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The importance of non-locality of mean scalar transport in two-dimensional
Rayleigh–Taylor Instability (RTI) is investigated. The macroscopic forcing method is
utilized to measure spatio-temporal moments of the eddy diffusivity kernel representing
passive scalar transport in the ensemble averaged fields. Presented in this work are several
studies assessing the importance of the higher-order moments of the eddy diffusivity,
which contain information about non-locality, in models for RTI. First, it is demonstrated
through a comparison of leading-order models that a purely local eddy diffusivity is
insufficient to capture the mean field evolution of the mass fraction in RTI. Therefore,
higher-order moments of the eddy diffusivity operator are not negligible. Models are then
constructed by utilizing the measured higher-order moments. It is demonstrated that an
explicit operator based on the Kramers–Moyal expansion of the eddy diffusivity kernel
is insufficient. An implicit operator construction that matches the measured moments is
shown to offer improvements relative to the local model in a converging fashion.
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1. Introduction

Rayleigh–Taylor instability (RTI) is a phenomenon that occurs when a heavy fluid is
accelerated into a light fluid. Specifically, RTI occurs when the following are present:
(1) a density gradient, (2) an acceleration (associated with the body force) in the direction
opposite to that of the density gradient, and (3) a perturbation at the interface of the two
fluids. RTI is present in many scientific and engineering applications, such as supernovae
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(Gull 1975) and inertial confinement fusion (ICF) (Lindl 1995; Zhou 2017). In the case of
ICF, RTI occurs when a perturbation forms between the outer heavy ablator and the inner
light deuterium gas, which causes premature mixing in the target, thereby greatly reducing
the efficiency of the process. Thus RTI is of great interest to scientists and engineers,
especially in the context of ICF.

During a typical ICF experiment design process, a Reynolds-averaged Navier–Stokes
(RANS) approach is often utilized to model the role of hydrodynamic instabilities such as
RTI. This is despite the fact that RTI can be more accurately predicted using high-fidelity
methods like direct numerical simulations (DNS) (Youngs 1994; Cook & Dimotakis
2001; Cook & Zhou 2002; Cabot & Cook 2006; Mueschke & Schilling 2009) and
large eddy simulations (LES) (Darlington, McAbee & Rodrigue 2002; Cook, Cabot &
Miller 2004; Cabot 2006). Motivation for development of RANS models for various
engineering applications like ICF can be understood by considering the computational
cost of each method. DNS requires resolution of the smallest turbulent scales, and LES the
energy-containing scales, which are still much smaller than the macroscopic physics (i.e.
averaged fields) of engineering interest. On the other hand, by design, RANS must resolve
only macroscopic scales, thereby requiring much lower computational cost. Thus RANS
models are commonly used in engineering practice, especially in design optimization,
where hundreds of thousands of simulations are often performed. Such is especially the
case in designing targets for ICF experiments (Casey et al. 2014; Khan et al. 2016). Due
to the utility of RANS in such applications, the need for predictive RANS models remains
salient.

Models of varying complexities have been applied to the RTI problem. Among the types
used most commonly are two-equation models. One such model is the ubiquitously used
k-ε model (Launder & Spalding 1974). In particular, Gauthier & Bonnet (1990) introduced
algebraic relations for some closures to satisfy realizability constraints for the model to be
valid under the strong gradients of RTI. Another popular two-equation model is the k-L
model; a version was introduced by Dimonte & Tipton (2006) for RTI. One appeal of the
k-L model is its inclusion of a transport equation for turbulence length scale L (in place of
the transport equation for ε in k-ε) that can be related to the initial interface perturbation.
The self-similarity of turbulent RTI is leveraged to set the model coefficients.

These two-equation models rely on the gradient diffusion approximation for the
turbulent mass flux closure. The gradient diffusion approximation rests on the assumption
that turbulence transports quantities in a manner similar to Fickian diffusion. Importantly,
this approximation implies purely local dependence of the mean turbulent flux on the mean
gradient, ignoring history effects and gradients at nearby points in space. However, this
approximation may not be valid for mean scalar transport. Specifically, the turbulent mass
flux contains features that the gradient diffusion approximation cannot capture (Denissen
et al. 2014; Morgan & Greenough 2015), so a local coefficient may not be enough to scale
the mean gradient to model turbulent mass flux.

Non-locality in RTI has been studied in experiments and simulations. Clark, Harlow
& Moses (1997) analysed data from turbulent RTI experiments, and compared the
pressure–strain correlation and pressure production due to turbulent mass flux, suggesting
spatial non-locality of pressure effects. Studies using DNS by Ristorcelli & Clark
(2004) and experiments by Mueschke, Andrews & Schilling (2006) have also examined
non-locality of RTI in the context of two-point correlations. Thus the non-local nature
of RTI is well known, and work has been done to capture this non-locality in models.
For example, two-point closures to account for non-locality in RTI have been developed
by several authors for RANS (Clark & Spitz 1995; Steinkamp, Clark & Harlow 1999b,a;
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Pal et al. 2018; Kurien & Pal 2022) and LES (Parish & Duraisamy 2017). While these
works attempt to address the effects of non-locality in RTI, they do so without directly
studying the form of the non-local operator.

Several authors have studied ways to directly measure the non-local eddy diffusivity in
other canonical flows. One such approach involves application of the Green’s function. The
Green’s function approach starts from analytical derivations of relations between turbulent
fluxes and mean gradients, which was done by Kraichnan (1987). Hamba (1995) then
introduced a reformulation of these relations appropriate for numerical computation of
non-local eddy diffusivities, which has been applied to study channel flow (Hamba 2004)
and, most recently, homogeneous isotropic turbulence (HIT) (Hamba 2022).

A different approach to determining non-local eddy diffusivities is the macroscopic
forcing method (MFM) by Mani & Park (2021). In contrast to the Green’s function
approach, MFM is derived by considering arbitrary forcing added directly to the transport
equations, with its formulation rooted in linear algebra. Additionally, MFM offers
extensions to the Green’s function approach by utilization of forcing functions that are
not of the form of a Dirac delta. Harmonic forcing has been utilized to derive analytical
fits to non-local operators in Fourier space (Shirian & Mani 2022). Additionally, forcing
polynomial mean fields using the inverse MFM offers a computationally economical
path for determination of spatio-temporal moments of the eddy diffusivity operator
in conjunction with the Kramers–Moyal expansion, as opposed to computation of the
moments from a full MFM analysis through post-processing (Mani & Park 2021). Previous
works using MFM have revealed turbulence operators for a variety of flows. Shirian
& Mani (2022) and Shirian (2022) measured non-local operators in space and time in
HIT. Though the spatial non-local operator was measured in HIT, it was applied to a
turbulent round jet, and was shown to match experiments more closely than the purely local
Prandtl mixing length model. MFM has also been applied to turbulent wall-bounded flows,
including channel flow (Park & Mani 2023b) and separated boundary layers (Park, Liu &
Mani 2022; Park & Mani 2023a), to measure the anisotropic but local eddy diffusivity. In
those flows, incorporation of the MFM-measured anisotropic eddy diffusivity improved
RANS model predictions significantly, and remaining model errors were attributed to
missing non-local effects.

It is with a motivation towards RANS model improvement that the present work seeks
to understand non-locality of closure operators governing turbulent scalar flux transport
in RTI using MFM. Note that it is not intended for MFM to supplant current RANS
models. Instead, MFM is an analysis tool that can be used to assess models and discover the
necessary characteristics for accurate models. Here, MFM allows for direct measurement
of non-local closure operators, which has not yet been done in RTI. This new knowledge
of non-locality of the mean scalar transport closure operator in RTI will aid in the
development of improved RANS models used for studying ICF.

It is important to note that this work presents MFM measurements for a simplified RTI
problem: the flow is two-dimensional, incompressible and low Atwood number, and only
passive scalar mixing is considered. Since the eddy diffusivity is not universal, the MFM
measurements of its moments presented here cannot be extended directly to more complex
RTI. However, valuable insight into trends in the eddy diffusivity for mean scalar transport
in RTI can be gained in this work. This follows the common process for developing
turbulence models, where models are first designed for simpler flows, then tested on
and adjusted for more complex flows. In this work, MFM is performed on a simplified
RTI problem to give a preliminary look into the eddy diffusivity of Rayleigh–Taylor-type
flows, but future work will involve extensions to more complex flow characteristics that
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are closer to the practical flow observed in ICF capsules. The intent of this work is to
present MFM as a tool for determining characteristics of the eddy diffusivity of a flow
(i.e. its non-locality and the importance of its higher-order moments) that a model should
satisfy in order to accurately predict mean scalar transport. The current work will inform
future studies with additional complexities, including three-dimensionality, finite Atwood
number, compressibility, and coupling with momentum.

