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On the stratification and induced flow in an
emptying-filling box driven by a plane vertically
distributed source of buoyancy
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A theoretical model is presented for the steady multi-layered flow induced by a plane
vertically distributed buoyancy source producing a turbulent wall plume in a ventilated
box. While aspects of the stratification and rate of fluid exchange between box and
exterior have been studied previously, the streamline pattern and velocity field have not
been considered until now, despite having potentially important practical implications
for achieving comfort in naturally ventilated buildings and for the indoor spread of
airborne contagions. The boundary condition at the wall for each layer is established
by deducing the turbulent entrainment rate. Using conformal mapping techniques and
Poisson’s integral theorem, closed-form solutions for the streamfunction of the induced
flow in each layer are established. While the flow near the ceiling was overlooked in
the classic model for the multi-layered stratification, after considering the possible flow
scenarios, the stratification is re-evaluated herein by incorporating an entraining ceiling
current. With a markedly thinner top layer, the refined stratification matches well with
the available experimental observations, the restrictions we place on the applicability
of the model overcoming the previous over-prediction in the number of interfaces. The
magnitude of the dimensionless flow velocity, independent of the wall buoyancy flux and
physical scale of the box, decreases significantly with the number of layers. Three types
of layer, each with a distinct induced flow pattern, are distinguished and their implications
for room airflow considered. Notably, the flow in the base layer represents a continual
and smooth flushing of air between the inlet opening and the wall plume, whereas an
intermediate layer is almost entirely comprised of near-stagnant air.
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1. Introduction

Many buoyancy sources that occur in nature and the built environment are vertically
distributed. Examples include a wall exposed to sunlight, a wall separating a room on
fire from one at risk, a panel heater in a room and a vertical submerged ice wall of
a glacier (Heiselberg & Sandberg 1990; Linden 1999; Kerr & McConnochie 2015).
The wall plume that develops adjacent to such a plane source, also referred to as a
natural convection boundary layer, has been investigated extensively for an infinite wall
in unbounded environments (George Jr. & Capp 1979; Tsuji & Nagano 1989; McBain,
Armfield & Desrayaud 2007; Abedin, Tsuji & Hattori 2009). These studies primarily
focus on the details of the flow within the wall plume. Motivated by the spread of
airborne contaminants, such as a virus from a common cold or influenza, Loganathan
& Hunt (2019) examine the flow induced in the ambient by a turbulent wall plume and
develop an analytical solution that shows clearly delineated regions of accelerating and
decelerating flow. Herein, we develop a closed-form solution for the complex pattern
of stratified flow induced by a turbulent wall plume in a ventilated room, sharing the
same motivation to enhance our understanding of airflow and contaminant movement in
naturally ventilated rooms.

Turbulent wall plumes have also been intensively studied in confined spaces such as in a
box in which the vertical plane source covers an entire internal wall of area H x L, with H
denoting the box height. This situation has clear practical applications, for example to the
heating of a room. As a successor of the original ‘emptying—filling-box” model proposed
by Linden, Lane-Serff & Smeed (1990), who considered a vertical line source extending
from floor to ceiling in a ventilated container, Cooper & Hunt (2010) studied both sealed
and ventilated boxes with a vertical plane source. By extending the ‘filling-box’ theory of
Baines & Turner (1969), they found that in a sealed box, both the transient and asymptotic
flow features, such as the descent of the ‘first front” and uniform heating at large time, were
qualitatively similar to those produced by a localised source on the base. In a ventilated
box, with openings at the base (of area per unit length @;) and top (of area per unit length
ay), however, multiple layers could form due to the continuous supply of buoyancy over
the whole box height. By assuming that these layers have the same depth, 4, the number
of interfaces n was acquired in Cooper & Hunt (2010) by solving

