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In [1], Pall proved an interesting result on a certain class of 2 x 2 integral matrices. He
showed that the semigroup of 2 x 2 matrices of determinant 1 and non-negative entries contains

0 1|1 1
of these primes. Before formally stating this result, we need some notation. Let G, denote
the semigroup of n x n matrices with determinant 1 and nonnegative integral entries, I, the
n x n identity matrix, E,(j-') the n x n matrix with a 1 as its (i,j) element and zeros elsewhere, and

let F{? = I, +E{Y. When the dimension is clear, we shall drop the superscripts.

exactly 2 primes I:l 1] ) [1 0] , and every other non-unit is expressible uniquely as products

THEOREM 1. (Pall) G, is a free semigroup with generators F,,, F,,.
The question now is what can be said about G,,» = 3. The first major change we encounter
is that, for n 2 3, units must be considered.

THEOREM 2. The units of G,,, i.e., all Ae G, such that A~ € G,, consist of I and all matrices
obtained from I by permuting columns (rows) an even number of times.

Proof. Let A = (a;;)e G, beaunit. Denote the cofactors of 4 by C;;sothat A~ = (C, j)T
and

n n
_Zl a;Cy =y = izl a;; Cu,
i= =

where d;, is the Kronecker . Since 4~ '€G,, C;; 2 0 foralli,j. Hence, for each j, there is an
ijsuchthata; ;= C,;;=1butforalli#ij,a;=0. Thejthcolumn has one element equal to
1 and its other elements zero. The n columns must be different, for det 4 # 0. Furthermore
this permutation of the columns of 7 must be even since det4 # —1.

So, in particular, the only unit for G, is I, and the units for G, are I,

010 0 01
0 0 1] |1 O Of.
100 010

It would be nice if every element of G, was the product of units and the F;;’s. For n 2 3, this
is not the case. In fact just finding all of the * primes * other than the F;; appears formidable
even for n = 3. The remainder of this paper deals with this problem.

Let AeG;. If A # I, F;j, then, if 4 is prime (i.e., does not factor into two non-units), no
row (column) can be greater than or equal component-wise to another row (column). This is
true, since any matrix 4 that does not satisfy this condition has an F;; factor. We abbreviate
the above row condition to r.c. (c.c. for columns and r.c.c. when both hold) and call any
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matrix satisfying the condition an r.c. (c.c., r.c.c.) matrix. It is easily seen that, if 4 = BC
satisfies the r.c.c., then B and C satisfy the r.c. and c.c. respectively.

THEOREM 3. Let A = (a;;)€ G, satisfy the r.c.c. If some a;; =0, then A is prime.

Proof. Suppose that A is not a prime. Then 4 = BC, where B, C are non-units. Since
a;; = 0, the ith row of B or the jth column of C contains two zeros (and hence a 1 also). If the
two zeros occur in a B row we may assume that the row number is the same as the column
number of the 1. This is because we can adjust the rows of B and columns of Cby BC=
BUU™IC, where U is a unit. Consider the case when

1 00 1 0 O]1 0 O][1 O O 1 0 O}t 0 O][1 0 O
B=1\|a ¢c d|l=|a 1 0|0 1 0||0 ¢ d|=]01 Ofla 1 O0||0 ¢ d}.
b e f 00 1] 0 1|0 e f b 0 1/|0 O 1]|0 e f

If either a or b is not 0, B has a left factor that does not satisfy r.c. and hence neither does A.
Soa=5b=0. Butthen [C

e f]
of the form

does not satisfy r.c. unless it is /. This all shows that B is not

1 00
|:a c d} .
b e f

In exactly the same manner we see that B is not of either of the forms

* * % * * %
01 0], [= = =|.
* % * 0 0 1

The use of a similar column argument for C shows that C cannot contain a column with two
zeros. Therefore, it is impossible to factor the r.c.c. matrix 4.
The following theorem gives another class of primes.