This work is organized as follows. First, an overview of RTI is covered briefly in § 2.
Next, § 3 gives an overview of the mathematical methods used in this work, including:
(1) the generalized eddy diffusivity and its approximation via a Kramers–Moyal
expansion; (2) MFM and its application for finding the eddy diffusivity moments;
(3) self-similarity analysis. Simulation details, including the governing equations and
the computational approach, are given in § 4. Finally, results of several studies on the
importance of higher-order eddy diffusivity moments as well as assessments of suggested
operator forms incorporating non-locality of the eddy diffusivity for mean scalar transport
in RTI are presented in § 5. The results show that non-locality of the eddy diffusivity is
important in mean scalar transport of the RTI problem studied here, and RANS models
incorporating this non-locality result in more accurate predictions than in leading-order
models.

2. Brief overview of RTI

RTI is characterized by spikes (heavy fluid moving into light fluid) and bubbles (light fluid
into heavy fluid). The mixing widths of these spikes and bubbles are denoted as hs and hb,
respectively, and the mixing half-width is defined as h = (hs + hb)/2. The behaviours of
these quantities in RTI are dependent on the Atwood number, defined as

A = ρH − ρL

ρH + ρL
. (2.1)

Here, ρH and ρL are the densities of the heavy and light fluids, respectively. In the limit
of low Atwood number and late time, the mixing layer width is expected to reach a
self-similar state of growth that scales quadratically with time:

h ≈ αAgt2, (2.2)

where α is the mixing width growth rate. The mixing width growth rate can also be viewed
as the net mass flux through the midplane (Cook et al. 2004). In this case, α can also be
written as

α = ḣ2

4Agh
, (2.3)

where ḣ is the time derivative of h. In the limit of self-similarity, these two definitions of
α are expected to converge to the same value.

In a simulation, h can be measured as

h ≡ 4
∫

〈YH(1 − YH)〉 dy, (2.4)

where YH is the mass fraction of the heavy fluid (therefore YL = 1 − YH is the mass
fraction of the light fluid), and 〈∗〉 denotes averaging over realizations and homogeneous
direction x. An alternative definition used in works such as Cabot & Cook (2006) and
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Morgan et al. (2017) is

hhom ≡ 4
∫

〈YH〉 (1 − 〈YH〉) dy. (2.5)

This definition is particularly useful, since it allows h to be determined solely based on
the RANS field. That is, there is no closure problem in determining h with this definition.
Thus this is the h reported in this work.

From these two definitions, a mixedness parameter φ can be defined, which can be
interpreted as the ratio of mixed to entrained fluid (Youngs 1994; Morgan et al. 2017):

φ ≡ h
hhom

= 1 − 4

∫ 〈Y ′
HY ′

H〉 dy
hhom

. (2.6)

In the limit of self-similarity, φ is expected to approach a steady-state value.
A metric for turbulent transition is the Taylor Reynolds number

ReT = k1/2λ

ν
, (2.7)

where k = 〈u′
iu

′
i〉/2 is the turbulence kinetic energy, and λ is the effective Taylor

microscale, approximated by

λ =
√

10νL
k1/2 . (2.8)

Here, the turbulence length scale L can be approximated as 1
5 of the mixing layer width

(Morgan et al. 2017). The large-scale Reynolds number can also be examined (Cabot &
Cook 2006):

ReL = h99ḣ99

ν
, (2.9)

where h99 is the mixing width based on 1–99 % mass fraction. Dimotakis (2000)
determined that the criterion for turbulent transition is when ReT > 100 or ReL > 10 000.

3. Mathematical methods

3.1. Model problem
In this work, a two-dimensional (2-D), non-reacting flow with two species – a heavy fluid
over a light fluid – is considered, with gravity pointing in the negative y-direction. It must
be noted that the behaviour of 2-D RTI is significantly different from three-dimensional
(3-D) RTI, the latter of which is more relevant to problems of engineering interest. It
is well known that while 2-D RTI is unsteady and chaotic, it is not strictly turbulent,
since turbulence is a characteristic of 3-D flows. In addition, 2-D RTI has a faster
late-time growth rate, develops larger structures, and is ultimately less well mixed. These
differences have been studied in RTI by Cabot (2006) and Young et al. (2001), and in
Richtmyer–Meshkov instability by Olson & Greenough (2014).

For this study, 2-D RTI is chosen as the model problem instead of 3-D RTI, since it
is a good simplified setting for understanding non-locality in RTI through the lens of the
MFM. Specifically, 2-D RTI simulations are much less computationally expensive than
those of 3-D RTI, and MFM requires many simulations to attain statistical convergence.
Thus 2-D RTI remains the focus of this work, with the hope that the understanding of
non-locality in this flow could be extended to non-locality in 3-D RTI.

985 A47-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.323


D.L.O.-L. Lavacot, J. Liu, H. Williams, B.E. Morgan and A. Mani

In this 2-D problem, x is the homogeneous direction. In addition, there is no surface
tension, the Atwood number and Mach number (Ma) are finite but small, and the Péclet
number (Pe) is finite but large.

3.2. Generalized eddy diffusivity and higher-order moments
In this work, the effect of non-locality on mean scalar transport is of interest, so analysis
begins with the scalar transport equation under the assumption of incompressibility:

∂YH

∂t
+ ∇ · (uYH) = DH ∇2YH, (3.1)

where u is the velocity vector, and DH is the molecular diffusivity of the heavy fluid.
After Reynolds decomposition and averaging, this becomes

∂〈YH〉
∂t

+ ∇ · (〈u〉〈YH〉) = −∂〈v′Y ′
H〉

∂y
+ DH ∇2〈YH〉. (3.2)

In this work, large Pe (the ratio of advective transport rate to diffusive transport rate) and
small A are assumed. The former assumption means that molecular diffusion is negligible,
and the latter yields 〈ui〉 = 0, allowing the advective term to drop. Equation (3.2) becomes

∂〈YH〉
∂t

= −∂〈v′Y ′
H〉

∂y
. (3.3)

The term 〈v′Y ′
H〉 is the turbulent scalar flux, and this is the unclosed term that needs to be

modelled.
As mentioned previously, one reason why the gradient diffusion approximation used

to model this term is inaccurate is that it assumes locality of the eddy diffusivity. This
assumption can be removed by instead considering a generalized eddy diffusivity that is
non-local in space and time, as demonstrated by Romanof (1985) and Kraichnan (1987).
For 2-D RTI, such a model reduces to

− 〈v′Y ′
H〉( y, t) =

∫∫
D( y, y′, t, t′)

∂〈YH〉
∂y

∣∣∣∣
y′,t′

dy′ dt′. (3.4)

Here, y is the spatial coordinate in averaged space, t is the time at which the turbulent
scalar flux is measured, y′ is all points in averaged space, and t′ is all points in time. This
definition is exact for passive scalar transport, including in the case studied in this work.

This non-local eddy diffusivity can also be viewed as a two-point correlation. This
was first described by Taylor (1922) in homogeneous turbulence. Through Lagrangian
statistical analysis, Taylor derived the following relation between diffusivity and velocity
correlations:

Dij =
∫ ∞

0

〈
vi(t) vj(t + t′)

〉
dt′. (3.5)

Work by Shende, Storan & Mani (2023) has shown that the MFM recovers this Lagrangian
formulation for eddy diffusivity in homogeneous flows. It should be noted that the
above definition is not valid for inhomogeneous RTI (again, the exact definition of eddy
diffusivity for the studied flow is the one in (3.4)), but the intent here is to provide
another interpretation of the MFM that is more aligned with the well-understood two-point
correlations.
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The eddy diffusivity kernel can be approximated by Taylor-series-expanding the scalar
gradient locally about y and t, which results in the following Kramers–Moyal-like
expansion for the turbulent scalar flux as done by Kraichnan (1987) and Hamba (1995,
2004):

−〈v′Y ′
H〉( y, t) = D00( y, t)

∂〈YH〉
∂y

+ D10( y, t)
∂2〈YH〉

∂y2

+ D01( y, t)
∂2〈YH〉
∂t∂y

+ D20( y, t)
∂3〈YH〉

∂y3 + · · · , (3.6)

D00( y, t) =
∫∫

D( y, y′, t, t′) dy′ dt′, (3.7)

D10( y, t) =
∫∫

( y′ − y) D( y, y′, t, t′) dy′ dt′, (3.8)

D01( y, t) =
∫∫

(t′ − t) D( y, y′, t, t′) dy′ dt′, (3.9)

D20( y, t) =
∫∫

( y′ − y)2

2
D( y, y′, t, t′) dy′ dt′. (3.10)

Here, Dmn are the eddy diffusivity moments; the first index, m, denotes order in space,
while the second, n, denotes order in time. This is the form presented in Mani & Park
(2021) and Liu, Williams & Mani (2023).

When the eddy diffusivity kernel is purely local,

D( y, y′, t, t′) = D00 δ( y − y′) δ(t − t′). (3.11)

In this case, D00 is the only surviving moment, while all higher-order moments in
space and time are zero. Any non-zero higher-order moment therefore characterizes the
non-locality of the eddy diffusivity kernel. Thus this expansion implies explicitly a model
form for the turbulent scalar flux that incorporates non-locality of the eddy diffusivity.
Truncating the expansion provides an approximation of 〈v′Y ′

H〉, but with the caveat that
the expansion may not converge. This will be discussed in more detail in § 5.3.1.

