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In [1], Pall proved an interesting result on a certain class of 2 x 2 integral matrices. He
showed that the semigroup of 2 x 2 matrices of determinant 1 and non-negative entries contains

exactly 2 primes L , L , and every other non-unit is expressible uniquely as products

of these primes. Before formally stating this result, we need some notation. Let Gn denote
the semigroup of n x n matrices with determinant 1 and nonnegative integral entries, /„ the
n x n identity matrix, E{(f the n x n matrix with a 1 as its (i,j) element and zeros elsewhere, and
let Fff = In+E\j). When the dimension is clear, we shall drop the superscripts.

THEOREM 1. (Pall) G2 is a free semigroup with generators F12, F21.
The question now is what can be said about Gn, n ^ 3. The first major change we encounter

is that, for n 2: 3, units must be considered.

THEOREM 2. The units ofGn, i.e., all AeGn such that A~1eGn, consist of I and all matrices
obtained from I by permuting columns (rows) an even number of times.

Proof. Let A = (al7) e Gn be a unit. Denote the cofactors of A by Cfj- so that A~l — (C(J)
T

and

where 8Jk is the Kronecker S. Since A ~1 e Gn, CtJ ^ 0 for all ij. Hence, for each j , there is an
ij such that aij} = Citi = 1 but for all i ^ i}, ati = 0. Thejth column has one element equal to
1 and its other elements zero. The « columns must be different, for dttA # 0. Furthermore
this permutation of the columns of/must be even since detA # — 1.

So, in particular, the only unit for G2 is I2 and the units for G3 are I3,
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It would be nice if every element of Gn was the product of units and the Ft/s. For n ^ 3, this
is not the case. In fact just finding all of the " primes " other than the FtJ appears formidable
even for n = 3. The remainder of this paper deals with this problem.

Let A 6 G3. IfA^ I, Fip then, if A is prime (i.e., does not factor into two non-units), no
row (column) can be greater than or equal component-wise to another row (column). This is
true, since any matrix A that does not satisfy this condition has an Fi} factor. We abbreviate
the above row condition to r.c. (c.c. for columns and r.c.c. when both hold) and call any
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matrix satisfying the condition an r.c. (c.c, r.c.c.) matrix. It is easily seen that, if A = BC
satisfies the r.c.c, then B and C satisfy the r.c. and c.c. respectively.

THEOREM 3. Let A = (a,j)eG3 satisfy the r.c.c. If some atJ = 0, then A is prime.

Proof. Suppose that A is not a prime. Then A = BC, where B, C are non-units. Since
ay = 0, the ith row of B or theyth column of C contains two zeros (and hence a 1 also). If the
two zeros occur in a B row we may assume that the row number is the same as the column
number of the 1. This is because we can adjust the rows of B and columns of C by BC =
BUU~lC, where U is a unit. Consider the case when
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If either a or b is not 0, B has a left factor that does not satisfy r.c. and hence neither does A.

So a = b = 0. But then . does not satisfy r.c. unless it is /. This all shows that B is not

of the form
1
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In exactly the same manner we see that B is not of either of the forms
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The use of a similar column argument for C shows that C cannot contain a column with two
zeros. Therefore, it is impossible to factor the r.c.c. matrix A.

The following theorem gives another class of primes.

THEOREM 4. Any r.c.c. matrix in G3 with 1 and 2 in the same row or column is prime.

Proof. First consider A = and suppose that A = BC. By the proof of

Theorem 3, we can assume that B is r.c, C is c.c. and no row of B or column of C contains two
zeros. Also, by using the units as before, we can assume the smallest nonzero element in the
first row of B is in the first column.

If c n = 0, where C = (cy), then, by the above assumptions, bn = 1, {bi2,bl3} = {1,0},
where B = (bu). But it is easy to check that B cannot have determinant 1 now. So cn = 1.
Just as a row of B cannot contain two ones and a zero, neither can a column of C. However,
a11 = 1 implies there is at least one zero in the first row of B and first column of C. Suppose
that bi3 = c21 = 0. Then b23 # 0, because otherwise B = / or would not be r.c. Hence
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= C2i = 0 and c31 = 2, 623 = 1. Now B =
1
0
c
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and det5 = 1 = be-d+ac. For

B to be r.c, c, e ^ 1 and a,b> d. But these inequalities contradict rf+1 = be+ac. The case
1̂2 = C3i = 0 is similar. The proof for A when oM = 1, a21 = 2 is now completed.

When an =2, a2i = I, the same argument can be applied lo
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A = BC, where

now deti? = — 1. Any other combination of 1,2 in the same row or column can be trans-
formed to one of the above cases by using the units or by matrix transposes.

It is interesting to note that, if 2 is replaced by m ^ 3 in Theorem 4, the result is not true
in general. Counterexamples are supplied by the products
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and m = 2k +1, 2k (k ^ 4), 4, 6, respectively. These also show the existence of nonprime r.c.c.
matrices.

There are only two primes in G2, but an infinite number in G3, for every matrix of the form
1 0 c+dl
1 a+b 0 , where a,b,c,d^ 1 with ad— be = 1, is prime by Theorem 3.
I a d _

The uniqueness of prime factorization in G2 fails in G3 also. For instance,
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are primes by Theorem 4, but

"l 6 3"
4 1 2
3 2 2

Finding all the primes in G3 seems to be an unlikely occurrence. The following is a
complete list (up to units) of those provided by the above theorem, based on the largest element
k (k ^ 4) in the matrix.

k = 1 : FtJ.

k = 2 : none.
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and the following matrices and their transposes
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of these matrices are
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prime by previous theorems.

not satisfy the conditions of any of the theorems.
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The fact that
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was proved by laboriously checking all possibilities for factors.
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