GENERALIZED SOLUTIONS OF AUTONOMOUS ALGEBRAIC DIFFERENTIAL EQUATIONS

ΒY

LEE A. RUBEL¹

ABSTRACT. In an earlier paper, the author introduced the notions of N-solutions and IN-solutions of algebraic differential equations (ADE's). Here it is shown, in contradistinction to the situation for $C^{"}$ solutions, that every N-solution of an ADE is an N-solution of an autonomous ADE. The corresponding result also holds for IN-solutions.

By an ADE, we mean an equation of the form

(1)
$$P(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0,$$

where P is a polynomial, with complex coefficients, in its n + 2 variables. We often write

(2)
$$P = P(y_{-1}, y_0, y_1, \dots, y_n),$$

and think of y_{-1} as the independent variable x, and $y_{i+1} = (d/dx)y_i$ for i = 0, 1, ..., n. In this way, P becomes a differential polynomial.

It is a well-known fact that if u(x) is an analytic function that satisfies an ADE, then it satisfies some *autonomous* ADE, i.e. an equation (1) where P is independent of $y_{-1}(=x)$.

In [2], it was shown that the ADE

(3)
$$y'^2 = x^2 4y(1-y)$$

has a C^1 solution y = u(x) that does *not* satisfy any autonomous ADE. In the present paper, we show that this bad situation is rectified if one considers *generalized* solutions in the sense of [3]. We recall the definitions. First, u is called an N-solution of (1) if there is a set Ω of differential polynomials such that u is an actual solution of the system $\Omega = 0$ of ADE's and if $P \in \rho(\Omega)$, where $\rho(\Omega)$ denotes the radial differential ideal (see [1]) generated by Ω . Since we only briefly mention IN-solutions u (which could be *distributions*), we refer the reader to [3] for details about them. The idea is that some iterated integral of u should be an N-solution of a modification of (1). (Here "N" stands

'The author's research was partially supported by a grant from the National Science Foundation.

Received by the editors February 28, 1985.

AMS Subject Classification Numbers (1980): 34A34.

[©] Canadian Mathematical Society 1985.

for "Nullstellensatz" and "IN" for "Integrated Nullstellensatz".) With minor changes, our results carry over to algebraic *partial* differential equations. For simplicity, we take here the domain of the independent variable to be a compact interval I in \mathbb{R} .

THEOREM. If u is an N-solution of an algebraic differential equation, then it is an N-solution of an autonomous algebraic differential equation. The corresponding result holds also for IN-solutions.

PROOF. Let u be an N-solution of (1), where we choose P to be of the smallest possible order, and of the lowest degree within that order. Let dP/dx denote the derivative of P as a differential polynomial, i.e.

(4)
$$\frac{\mathrm{d}P}{\mathrm{d}x}(y_{-1}, y_0, \dots, y_n, y_{n+1}) = P_{-1} + P_0 \cdot y_1 + P_1 \cdot y_2 + \dots + P_n \cdot y_{n+1}$$

where $P_j = \partial P / \partial y_j$ for j = -1, 0, 1, ..., n. In this way, for any $v(x) \in C^{\infty}(I)$, we have

(5)
$$\frac{\mathrm{d}}{\mathrm{d}x}P(x,v(x),v'(x),\ldots,v^{(n)}(x)) = \frac{\mathrm{d}P}{\mathrm{d}x}(x,v(x),v'(x),\ldots,v^{(n+1)}(x))$$

Now let $R = R(y_0, y_1, \dots, y_{n+1})$ be the resultant on x of P and dP/dx

(6)
$$R = \operatorname{Res}_{x}\left[P, \frac{\mathrm{d}P}{\mathrm{d}x}\right].$$

It is easy to show that u is an N-solution of the autonomous ADE, R = 0, but we shall first show that R is not the zero polynomial. (See the first few pages of [4: Part II] for the facts we shall use about resultants.) Here, we are thinking of our differential polynomials as lying in $\mathbb{C}(y_0, y_1, \ldots, y_n)[x]$, i.e. as polynomials in xwhose coefficients are rational functions of y_0, y_1, \ldots, y_n . In this context, a "constant" is such a polynomial that is independent of x.

We claim that R is not the zero polynomial. If it were, then P and dP/dx would have to have a common nonconstant factor, say Q. Extracting as many factors of Q as possible, we would have

(7)
$$P = Q^{s}S, \frac{\mathrm{d}P}{\mathrm{d}x} = Q^{t}T; \quad s, t \ge 1,$$

where (Q, S) = (Q, T) = 1. Now if s were to equal 1, we would have

(8)
$$\frac{\mathrm{d}P}{\mathrm{d}x} = S \frac{\mathrm{d}Q}{\mathrm{d}x} + Q \frac{\mathrm{d}S}{\mathrm{d}x} = Q'T,$$

from which it would follow that dQ/dx would be divisible by Q. This is impossible (since Q is not a constant) as the following argument shows.

For then, by (5), for every polynomial v(x),

$$\frac{\mathrm{d}}{\mathrm{d}x}Q(x,v(x),v'(x),\ldots,v^{(n+1)}(x))$$

L. A. RUBEL

would be divisible by

$$Q(x, v(x), v'(x), \ldots, v^{(n+1)}(x)).$$

But this last term is a polynomial in one complex variable, and hence must be a constant. But by results of elementary interpolation theory, there is, for every $x_0 \in \mathbb{C}(x_0 \neq 0)$ and every (n + 1)-tuple $(z_0, z_1, \ldots, z_{n-1}) \in \mathbb{C}^{n+2}$, a polynomial v(x) (of degree $\leq 2n + 2$) such that

(9)
$$\mathbf{v}^{(j)}(0) = 0$$
 and $\mathbf{v}^{(j)}(x_0) = z_j$ for $j = 0, 1, ..., n + 1$.

We then would have

(10)
$$Q(x_0, z_0, z_1, \ldots, z_{n+1}) = Q(0, 0, \ldots, 0),$$

so that Q would actually be a constant in \mathbb{C} , contrary to fact.

Thus, we would have to have s > 1. Now, letting Ω be the set of differential polynomials that make *u* be an N-solution of (1), we would have $P = Q^s S \in \rho(\Omega)$, and thus $QS \in \rho(\Omega)$, since $(QS)^s = S^{s-1}(Q^s S) \in \rho(\Omega)$ since $\rho(\Omega)$ is a *radical* differential ideal. But then *u* would be an N-solution of QS = 0, which is impossible since QS is of the same order as *P*, but of lower degree than *P*.

Thus, we have established that R is not the trivial zero polynomial. By the nature of the resultant, R is free of x—i.e. R = 0 is an autonomous ADE. Now R belongs to the algebraic ideal generated by P and dP/dx. A fortiori, R belongs to $\rho(P)$. Hence $R \in \rho(\Omega)$, and thus u is an N-solution of the autonomous ADE, R = 0. The corresponding result for IN-solutions follows from the same proof, with a little extra attention to the orders of the derivatives involved. We omit the details.

References

3. ——, Generalized solutions of algebraic differential equations, J. Diff. Eq., to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 WEST GREEN STREET URBANA, IL 61801

374

^{1.} Irving Kaplansky, An Introduction to Differential Algebra, Paris 1957 (2nd ed. 1976).

^{2.} Lee A. Rubel, Solutions of algebraic differential equations, J. Diff. Eq. 49 (1983), pp. 441-452.

^{4.} B. L. van der Waerden, Moderne Algebra, Berlin 1931.