Each Dmn provides more information about the eddy diffusivity kernel with increasing
order. For example, D00 represents the volume of the kernel in space–time. The coefficient
corresponding to one higher order in space, D10, provides information about the centroid
of the kernel in space. Then D20 contains information about the moment of inertia of the
kernel in space, D01 contains information about the centroid of the kernel in time, and so
on.

3.3. The macroscopic forcing method
MFM is a method for numerically determining closure operators in turbulent flows (Mani
& Park 2021). Much like a rheometer measures the molecular viscosity of a fluid by
imposing a shear force on the flow, MFM forces the transport equation in a turbulent
flow and extracts the closure operator from its response. Unlike the molecular viscosity,
which is a material property, the turbulent closure operator is a property of the flow, so
MFM measurements of one flow cannot be generalized for all flows; the MFM-measured
closure for one flow cannot be applied exactly as it is to a different flow. However, MFM
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MFM

Forcing
Scalar

transport equation

R
ec

ei
v
er

D
o
n
o
r

Eddy

diffusivity

D (x, t)

Direct numerical simulation

Navier–Stokes

equations

uiρ       + ρ 
∂t

∂YH
∂xi

∂ YH = + sρDH
∂xi

∂YH
∂xi

∂

Figure 1. Diagram of the MFM pipeline.

measurements of one flow can reveal characteristics of the turbulent closure that are
expected be true for a family of similar flows.

Specifically, MFM can be used to determine the RANS closure operator, as shown
in the pipeline diagram in figure 1. In MFM, two simulations are run at once: the
donor and receiver simulations. In this work, the donor simulation numerically solves
the multicomponent Navier–Stokes equations in (4.1)–(4.4). The receiver simulation
‘receives’ ui from the donor simulation, and uses it to solve the scalar transport equation
with a forcing s:

ρ
∂YH

∂t
+ ρ

∂

∂xi
(uiYH) = ∂

∂xi

(
ρDH

∂

∂xi
YH

)
+ s. (3.12)

Ultimately, forcings on the receiver simulation effect a response from the flow, and
measuring this response allows for determination of the eddy diffusivity. In particular,
these forcings are macroscopic. Here, macroscopic quantities are defined as fields that
are unchanged by Reynolds averaging. Mathematically, the macroscopic forcing is such
that s = s̄. This macroscopic nature is crucial to the method, since it does not disturb the
underlying mixing process, which allows for measurement of the closure operator without
changing it. For details, see Mani & Park (2021).

In actuality, the inverse MFM is used to determine eddy diffusivity moments. That
is, instead of the forcings being chosen, certain mean mass fraction fields are chosen.
Numerically, mean mass fractions are enforced in each realization, so the averages
(denoted by ∗̄) described here are in x, the homogeneous direction in space. The forcing
needed to maintain the chosen YH is determined implicitly along the process, and is not
used directly in the analysis.

As an illustration, the measurement of D00 can be considered. According to (3.6),
choosing YH = y (for y between −1/2 and 1/2) results in ∂YH/∂y = 1, and all other
higher-order derivatives are zero. Thus choosing this YH in each realization results in the
realization-averaged and spatially averaged measurement −〈v′Y ′

H〉 = D00.
Measurement of higher-order moments involves similar choices of YH but requires

information from lower-order moments. For example, measuring D10 involves choosing
YH = y2, which results in −〈v′Y ′

H〉 = yD00 + D10. Here, D00 comes from the simulation
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using YH = y. Thus D10 is computed by subtracting yD00 from the 〈v′Y ′
H〉 measurement

from the simulation using YH = y2.
Specifically, the following desired mean mass fractions are used for each moment for y

between −1/2 and 1/2:

YH = y ⇒ D00, (3.13)

YH = 1
2 y2 ⇒ D10, (3.14)

YH = yt ⇒ D01, (3.15)

YH = 1
6 y3 + 1

48 ⇒ D20. (3.16)

From these YH , the needed forcing in each time step is determined numerically:

sk = YH
k
desired − YH

k−1

	t
, (3.17)

where the superscript k denotes the time step number, YHdesired is the mean mass fraction
desired as outlined in (3.13)–(3.16), and 	t is the time step size.

This MFM forcing bears some resemblance to other forcings used in the literature,
such as interaction by exchange with the mean (IEM) (Pope 2001; Sawford 2004). One
main difference between forcings in such methods and MFM is that the purpose of the
latter is to drive the flow to a specified mean gradient, which allows for measurement –
not enforcement – of the eddy diffusivity moments. In other words, in MFM for scalar
transport, the input is a mean scalar gradient, and the output is the eddy diffusivity
moment; in IEM and similar methods, the input is a desired moment (e.g. in IEM, the input
moment is 〈c2〉) and the output is a mixing model. In addition, methods such as IEM use
microscopic forcings, while MFM uses macroscopic forcings, which is a distinguishing
characteristic of the latter method.

To determine D00, D10, D01 and D20, four separate simulations are needed. For each
of these simulations, the moments can be calculated using measurements of the turbulent
scalar flux as follows:

D00 = F00, (3.18)

D10 = F10 − yD00, (3.19)

D01 = F01 − tD00, (3.20)

D20 = F20 − yD10 − 1
2 y2D00, (3.21)

where Fmn denotes the −〈v′Y ′
H〉 measured from the receiver simulation using the forcing

corresponding to the moment Dmn.

3.4. Self-similarity analysis
We perform our analysis in the self-similar regime. First, we define a self-similar
coordinate:

η = y
h(t)

, (3.22)

so that 〈YH〉 is a function of only η. Note that η requires a definition of h(t). From the
previous discussion on the self-similarity of RTI, an appropriate definition is h(t) = αAgt2.
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Through self-similar analysis of (3.6), the eddy diffusivity moments and turbulent scalar
flux can be normalized. Details of this process can be found in Appendix A.

3.5. Algebraic fit to mixing width
Recall that h(t) = αAgt2 is used in the self-similarity analysis. This is valid only for late
time, so the subsequent analyses in this work are all done in this self-similar time frame.
Usually, α can be determined from h(t)/Agt2, where h(t) is computed from the simulation
via (2.5). However, due to the convergence and statistical errors as well as the existence
of a virtual time origin, αAgt2 is not a good representation of h(t) measured in the DNS.
Instead, a fitting coefficient α∗ and virtual time origin t∗ are determined to make a shifted
quadratic fit to h(t) from the simulation:

hfit(t) = α∗Ag(t − t∗)2. (3.23)

With this fit, the normalizations of the turbulent scalar flux and moments become

̂〈v′Y ′
H〉 = 〈v′Y ′

H〉
α∗Ag(t − t∗)

, (3.24)

D̂00 = D00

α∗2A2g2(t − t∗)3
, (3.25)

D̂10 = D10

α∗3A3g3(t − t∗)5
, (3.26)

D̂01 = D01

α∗2A2g2(t − t∗)4
, (3.27)

D̂20 = D20

α∗4A4g4(t − t∗)7
. (3.28)

For exact self-similarity, plots of the measured D̂mn against η must be independent of
time. This expectation sets a criterion to assess the extent to which ideal self-similarity is
achieved. Plots and assessment of the self-similar collapse of the measurements presented
in this work are in Appendix A.

4. Simulation details

4.1. Governing equations
The governing equations solved in this work are the compressible multicomponent
Navier–Stokes equations, which involve equations for continuity, diffusion of mass
fraction Yα of species α (characterized by its binary molecular diffusivity Dα), momentum
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transport, and transport of specific internal energy e:

Dρ

Dt
= −ρ

∂ui

∂xi
, (4.1)

ρ
DYα

Dt
= ∂

∂xi

(
ρDα

∂Yα

∂xi

)
, (4.2)

ρ
Duj

Dt
= − ∂

∂xi

(
pδij + σij

) + ρgj, (4.3)

ρ
De
Dt

= −p
∂ui

∂xi
+ ∂

∂xi

(
uiσij − qj

)
. (4.4)

Here, D/Dt is the material derivative ∂/∂t + ui(∂/∂xi), ρ is density, u is velocity, p is
pressure, and g is gravitational acceleration, active in the −y direction. The viscous stress
tensor σij and heat flux vector qj are respectively defined as

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− μ

2
3

∂uk

∂xk
δij, (4.5)

qj = −κ
∂T
∂xj

−
N∑

α=1

hαρDα

∂Yα

∂xj
. (4.6)

Here, μ is the dynamic viscosity, κ is the thermal conductivity, T is temperature, and hα

is the specific enthalpy of species α.
Component pressures and temperatures of each species are determined using ideal gas

equations of state. Under the assumption of pressure and temperature equilibrium, an
iterative process is performed to determine volume fractions vα that allow for computation
of partial densities and energies. More details on the hydrodynamics equations and
computation of component quantities can be found in Morgan et al. (2018).