THEOREM 4. Any r.c.c. matrix in G, with 1 and 2 in the same row or column is prime.

1 » =

Proof. First consider 4 = |:2 * *} and suppose that 4 = BC. By the proof of

* Xk %

Theorem 3, we can assume that Bisr.c., Cis c.c. and no row of B or column of C contains two
zeros. Also, by using the units as before, we can assume the smallest nonzero element in the
first row of B is in the first column.

If ¢,y =0, where C = (c;;), then, by the above assumptions, b;; =1, {b,,b,3} = {1,0},
where B = (b;;). But it is easy to check that B cannot have determinant 1 now. So ¢y, = 1.
Just as a row of B cannot contain two ones and a zero, neither can a column of C. However,
a,; = 1 implies there is at least one zero in the first row of B and first column of C. Suppose
that b3 =c¢,; =0. Then b,; # 0, because otherwise B=1 or would not be r.c. Hence
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1 a 0
byy=c¢;3;=0and ¢35, =2, b,5=1. Now B= [0 b I:I and det B =1 = be—d+ac. For
c d e
Btober.c,c,e=1anda,b>d Butthese inequalities contradict d+1 = be+ac. The case
by = ¢3; =0 is similar. The proof for 4 when a,, = 1, a,, = 2 is now completed.

010
When a,, =2, a,, = 1, the same argument can be applied 1o |:1 0 0:| A = BC, where
0 01
now det B= —1. Any other combination of 1,2 in the same row or column can be trans-
formed to one of the above cases by using the units or by matrix transposes.
It is interesting to note that, if 2 is replaced by m = 3 in Theorem 4, the result is not true
in general. Counterexamples are supplied by the products

111 13 0 1 2%k-2 0 1 300 120
A0 1 3|, where A,=[1 2 &k |,|2 1 k=1|,|2 2 1]|,]21 2
210 2 1 5k-1 1 2%-6 1 302 [405

and m = 2k+1, 2k (k = 4), 4, 6, respectively. These also show the existence of nonprime r.c.c.
matrices.

There are only two primes in G,, but an infinite number in G5, for every matrix of the form
I 0 c+
l:l a+b OJJ , where a,b, c,d 2 1 with ad—bc = 1, is prime by Theorem 3.

1 a d
The uniqueness of prime factorization in G, fails in G5 also. For instance,

't 2 4 1 6 3

21 0| |41 2

|0 2 5 3 22
are primes by Theorem 4, but

1 2 472 1 6 3
2 1 0 =F12F31 4 1 2 F23F12F23.

025 322

Finding all the primes in G, seems to be an unlikely occurrence. The following is a
complete list (up to units) of those provided by the above theorem, based on the largest element
k (k £ 4) in the matrix.

k=]:F|j.

k =2 : none.

111 11 2 122
k=3:{2 0 1|, |2 1 0f, [2 0 1].
03 1 01 3] [032
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0 4 3
k=4 l:Z 3 3:' and the following matrices and their transposes
302

[0 4 17 1 0 37 [0 1 4 1 217 [0 3 47 01 4] [0 4 17
I 1 1}, (1 4 0, |1 1 2|, |1 of, 12 2 1, (2 2 3}|,(2 3 2
(30 2] |1 3 1] (3 21] |2 14 [320] [320] (31 2]
[0 4 37 [0 4 37 [1 O 47 [1 4 0] [2 3 0] [2 3 17 [4 1 3]
1 2 2f, 12 3 3,12 4 1(,1{2 3 3|,13 2 3{,1(3 2 3{,|0 4 3}.
(31 2] |301] [23 3] (214 |3 14] |304] |3 3 4]
5 11
All of these matrices are prime by previous theorems. However, 5 6]is prime,
4 2

2
6
7
251
but does not satisfy the conditions of any of the theorems. The factthat [6 5 6 is prime
7 4

was proved by laboriously checking all possibilities for factors.
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