $k \ge p$ the map

$$\varphi_k : \ell^1 \to F^*(k)$$

$$(\xi_j) \mapsto \sum_{j \ge 1} \xi_j \frac{e_j^*}{\|\|e_j^*\|\|_k^*}$$

is an isomorphism, again by Ryan [10], the system $\{ \| \cdot \|_{k,r} : k \ge p, r > 0 \}$ is equivalent to the system of semi-norms $\{ \| \cdot \|_{k,r} : k \ge p, r > 0 \}$ where

$$|||f|||_{k,r} = \sup\left\{\frac{r^{|m|}|b_m(f)|m^m}{a^m_{k,k}|m|^{|m|}}, m \in M\right\}$$

and $|m| = m_1 + \dots + m_n$; $a_{\cdot,k}^m = |||e_1^*|||_k^{*m_1} \cdots |||e_n^*||_k^{*m_n}$, $m^m = m_1^{m_1} \cdots m_n^{m_n}$. From (4.3) we get

$$\| \cdot \|_{q,r}^{1+d} \le \sup\left\{ \left[\frac{r^{|m|} |b_m(\cdot)| m^m}{a_{..q}^m |m|^{|m|}} \right]^{1+d}, m \in M \right\}$$
$$\le \sup\left\{ \left(\frac{r^{1+d}}{C} \right)^{|m|} \frac{|b_m(\cdot)| m^m}{a_{..k}^m |m|^{|m|}}, m \in M \right\} \sup\left\{ \left[\frac{|b_m(\cdot)| m^m}{a_{..p}^m |m|^{|m|}} \right]^d, m \in M \right\}$$
$$= \| \cdot \|_{k,r^{1+d}/C} \| \cdot \|_{p,1}^d$$

Hence $H(F^*) \in (DN)$. The proposition is proved.

Now we prove Theorem 4.2.

(i) First note that F is reflexive, that is, $F^{**} = F$, because it is a Fréchet nuclear space. Since F is nuclear and $H(F^*)$ has a LAERS, by [7], $F \in (DN)$. According to Proposition 4.3, we have $H(F^*) \in (DN)$. Because E is nuclear and $H(E \times F^*) \cong H(E, H(F^*))$, it follows from Theorem 4.1 that every $f \in H(E, H(F^*))$ can be

244

written in the form $f(x) = \sum_{k\geq 1} \xi_k \exp u_k(x)$, where $(\xi_k) \subset H(F^*)$ and the series is absolutely convergent in the $H(E, H(F^*))$.

Moreover, since $H(F^*)$ has a LAERS, every $\xi_k \in H(F^*)$ can be also written in the form

$$\xi_k(y^*) = \sum_{j \ge 1} \eta_{j,k} \exp v_j(y^*), \quad \forall k \ge 1,$$

where $(\eta_{j,k}) \subset \mathbb{C}$ and $v_j \in F^{**} = F, j \ge 1$ and the series is absolutely convergent in the $H(F^*)$. Thus

$$f(x, y^*) = \sum_{k,j \ge 1} \eta_{j,k} \exp v_j(y^*) \exp u_k(x)$$
$$= \sum_{k,j \ge 1} \eta_{j,k} \exp \left[\langle u_k, x \rangle + \langle v_j, y^* \rangle \right]$$

and $\sum_{k,j\geq 1} |\eta_{j,k}| \exp\left[\|u_k\|_K^* + \|v_j\|_L^*\right] < \infty$ for every compact set $K \subset E, L \subset F^*$. (ii) It is an immediate consequence of Theorem 4.1.

This completes the proof of the theorem.

REMARK 4.4. Recently, Phan Thien Danh and Duong Luong Son [8] have proved that every separately holomorphic function on an open subset $U \times V$ of $E \times F^*$, where $E \in (\tilde{\Omega})$ is a Fréchet nuclear space having a basis, has a local Dirichlet representation if and only if $F \in (DN)$ for every Fréchet nuclear space F.

Acknowledgement

The author would like to thank the referee for his helpful remarks and comments.

References

- P. Galindo, D. Garcia and M. Maestre, 'Entire function of bounded type on Fréchet spaces', Math. Nachr. 161 (1993), 185–198.
- [2] Yu. F. Korobeinik, 'Representation system', Uspekhi Mat. Nauk 36 (1981), 73-129.
- [3] Le Mau Hai and Thai Thuan Quang, 'Linear topological invariants and Fréchet valued holomorphic functions of uniformly bounded type on Fréchet spaces', *Publ. CFCA* **2** (1998), 23–41.
- [4] R. Meise and D. Vogt, 'Extension of entire functions on nuclear locally convex spaces', Proc. Amer. Math. Soc. 92 (1984), 495-500.
- [5] ——, 'Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces', Studia Math. 83 (1986), 147–166.
- [6] Nguyen Minh Ha and Nguyen Van Khue, 'The property (H_u) and $(\tilde{\Omega})$ with the exponential representation of holomorphic functions', *Publ. Mat.* **38** (1994), 37–49.

Π

- [7] ——, 'The property (DN) and the exponential representation of holomorphic functions', Monatsh. Math. 120 (1995), 281-288.
- [8] Phan Thien Danh and Duong Luong Son, 'Separately holomorphic functions, local Dirichlet representation and the property (DN)', Publ. CFCA 1 (1997), 21-30.
- [9] A. Pietsch, Nuclear locally convex spaces (Springer, New York, 1971).
- [10] R. Ryan, 'Holomorphic mappings on ℓ^{1} ', Trans. Amer. Math. Soc. 302 (1987), 797-811.
- [11] D. Vogt, 'Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen', Manuscripta Math. 37 (1982), 269–301.
- [12] ——, 'Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist', J. Reine Angew. Math. 345 (1983), 182–200.
- [13] _____, 'On two classes of (F)-spaces', Arch. Math. 45 (1985), 255-266.

Department of Mathematics

Pedagogical Institute of Quynhon

170 An Duong Vuong, Quynhon, Binhdinh

Vietnam

e-mail: tthuanquang@hotmail.com