Finally, total pressure is determined as the weighted sum of component pressures:

p =
N∑

α=1

vαpα. (4.7)

In general, in these compressible equations, Yα are not passive scalars. However, the
component equations of state are scaled so that a consistent hydrostatic pressure gradient
is maintained across the mixing layer. Thus, in this work, Yα are effectively passive.

4.2. Computational approach
Simulations for 2-D RTI are run using the Ares code, a hydrodynamics solver developed
at Lawrence Livermore National Laboratory (Morgan & Greenough 2015; Bender et al.
2021). Ares employs an arbitrary Lagrangian–Eulerian method based on the one by Sharp
& Barton (1981), in which the governing equations ((4.1)–(4.4)) are solved in a Lagrangian
frame and then remapped to an Eulerian mesh through a second-order scheme. The
spatial discretization is a second-order non-dissipative finite element method, and time
advancement is a second-order explicit predictor–corrector scheme.
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The Reynolds number (more specifically, the kinematic viscosity ν) is set through a
numerical Grashof number, such that

ν =
√

−2gAΔ3

Gr
. (4.8)

Here, Δ is the grid spacing; in the simulations, a uniform mesh is used, and Δ = 	x = 	y.
To ensure that the unsteady structures are properly resolved and for the simulation to
appropriately be considered DNS, Gr should be kept small. A Gr that is too large
results in a simulation with dissipation dominated by numerics rather than the physics.
Morgan & Black (2020) found that past Gr ≈ 12 in the Ares code, numerical diffusivity
dominates molecular diffusivity. For our simulations, we use A = 0.05 and Gr = 1, the
latter of which is in line with the DNS by Cabot & Cook (2006). These choices give
ν = 10−9 m2 s−1. The Schmidt number Sc, defined as ν/DM , is set to unity, so DM =
10−9 m2 s−1.

The Mach number Ma = u/c, where c is the speed of sound, characterizes
compressibility effects of the flow, and is set by the specific heat ratio γ , which is 5/3
in the simulations in this work. The maximum Ma is measured at the last time step to be
approximately 0.03, which is ascertained to be small enough to assume incompressibility.

The Péclet number Pe characterizes the advection versus diffusion rate and is defined as
Re Sc. Here, PeL and PeT are reported, which use a large-scale ReL and the Taylor Reynolds
number ReT , respectively. In the presented simulations, Sc = 1. The two Pe values
are computed in post-processing: PeL is approximately 8000, and PeT is approximately
54. Both are below the criterion established by Dimotakis (2000), suggesting that the
simulated flow is transitional or pre-transitional.

The number of cells in each simulation is 2049 × 2049. The width Lx of the domain is
1, and the height Ly is 1. The boundary conditions are periodic in x and no slip and no
penetration in y.

Initially, the velocity field is zero, temperature is 293.15 K, and pressure is 1 atm.
A top-hat perturbation based on the ones used by Morgan & Greenough (2015) and Morgan
(2022) is imposed on the density field at the interface of the heavy and light fluids:

ξ(x) =
κmax∑

k=κmin

Δ

κmax − κmin + 1

(
cos

(
2πkx + φ1,k

) + sin
(
2πkx + φ2,k

))
, (4.9)

ρ(x, y) = ρL + ρH − ρL

2

(
1 + tanh

(
y − Ly/2 + ξ

2Δ

))
, (4.10)

where φ1,k and φ2,k are phase shift vectors taken randomly from a uniform distribution,
and Ly is the length in y of the domain. Here, the minimum and maximum wavenumbers
are set to κmin = 8 and κmax = 256, respectively.

The stop condition of the simulations is when h is approximately half the domain size in
y. This corresponds to the non-dimensional simulation time τ of 30.84. Here, τ is defined
as t/t0, where t0 = √

h0/Ag, and h0 is the dominant length scale determined by the peak
of the initial perturbation spectrum.

Before MFM analysis was conducted, the results of the donor simulations were
examined. In figure 2(a), mixedness is observed to reach a value of approximately 0.6, but
appears not to have converged yet. Figure 2(b) shows the two definitions of α over time.
The first definition, α = h/Agt2, reaches a value of about 0.05 by the end of the simulation,
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Figure 2. Self-similarity parameters computed from a donor simulation.
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Figure 3. Contours of 〈YH〉 showing self-similarity at late times.

but it does not appear to be converged. The second definition, α = ḣ2/4Agh, is oscillatory,
due to the sensitivity of the time derivative to noise, and it appears to fluctuate about
a value of approximately 0.04. It is acknowledged that this behaviour indicates that the
RTI simulated here is only weakly turbulent. However, it is observed that the flow is still
self-similar at late times. The contour plot of 〈YH〉 in figure 3 exhibits parallel contour lines
after τ ≈ 17, indicating self-similarity at those times. It is also shown in Appendix A that
the mean concentration and normalized turbulent scalar flux profiles exhibit self-similar
collapse after τ ≈ 17, so the presented self-similar analysis is valid.

Figure 4 shows a plot of the algebraic fit for h, described in (3.23). For the simulations
presented here, α∗ is 0.0046, and t∗ is −1.6 × 103. The plot shows a strong quadratic
dependence of h on t at late time, as hfit matches DNS at τ � 17, validating the self-similar
ansatz of h ∼ t2.

To further ensure that the simulations are working as desired, the flow fields of the donor
and receiver simulations can be examined qualitatively. The YH contours at the last time
steps of each simulation are shown in figure 5. The receiver simulation shown is the one
used to compute D00 (where 〈YH〉 = y). Self-similar RTI turbulent mixing is observed
at this time step, where the characteristic heavy spikes are sinking into the lighter fluid,
and the light bubbles rise into the heavier fluid. Both simulations have the same velocity
fields, since the receiver simulation ‘receives’ the velocity field from the donor simulation.
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Figure 4. Black solid line indicates h measured from DNS; red dashed line indicates hfit.
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Figure 5. Contours of YH (black indicates light, white indicates heavy) and velocity vector fields (red arrows)
for (a) the donor simulation and (b) the receiver simulation with s enforcing 〈YH〉 = y. These snapshots are
taken at the last time step.
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Figure 6. Contours of Y ′
H for (a) the donor simulation and (b) the receiver simulation. These snapshots are

taken at the last time step. Note that different colour bars have been used to improve interpretability.

In contrast with the donor simulation, which has a stark black-and-white difference
between the heavy and light fluids, there is a grey gradient of density in the receiver
simulation due to the imposed mean scalar gradient. The fluctuations of YH in each
simulation are also compared in figure 6. The Y ′

H contours are not identical but are
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Figure 7. Moments of eddy diffusivity kernel normalized by appropriate length and time scales. Data
averaged over 1000 realizations and homogeneous direction x, for (a) D00, (b) D10/h(t), (c) D01/t,
(d) D20/h(t)2.

qualitatively very similar. In both simulations, Y ′
H is constrained to the mixing layer. Based

on these observations, it is concluded that the simulations are visually working as intended.

5. Results

5.1. Eddy diffusivity moments
Figure 7 shows normalized MFM measurements of the eddy diffusivity moments D00,
D10, D01 and D20 averaged over 1000 realizations and the homogeneous direction x. Some
expected characteristics of the measured moments are observed.

(i) The leading-order moment is over two magnitudes larger than the molecular
diffusivity (10−9 m2 s−1). The scaled higher-order moments shown are all at least
one magnitude larger than the molecular diffusivity.

(ii) Here, D00 is symmetric and always positive.
(iii) Here, D10 is antisymmetric. This antisymmetry can be understood by interpreting

D10/D00 as the centroid of the eddy diffusivity kernel. Physically, for η > 0, it
is expected that the mean scalar gradient at the centre of the mixing layer (at a
negative distance away) has more influence on the turbulent scalar flux than the
mean scalar gradient at the outer edges, since the mixing layer is growing outwards.
This makes the eddy diffusivity kernel skewed more towards the centre of the
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Figure 8. Moment D00 averaged over different numbers of realizations: (a) 8, (b) 32, (c) 100, (d) 1000.

domain, so D10 < 0 for η > 0. A similar effect occurs for η < 0, which results in
D10 > 0.

(iv) Here, D01 is symmetric and always negative. The latter must be true for the flow to
depend on its history (it does not violate causality).

(v) Here, D20 is symmetric and always positive, as is characteristic of moment of inertia
of a positive kernel.

Based on the magnitudes of the normalized moments, some initial observations on the
importance of each moment can be made. Here, D00 has the highest magnitude of all
the moments, which is expected since it is the leading-order moment. The magnitudes of
D10/h and D01/t are of the order of 10 % of the magnitude of D00, which suggests that they
are non-negligible. On the other hand, the magnitude of D20/h2 is of the order of 1 % of
that of D00, so D20 is likely not an important moment to include in modelling RTI. More
robust studies will be presented in the following subsections to determine the importance
of each of the eddy diffusivity moments.

It is also observed that there is statistical error in the measurements. Due to the chaotic
nature of RTI, the moment measurements contain statistical error, but this error can be
reduced by averaging many realizations. To demonstrate statistical convergence of the
measurements, plots of D00 averaged over different numbers of realizations are included
in figure 8. As the number of realizations increases, the plots become smoother, and
it is found that after 1000 realizations, the rate of reduction in statistical error slows
down significantly. Averaging over this number of realizations results in a smooth D00
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Figure 9. Smoothed moments (dashed red) over raw MFM measurements of moments (solid black). The
moments are taken from the mean data at the last time step of the simulations and are transformed to self-similar
space.

measurement and higher-order moment measurements with acceptably less statistical
error.

Additionally, the higher the order of the moment, the slower its rate of statistical
convergence. Recall that determination of higher-order moments requires information
from lower-order moments. For example, in determining D01, tD00 is subtracted from
F01, the turbulent scalar flux measurement in the simulation associated with D01.
Naturally, there is statistical error associated with both D01 and D00. However, the error
in D00 is amplified by t, so the overall statistical error of D01 increases with time. This
statistical error ‘leakage’ occurs for all higher-order moments. The higher the order of
the moment, the worse the statistical error, since information from more lower-order
moments is needed, so more statistical error is accumulated and amplified. The relatively
high statistical error of the higher-order moments makes it challenging to study their
importance. In particular, taking derivatives of quantities with high statistical error
amplifies the error, so smoother measurements are desired. In this work, the moment
measurements are smoothed using a Savitzky–Golay filter function in Matlab with a
polynomial order of unity and window size 191. These smoothed moments are shown in
figure 9. While it is possible to design an alternative formulation of the MFM that removes
leakage of statistical error from low-order moments to higher-order moments (see Lavacot
et al. 2022), for this 2-D study and for the order of moments considered here, the statistical
convergence is sufficient.
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Figure 10. Non-dimensional non-local time scale and length scale contours: (a) τNL, (b) ηNL. Only
−1 ≤ η ≤ 1 is plotted, since moments are zero outside the mixing layer. Early times (τ < 2) are not plotted
due to transient behaviour.

Using these measurements, non-local time scales and length scales (tNL and LNL,
respectively) can be defined:

tNL = −D01

D00 , LNL =
√

D20

D00 . (5.1a,b)

Note that this analysis can be done only for −1 ≤ η ≤ 1, since the moments are
analytically zero outside the mixing layer.

Non-dimensionally, the non-local time scale is τNL = tNL/t0, and the non-local length
scale is ηNL = LNL/h. Contour plots of the non-dimensionalized non-local time scale and
length scale are in figure 10. Note that τNL scales as τ , so profiles of τNL/τ against η

are also plotted in figure 11 in the self-similar time regime (τ > 17). The scaled profiles
collapse and have centreline value approximately 0.1. This means that the mean fluxes at
some time τ are affected by mean scalar gradients 0.1τ earlier. Figure 12 shows that the
minimum non-local length scale is at the centreline, where ηNL ≈ 0.09. The maximum
length scales occur near the outer edges of the mixing layer: at approximately η = ±0.87,
ηNL ≈ 0.27. This indicates that mean fluxes at the mixing layer edges depend mostly
on mean scalar gradients approximately a quarter of a mixing width away, while mean
fluxes at the centreline depend on mean scalar gradients approximately one-tenth of a
mixing width away; non-locality appears to be stronger at the mixing layer edges than
at the centreline. These non-local properties of the eddy diffusivity for RTI could not be
predicted without direct measurement of the eddy diffusivity moments, which has been
made possible through MFM.

5.2. Assessment of importance of non-local effects

5.2.1. Comparison of terms in the turbulent scalar flux expansion
To aid in the determination of which moments are important for a RANS model, a
comparison of the terms in the expansion of the turbulent scalar flux (3.6) is presented.
These terms involve gradients of 〈YH〉. Instead of using 〈YH〉 directly from the DNS, a
fit to 〈YH〉 is used, since the statistical error in the raw measurement gets amplified by
derivatives in η. That is, the quantities of interest are sufficiently converged for plotting
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Figure 11. Non-dimensional non-local time scale profiles at different times for τ > 17. Lighter lines
correspond to later times; darker lines correspond to earlier times. (a) Unscaled, showing the linear time
dependence of τNL on τ . (b) The collapse of the profiles when scaled by τ .
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Figure 12. Non-dimensional non-local length scale profiles at different times for τ > 17. Lighter lines
correspond to later times; darker lines correspond to earlier times.

but not for operations involving derivatives. Thus an analytical fit to 〈YH〉 is obtained as
follows:

〈YH〉∗ =

⎧⎪⎪⎨⎪⎪⎩
0, if η < −a,∫ η

−a

1

(a2 − η′2)2
exp

(
1

B(a2 − η′2)

)
dη′, if −a ≤ η ≤ a,

1, if η > a,

(5.2)

〈YH〉 = 〈YH〉∗
〈YH〉∗max

, (5.3)

where the integral is determined numerically, and a and B are fitting coefficients. The
coefficients a2 = 1.2 and B = 0.36 are found to give good agreement with the mean
concentration profile from DNS, as shown in figure 13.

The terms on the right-hand side of (3.6) are plotted against the DNS measurement of
the turbulent scalar flux in figure 14. Clearly, the D̂00 term is not enough to capture the
turbulent scalar flux. It is observed that the D̂01 term is significant in magnitude in the
middle of the domain, and the D̂10 term carries importance at the outer edges of the
mixing layer. The term associated with the highest-order moment that was measured,
D̂20, also appears to be of magnitude similar to the other moments, indicating that
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Figure 13. Semi-analytical fit to 〈YH〉 (dashed red) against DNS measurement of 〈YH〉 (solid black).
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Figure 14. Comparison of terms in the expansion of the turbulent scalar flux. Solid black indicates DNS
measurement of turbulent scalar flux; solid blue indicates the D̂00 term; dashed pink indicates the D̂10 term;
dash-dotted green indicates the D̂01 term; dotted orange indicates the D̂20 term.

it may also carry important information about non-locality of the eddy diffusivity.
These preliminary findings indicate that non-locality is certainly important for accurate
modelling of mean scalar transport in this RTI problem, since the higher-order terms in
(3.6) appear non-negligible compared to the leading-order term. It may be tempting to
ascribe physical reasons for the behaviour of the terms plotted in figure 14, but this is
not so straightforward, especially since the full eddy diffusivity kernel for this problem
has not yet been measured. Further, it would be inappropriate to draw conclusions about
importance of each eddy diffusivity moment in a RANS model, since the operator form
must be scrutinized first. A faulty operator form could give misleading implications about
certain eddy diffusivity moments. It turns out that a simple superposition of these terms,
which would represent a truncation of (3.6), does not accurately represent the true eddy
diffusivity kernel and actually leads to divergence of predictions, so such an operator form
would not be appropriate; this will be covered more in depth in § 5.3. Nevertheless, the
results shown here are strong evidence of non-locality of the eddy diffusivity kernel for
the RTI simulated here.
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5.2.2. Comparison of the leading-order model against a local model
To demonstrate the shortcomings of models using purely local coefficients, an MFM-based
leading-order model and the k-L RANS model are compared. The intent of this study is
not to immediately propose a ‘better’ RANS model to replace k-L, nor is it to suggest
that the MFM-based leading-order model is more accurate than the k-L model. In fact,
it is expected that the MFM-based leading-order model will perform poorly, since it
does not include important higher-order moments of eddy diffusivity. Instead, this study
emphasizes the necessity of higher-order moments, and shows how MFM can reveal
incorrect model forms.

In particular, a one-dimensional k-L simulation is run, and the eddy diffusivity and
mean concentration profiles are extracted from the results to be compared to those of the
MFM-based model using the measured D00 that was presented in § 5.1. The k-L simulation
used in this section is implemented in Ares, and details of the implementation are in
Morgan & Greenough (2015) and Morgan (2018). Note that the k-L simulation is used
here for illustration purposes and should not be confused with the 2-D DNS used to obtain
our MFM moments.

The MFM-measured D00 is used for the leading-order MFM-based model:

− 〈v′Y ′
H〉 = D00

MFM
∂〈YH〉

∂y
. (5.4)

To solve this, D00
MFM is obtained from the smoothed MFM measurements and transformed

to self-similar coordinates. The resulting ̂D00
MFM is a function of η = y/hDNS, where

hDNS = α∗
DNSAg(t − t∗DNS)

2 is an algebraic fit to the mixing width from the DNS. The
equation is then solved semi-analytically in conjunction with the mean mass fraction
evolution equation in self-similar coordinates:

−2η
d〈YH〉

dη
= d

dη

(
−̂〈v′Y ′

H〉
)

, (5.5)

−̂〈v′Y ′
H〉 = ̂D00

MFM
d〈YH〉

dη
. (5.6)

The k-L model uses the gradient diffusion approximation for the turbulent flux:

− 〈v′Y ′
H〉 = μt

〈ρ〉 NY

∂〈YH〉
∂y

= D00
k-L

∂〈YH〉
∂y

, (5.7)

where μt = Cμ〈ρ〉L√
2k, and NY is one of the model coefficients set by similarity

constraints derived by Dimonte & Tipton (2006). In particular, this work uses the
coefficient calibration detailed in (Morgan & Greenough 2015), and the coefficients are
chosen to achieve the same α as the DNS. Here, Cμ is unity and NY is 2.47. The k-L
RANS model is solved in spatio-temporal coordinates, and the 〈ρ〉, k and L obtained
from the solution are used to compute μt and, consequently, D00

k-L, which is purely local.

For a meaningful comparison with the MFM-based model, D00
k-L is transformed to D̂00

k-L
according to the self-similar coordinate ξ = y/hk-L, where hk-L = α∗

k-LAg(t − t∗k-L)2. It
must be noted that the h fitting coefficients α∗ and t∗ are not the same between the DNS and
k-L solutions. In this work, α∗

DNS = 0.046, t∗DNS = −1600 s, α∗
k-L = 0.04 and t∗k-L = 1250 s

(t∗k-L is positive due to the relaxation time to the self-similar profiles in the beginning of
the k-L simulation).
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Figure 15. Comparisons of (a) model coefficient from the k-L model with leading-order moment measured
using MFM, and (b) resulting similarity solutions for 〈YH〉. Inset in (a) shows zoomed-in view around η = −1
to highlight divergence of the k-L model from DNS. Solid black indicates DNS measurement; dash-dotted blue
indicates leading-order MFM-based model; dashed red indicates the k-L model.

Figure 15(a) shows the mean concentration profiles computed using each of the two
models. As expected, the MFM-based leading-order model performs poorly, not capturing
the slope of the DNS profile, since that model uses only the leading-order eddy diffusivity
moment and incorporates no information about non-locality of the eddy diffusivity. The
k-L model exhibits divergence from DNS at the outer edges of the mixing layer, since
it is designed to predict a linear 〈YH〉 profile. However, it does capture the slope of the
DNS profile, despite it also using a leading-order closure. In addition, it is observed

in figure 15(b) that the MFM-measured ̂D00
MFM is significantly lower in magnitude than

D̂00
k-L. Here, MFM reveals that the k-L model is using an incorrect model form, since

the D00 that it is using does not match the MFM measurement. In fact, the k-L model
is using this higher-magnitude coefficient in order to compensate for the error in model
form and achieve a linear mean concentration profile with a slope that matches the DNS.
Despite this compensation, the k-L model still disagrees with the DNS results at the outer
edges of the mixing layer, which are important for capturing the average reaction rate
in reacting flows as in ICF. A more accurate RANS model would more closely match
the eddy diffusivity moments measured by MFM. As results will show shortly, the gap
between the leading-order MFM-based model 〈YH〉 and the DNS measurement would be
bridged by inclusion of higher-order moments, which would introduce information about
the non-locality of the eddy diffusivity.

5.3. Assessment of non-local operator forms
In this subsection, two RANS operator forms using information about the non-locality
of the eddy diffusivity are presented. These are the explicit and implicit operator forms;
the former is a truncation of the turbulent scalar flux expansion (3.6), and the latter will
be presented shortly. It must be stressed that the intention of the following studies is not
to propose a new RANS model. Ultimately, a RANS model should not depend on direct
MFM measurements that can be retrieved only from impractically many DNS. Instead,
these studies are performed to further assess the importance of each of the eddy diffusivity
moments, determine which combinations of moments best enhance the performance of
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a RANS model, and examine the differences between the explicit and implicit operator
forms. The aim of these studies is to inform development of more predictive RANS models
for RTI, not to suggest that these are the exact models that should be used.

In addition, D20 will not be included in the following studies. This is mainly due to the
high statistical error in the measurement that makes it difficult to ascertain whether errors
in the results are due to this statistical error or solely the addition of the moment to the
model. From the comparison of terms in § 5.2.1, it is expected that D20 is not as important
as D10 and D01 to include in a RANS model. This should be tested in future work when a
more statistically converged measurement is achieved for D20, ideally in a 3-D analysis.

5.3.1. Explicit operator form
The explicit operator form is a truncation of the expansion of the turbulent scalar flux,
as defined in (3.6). Hamba (1995, 2004) has examined this form in the context of shear
flows. Transformation of this expansion to self-similar coordinates and substitution into
(3.3) results in

−2η
d〈YH〉

dη
= d

dη

[(
D̂00 − D̂01

) d〈YH〉
dη

+
(
−ηD̂01+D̂10

) d2〈YH〉
dη2 + D̂20 d3〈YH〉

dη3 + · · ·
]

,

(5.8)
which can be solved numerically for 〈YH〉. The D̂mn used in the numerical solve are
the smoothed, normalized moments. To determine which eddy diffusivity moments are
important in constructing RANS models for RTI, different combinations of D̂mn terms
are kept in (5.8), and the results are compared to DNS. In the numerical solve, (5.8)
is discretized on a staggered mesh, and derivatives are computed using central finite
differences. A matrix–vector equation is assembled and solved for 〈YH〉 with Dirichlet
boundary conditions.

Figure 16 shows the turbulent scalar fluxes computed using the explicit operator form,
and figure 17 shows the corresponding mean concentration profiles. Again, it is apparent
that the leading-order moment is not enough to capture the turbulent scalar flux. The
combination using D00, D10 and D01 – the moments deemed most important in § 5.2.1
– gives the best match to the DNS measurement.

It is particularly remarkable that a converged turbulent scalar flux can be obtained using
D00, D10 and D01. As mentioned previously, it is known that (3.6) may not converge. That
is, the expansion must be taken to infinite terms to remove error; truncating the expansion
can result in significant error. This is analogous to a Kramers–Moyal expansion, which
cannot be approximated adequately by more than two terms, after which it requires infinite
terms for convergence (Pawula 1967; Mauri 1991). To understand how adding terms to
(3.6) can result in greater error, one can consider the eddy diffusivity kernel associated
with each term. The leading-order moment is associated with a delta function kernel,
as it is purely local. However, when (3.4) is replaced by (3.6), an integral operator is
replaced with a high-order differential operator. This means that the non-local effects are
approximated by derivatives of delta functions; see Liu et al. (2023) for more details. It
has been shown that in general, the eddy diffusivity kernel is not a superposition of finite
delta functions, as it is smooth (Mani & Park 2021; Liu et al. 2023). Therefore, truncation
of the expansion does not match the shape of the eddy diffusivity kernel, leading to errors
in prediction of the turbulent scalar flux. While the D00, D10 and D01 combination did not
diverge, adding D20 does lead to divergent results for these reasons, so this combination is
not presented here.
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Figure 16. Turbulent scalar flux predictions using the explicit operator form. Moments used in the model are:
(a) D00; (b) D00, D10; (c) D00, D01; (d) D00, D10, D01.

Another issue with the explicit operator form is its numerical implementation. In
spatio-temporal space, some terms associated with higher-order moments involve mixed
derivatives (e.g. the term D01(∂2/∂t ∂y)), which would undergo another spatial gradient
when substituted into (3.3). Such terms are difficult to handle numerically. In this work,
the model is implemented in the more convenient self-similar space, but ultimately, a
spatio-temporal model would be developed, as it is more practical. It is thus pertinent to
work towards a better method to incorporate non-local information in a RANS model that
does not encounter the Kramers–Moyal-like convergence issue and is easier to implement.

5.3.2. Implicit operator form and the matched moment inverse
In this section, an implicit operator form is introduced as a solution to both the increasing
error when adding terms from the turbulent scalar flux expansion and implementation
challenges associated with the explicit operator form. Recall that the explicit operator form
fails to match the shape of the eddy diffusivity kernel without infinite terms of the turbulent
scalar flux expansion. In this implicit operator form, the aim is to match the shape of the
eddy diffusivity kernel, instead of using the truncated expansion for the turbulent scalar
flux. Using the four moments that have been measured, this model form is[

1 + a01 ∂

∂t
+ a10 ∂

∂y
+ a20 ∂2

∂y2 + · · ·
]

(−〈v′Y ′
H〉) = a00 ∂〈YH〉

∂y
, (5.9)

where amn( y, t) are model coefficients fitted corresponding to each of the eddy diffusivity
moments Dmn measured using MFM. The bracketed operator on the left-hand side is the
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Figure 17. Mean concentration profile predictions using the explicit operator form. Moments used in the
model are: (a) D00; (b) D00, D10; (c) D00, D01; (d) D00, D10, D01.

matched moment inverse (MMI) operator. The way this model form is designed to match
the eddy diffusivity kernel shape is detailed in Liu et al. (2023). In addition, this form
is significantly easier to implement numerically in spatio-temporal space, since it can be
directly time-integrated using explicit methods. In this way, it is also easy to add more
terms with higher-order moments, as it simply requires extension of the operator.

In self-similar coordinates, this becomes[
1 + â01

(
1 − 2η

d
dη

)
+ â10 d

dη
+ â20 d2

dη2 + · · ·
]

(−̂〈v′Y ′
H〉) = â00 d〈YH〉

dη
, (5.10)

where it is found through self-similar analysis that

â00 = 1
α∗2A2g2(t − t∗)3

a00, (5.11)

â01 = 1
t − t∗

a01, (5.12)

â10 = 1
α∗Ag(t − t∗)2 a10, (5.13)

â20 = 1
α∗2A2g2(t − t∗)4

a20. (5.14)

The coefficients are determined through a process illustrated as follows in
spatio-temporal coordinates for simplicity. If one wants to construct a model in the form
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(5.9), then four equations must be formulated to determine the four coefficients. This
is done by using measurements from the four simulations used to determine the four
moments D00, D10, D01 and D20. For example, the first equation results from substitution
of F00 for −〈v′Y ′

H〉 and the associated desired ∂〈YH〉/∂y; the remaining three equations
follow, using the other three moments:[

1 + a10 ∂

∂y
+ a01 ∂

∂t
+ a20 ∂2

∂y2

]
F00 = a00, (5.15)[

1 + a10 ∂

∂y
+ a01 ∂

∂t
+ a20 ∂2

∂y2

]
F10 = a00

(
y − 1

2

)
, (5.16)[

1 + a10 ∂

∂y
+ a01 ∂

∂t
+ a20 ∂2

∂y2

]
F01 = a00t, (5.17)[

1 + a10 ∂

∂y
+ a01 ∂

∂t
+ a20 ∂2

∂y2

]
F20 = a00 1

2

(
y − 1

2

)2

. (5.18)

This system of equations is then rearranged into a matrix equation MMMIa = b, which
is solved for the coefficients in vector a = (a00, a10, a01, a20)T. Note that this matrix
equation is constructed over every point in space and time, so a = a( y, t). In this work,
analysis is done in self-similar coordinates, in which a = a(η). If one wishes to construct
a model with different moments, then the MMI operator and equations must be modified
accordingly. For example, a model using only D00 and D10 would have an MMI operator
of the form 1 + a10(∂/∂y) and use only the first two equations (with the a01 and a20 terms
removed). Thus models using different combinations of moments would use different
MMI coefficients amn.

To summarize, for this implicit operator form, the following system of equations is
solved in self-similar coordinates:

LMMI

{
−̂〈v′Y ′

H〉
}

= â00 d〈YH〉
dη

, (5.19)

d
dη

(
−̂〈v′Y ′

H〉
)

= −2η
d〈YH〉

dη
, (5.20)

where LMMI is the MMI operator constructed using some combination of moments, such
as in (5.10). Numerically, the following system is solved:

P
(
−̂〈v′Y ′

H〉
)

= â00 Dη〈YH〉, (5.21)

Dη

(
−̂〈v′Y ′

H〉
)

= −2ηDη〈YH〉, (5.22)

where P is the matrix representing the numerical MMI operator, and Dη is the matrix
representing the numerical derivative with respect to η. This can be rewritten as a block
matrix–vector multiplication:

Mx =
[

P −â00 Dη

Dη 2ηDη

] [
−̂〈v′Y ′

H〉
〈YH〉

]
= b, (5.23)

where b is a vector representing the right-hand side of (5.22), with the proper boundary
conditions enforced. In this study, zero gradient boundary conditions are used for
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Figure 18. (a) Determinant of MMMI over η and (b–d) MMI coefficients âmn over η for the implicit operator
form using D00, D10 and D01.

the turbulent scalar flux, and Dirichlet boundary conditions are used for the mean
concentration. The system is solved using finite differences on a staggered mesh.

Presented in this work are the determinants of the MMI matrix and resulting amn for two
different combinations of moments. Figure 18 shows that with the combination of D00,
D10 and D01, the determinant of the MMI matrix is positive for all η, so the amn are all
well-behaved. This is indicative of good model form. On the other hand, figure 19 shows
that with the combination of D00 and D01, the determinant of the MMI matrix crosses
zero, so the amn contain singularities that effect poor RANS predictions (observable in
plots presented later). Singular matrices arising in the MMI solve for a certain form of the
implicit operator form may indicate that form is poor, in the sense that the combination
of moments does not make a good RANS model. Since MMI appears to be sensitive to
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Figure 19. (a) Determinant of MMMI over η and (b,c) MMI coefficients âmn over η for the implicit operator
form using D00 and D01. Here, MMMI is singular at the η at which its determinant crosses zero.

the information that it takes in to determine the implicit operator coefficients, one must
take special care and choose a model form that avoids this issue. It is found that MMI
determinant zero crossings do not occur for any of the moment combinations tested in this
work other than the D00 and D01 combination, but it may happen with combinations of
other higher-order moments not measured here.

Turbulent scalar fluxes computed using the implicit operator form are shown in
figure 20. The implicit operator form’s turbulent scalar flux prediction using just D00 is
identical to that of the explicit operator form, by construction. It is apparent that adding
either D10 or D01 alone is insufficient. As noted earlier, adding D01 leads to a particularly
poor prediction due to singular MMI matrices at some η. The best match to DNS is attained
using the combination D00, D10 and D01. In fact, it is evident that the implicit operator
form using D00, D10 and D01 predicts the turbulent scalar flux more accurately than the
explicit operator form using the same moments. This is because the implicit operator form
is designed to match the shape of the eddy diffusivity kernel, and the explicit operator
form may not be accomplishing this.

These trends in the explicit and implicit operator forms can be observed again in
the predictions of the mean concentration profile, shown in figure 21. In particular, the
implicit operator form using D00, D10 and D01 gives a very good prediction of the
mean concentration that nearly overlaps the DNS measurement. For a clearer comparison
of the explicit and implicit operator forms using these moments, figure 22 shows the
derivatives of the DNS- and model-computed 〈YH〉. The implicit operator form predicts a
magnitude and shape closer to the DNS measurement than the explicit operator form does.
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Figure 20. Turbulent scalar flux predictions using the implicit operator form. Moments of eddy diffusivity
used in the model are: (a) D00; (b) D00, D10; (c) D00, D01; (d) D00, D10, D01.

In particular, the implicit operator form captures the shape of the tails much better than
the explicit operator form.

6. Conclusion

In this assessment, it is determined that non-locality must be considered in developing
more predictive models for RTI. The studies presented in this work are facilitated using
MFM, a numerical tool for precisely measuring closure operators. Four of the eddy
diffusivity moments of RTI (D00, D10, D01 and D20) are measured, and it is demonstrated
that the higher-order moments, which contain information about the non-locality of the
eddy diffusivity kernel, should not be neglected when constructing models for RTI.

Specifically, it is determined that D00, D10 and D01 are the most important moments for
constructing a model for RTI. Two methods for constructing RANS models using these
moments are presented. First, an explicit operator form, based on a Kramers–Moyal-like
expansion derived by taking the Taylor series expansion of the scalar gradient in the
generalized eddy diffusivity, is described and tested. While incorporation of higher-order
moments in the explicit operator form results in more accurate predictions than a
leading-order model, there exist several issues. One problem is that the expansion used for
the explicit operator form may not converge, so addition of higher-order moments leads to
less accurate predictions. Another problem is that the explicit operator form is difficult to
implement numerically.

Thus an implicit operator form is presented to address these issues with the explicit
operator form. Since an implicit operator form involves an invertible matrix operator, it
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Figure 21. Mean concentration profile predictions using the implicit operator form. Moments of eddy
diffusivity used in the model are: (a) D00; (b) D00, D10; (c) D00, D01; (d) D00, D10, D01.
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Figure 22. Derivatives of 〈YH〉 computed using DNS (solid black), an explicit operator form (dashed blue),
and an implicit operator form (dash-dotted red).

is easier to implement than an explicit operator form. In addition, the proposed implicit
operator form is designed to match the shape of the eddy diffusivity kernel via the
MMI operator, in contrast to the explicit operator form, which truncates a non-converging
Kramers–Moyal expansion. It is shown that the implicit operator form exhibits a marked
improvement in predictions over the explicit operator form.

Incorporation of non-locality into RANS models via these operator forms comes
with several challenges. For one, development of any new model must consider scalar
realizability. While this is not thoroughly explored in this work, since an actual model
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is not yet proposed, one approach to preserve realizability is suggested by Braun &
Gore (2021), where the turbulent scalar flux is rewritten as an advection-like term and
added to the original advection term in order to enforce physical mean component mass
fractions; a conservative numerical scheme maintains realizability. Further, the new model
must be tested on more complex RTI for it to be useful in practical settings such as
ICF. This includes assessment of the model for 3-D, finite Atwood and compressible
(Richtmyer–Meshkov) flows. The model should be tested in the same validation cases
as other models for RTI, such as the tilted rig (Denissen et al. 2014) and gravity reversal
(Banerjee, Gore & Andrews 2010). Based on these evaluations, which may also involve
new MFM measurements where the method is extended to more complex flow regimes,
the new model can be amended, as is the usual process of turbulence model development.
This is left for future work, when a new model is developed based on the findings presented
here.

One obstacle encountered in these studies is the inherent statistical error in the DNS
computations. In particular, the higher-order moments contain high statistical error due
to buildup of error from the lower-order moments on which they depend. Because of
this, it is admittedly difficult to draw definite conclusions about the effect of higher-order
moments beyond the first-order moments. That is, due to the statistical error, it is currently
unclear if inclusion of moments beyond first order in a RANS model would significantly
improve its predictions, or if just the first-order temporal and spatial moments along with
the leading-order moment are sufficient. This motivates development of a technique to
accelerate the statistical convergence of these higher-order moments. Such a method could
also be used to study the effect of other higher-order moments that were not measured
in this present work, since they would have suffered from high statistical error with the
current method.

It must be stressed that the results in this work are for 2-D RTI and should not be applied
directly to three dimensions. As noted previously, the third spatial dimension significantly
impacts the turbulent physics of RTI. In particular, 3-D RTI has a lower growth rate
than 2-D RTI, so lower magnitudes of the eddy diffusivity moments are expected in
three dimensions. Despite the quantitative difference in physics between two and three
dimensions, they are qualitatively similar in the RANS space, so trends in the shapes of
the eddy diffusivity moments are expected to persist in three dimensions. In other words,
the form of the turbulent scalar flux closure in three dimensions is expected to be the same
as in two dimensions, but the coefficients would be different. These expected trends are
yet to be confirmed, and future work should involve applying MFM to 3-D RTI.

Through this work, an understanding of non-locality in 2-D RTI has been developed.
It has been shown that incorporation of information about the non-locality of the eddy
diffusivity may greatly improve the accuracy of a RANS model. This work demonstrates
this by testing operators using MFM measurements of the non-local eddy diffusivity. In
practice, a RANS model for RTI would not have to rely on these MFM measurements
directly; one would not have to perform many MFM simulations to construct a model. In
other words, MFM should be seen as a diagnostic tool rather than the means for building
the actual model. The ultimate goal is to develop an improved, more predictive model for
RTI by incorporating non-local information, which the present work has demonstrated to
be significant for accurate prediction of mean scalar transport in 2-D RTI.
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Appendix A. Non-dimensionalizations

To determine the non-dimensionalizations in (3.24)–(3.28), a self-similarity analysis is
performed. The following self-similarity coordinate is used:

η = y
hfit(t)

= y
α∗Ag(t − t∗)2 . (A1)

To perform transformations to this self-similar space, all derivatives are written in terms
of η:

∂

∂t
= − 2η

t − t∗
d

dη
, (A2)

∂

∂y
= 1

α∗Ag(t − t∗)2
d

dη
, (A3)

∂2

∂t ∂y
= − 2

α∗Ag(t − t∗)3

(
∂

dη
+ η

d2

dη2

)
. (A4)

To non-dimensionalize the eddy diffusivity moments, (3.6) is substituted into (3.3):

∂〈YH〉
∂t

= ∂

∂y

(
D00 ∂〈YH〉

∂y
+ D10 ∂2〈YH〉

∂y2 + D01 ∂2〈YH〉
∂t∂y

+ D20 ∂3〈YH〉
∂y3 + · · ·

)
. (A5)

The equation is then transformed to self-similar space:

− 2η

t − t∗
d〈YH〉

dη
= 1

α∗Ag(t − t∗)2
d

dη

[
1

α∗Ag(t − t∗)2 D00 d〈YH〉
dη

+ 1
α∗2A2g2(t − t∗)4

D10 d2〈YH〉
dη2

− 2
α∗Ag(t − t∗)3 D01

(
d〈YH〉

dη
+ η

d2〈YH〉
dη2

)
+ 1

α∗3A3g3(t − t∗)6
D20 d3〈YH〉

dη3 + · · ·
]

. (A6)
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Figure 23. Unscaled moments at different times over x. Dimensions of the moments are as follows:
D00 is m2 s−1; D10 is m3 s−1; D01 is m2; and D20 is m4 s−1. Red profiles are from early times, and cyan
profiles are from late times, when the flow is self-similar. Lighter lines correspond to later times; darker lines
correspond to earlier times.

Rearranging,

−2η
d〈YH〉

dη
= d

dη

[
1

α∗2A2g2(t − t∗)3
D00 d〈YH〉

dη

+ 1
α∗3A3g3(t − t∗)5

D10 d2〈YH〉
dη2

− 2
α∗2A2g2(t − t∗)4

D01
(

d〈YH〉
dη

+ η
d2〈YH〉

dη2

)
+ 1

α∗4A4g4(t − t∗)7
D20 d3〈YH〉

dη3 + · · ·
]

. (A7)

This reveals non-dimensionalizations for the eddy diffusivity moments. The prefactors
to the derivatives of 〈YH〉 on the right-hand side are denoted as the normalized eddy
diffusivity moments D̂mn.

The turbulent scalar flux scales with the leading-order term in (3.6). Substitution
of the non-dimensionalization for D00 (3.25) into the leading-order term in (3.6) and
transformation to self-similar coordinates gives the scaling for the turbulent scalar flux:

− 〈v′Y ′
H〉 ∼ α∗Ag(t − t∗) D̂00 d〈YH〉

dη
. (A8)
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Figure 24. Self-similar collapse of moments. All D̂mn are dimensionless. Red profiles are from early times,
and cyan profiles are from late times, when the flow is self-similar. Lighter lines correspond to later times;
darker lines correspond to earlier times.
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Figure 25. Self-similar collapse of turbulent scalar flux. Here, −̂〈v′Y ′
H〉 is dimensionless. Red profiles are

from early times, and cyan profiles are from late times, when the flow is self-similar. Lighter lines correspond
to later times; darker lines correspond to earlier times.

Figure 23 shows the unscaled moments measured directly from the MFM simulations.
The profiles are taken from the portion of the simulation where the flow is self-similar
(τ � 17). It is obvious that without normalizing the moments as described above, there
is no self-similar collapse. The moments are scaled and plotted against η in figure 24
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Figure 26. Mean concentration profiles at different times. Red profiles are from early times, and cyan profiles
are from late times, when the flow is self-similar. Lighter lines correspond to later times; darker lines correspond
to earlier times.

to demonstrate the self-similar collapse. The normalized turbulent scalar flux and mean
concentration profiles are shown in figures 25 and 26, also showing self-similar collapse.
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T. Postelnicu), p. 493. VSP.

SAWFORD, B.L. 2004 Conditional scalar mixing statistics in homogeneous isotropic turbulence. New J. Phys.
6 (1), 55.

SHARP, R.W. JR. & Barton, R.T. 1981 Hemp advection model. Tech. Rep. Lawrence Livermore Laboratory.
SHENDE, O.B., STORAN, L. & MANI, A. 2023 A model for drift velocity mediated scalar eddy diffusivity in

homogeneous turbulent flows. J. Fluid Mech. (accepted). arXiv:2310.16372.
SHIRIAN, Y. 2022 Application of macroscopic forcing method (MFM) for revealing turbulence closure model

requirements. PhD thesis, Stanford University.
SHIRIAN, Y. & MANI, A. 2022 Eddy diffusivity operator in homogeneous isotropic turbulence. Phys. Rev.

Fluids 7, L052601.
STEINKAMP, M.J., CLARK, T.T. & HARLOW, F.H. 1999b Two-point description of two-fluid turbulent

mixing – I. Model formulation. Intl J. Multiphase Flow 25 (4), 599–637.
STEINKAMP, M.J., CLARK, T.T. & HARLOW, F.H. 1999a Two-point description of two-fluid turbulent

mixing – II. Numerical solutions and comparisons with experiments. Intl J. Multiphase Flow 25 (4),
639–682.

TAYLOR, G.I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 (1), 196–212.
YOUNG, Y.-N., TUFO, H., DUBEY, A. & ROSNER, R. 2001 On the miscible Rayleigh–Taylor instability: two

and three dimensions. J. Fluid Mech. 447, 377–408.
YOUNGS, D.L. 1994 Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov

instabilities. Laser Part. Beams 12 (4), 725–750.
ZHOU, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II.

Phys. Rep. 723–725, 1–160.

985 A47-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2310.16372
https://doi.org/10.1017/jfm.2024.323

	1 Introduction
	2 Brief overview of RTI
	3 Mathematical methods
	3.1 Model problem
	3.2 Generalized eddy diffusivity and higher-order moments
	3.3 The macroscopic forcing method
	3.4 Self-similarity analysis
	3.5 Algebraic fit to mixing width

	4 Simulation details
	4.1 Governing equations
	4.2 Computational approach

	5 Results
	5.1 Eddy diffusivity moments
	5.2 Assessment of importance of non-local effects
	5.2.1 Comparison of terms in the turbulent scalar flux expansion
	5.2.2 Comparison of the leading-order model against a local model

	5.3 Assessment of non-local operator forms
	5.3.1 Explicit operator form
	5.3.2 Implicit operator form and the matched moment inverse


	6 Conclusion
	Appendix A. Non-dimensionalizations
	References