504\’ (A 1
- (Z =) = (1.1)
4\3 oaH nn+1)3
where the effective area (per unit length) of the box openings is
A =2 e canal (cuan)® + (can® ™12 (1.2)

and « denotes the entrainment coefficient of the wall plume. In (1.2), the dimensionless
coefficients ¢, and ¢; account for the pressure loss at the upper and lower openings,
respectively. The buoyancy jump across each density interface was then determined by
calculating the increase of buoyancy along the wall plume within a layer over the depth
h. Caudwell, Flor & Negretti (2016) considered the case of a thermally heated wall in a
sealed box, extending the constant-buoyancy-flux wall-plume analysis of Cooper & Hunt
(2010) to a wall of constant temperature. Beyond this knowledge of the stratification and of

the associated rate of buoyancy-driven fluid exchange through the openings go (m> s=1),
little else was previously known about the flow in the box, including the velocity field and
streamline pattern induced by the wall plume within the individual layers.

With the boundary conditions being acquired from the entrainment rate at the plume
perimeter, Hunt & Dyke (unpublished observations) deduced a closed-form solution for
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the potential flow induced in a ventilated box, with openings at top and base, by a
horizontal line source of buoyancy located on its base. Their solution approach was
based on the Schwarz—Christoffel transformation which mapped each rectangular layer
of the stratification into an upper half-plane. The present paper carries forward their idea
by applying this methodology to the more complex stratification produced by a plane
vertically distributed buoyancy source.

Beyond solving for the flow pattern in such an emptying—filling box, a further
contribution of the present work is to relax a crucial assumption that underlies (1.1),
namely, that all layers are of equal depth. It can be readily justified that for a stratification
of n 4 1 layers, n lower layers have the same depth since the volume flow rate of the wall
plume in each always increases from zero to the ventilation rate gy (m> s~!). However,
inasmuch as the wall plume in the uppermost layer, i.e. the (n + 1)th layer, has the distinct
behaviour of impinging with and spreading laterally along the ceiling, the depth of this
layer cannot be determined straightforwardly. To close their formulation, Linden et al.
(1990) and Cooper & Hunt (2010) assumed that the uppermost layer had the same depth
as the layers below. Analysing the stratification without the above assumption is one of the
key goals of the present paper.

In controlled laboratory experiments, releases of saline solution are routinely used as
the buoyancy source in a freshwater ambient and it is worth mentioning that with such a
vertically distributed buoyancy source of either a planar or a line geometry, the number of
layers has never been reported to exceed three (Linden et al. 1990; Cooper & Hunt 2010;
Gladstone & Woods 2014). Instead, below the freshwater—saline interface, Linden et al.
(1990) and Cooper & Hunt (2010) described a stably stratified region with alternating high
and low buoyancy gradients, whereas Gladstone & Woods (2014) reported a region of
near-constant gradient, i.e. of linearly varying density. Gladstone & Woods (2014) adopted
a long thin vertical cylinder as their buoyancy source and this distinction of geometry with
the planar source makes like-for-like comparisons between the results questionable. As
Linden et al. (1990) and Cooper & Hunt (2010) pointed out, factors such as vertical mixing
and instability may cause a deviation from the theoretically predicted state of multiple
(n > 2) layers. In addition to there being fewer layers than predicted by the classic model,
a characteristic we offer insight into based on a revised model for the stratification (§ 6), it
would appear that these layers are generally not as sharp as those achieved with a localised
point source producing a classic turbulent plume. Gladstone & Woods (2014) and, more
recently, Bonnebaigt, Caulfield & Linden (2018) proposed different models to account for
the stably stratified region, both hypothesising that the wall plume detrains continually
over its height. Despite the debate above, we retain some aspects of the classic model of
multiple layers by Linden et al. (1990) to derive the induced flow solution (before deriving
a refined form for the stratification and the associated induced flow). This is firstly because,
if the actual stratification is regarded as a deviation from the multiple-layer state (predicted
by (1.1) for equal-depth layers or by our revised model in § 6), the induced flow derived
according to the classic model of stratification is expected to approximate the real flow.
Secondly, within each homogeneous layer, the induced flow is potential and can be solved
for conveniently, which is beneficial for practical application.

The remainder of this paper is organised as follows. In §2 the main results of the
classic stratification induced by a plane vertically distributed buoyancy source are briefly
reviewed. In § 3 the boundary conditions for the induced flow problem are determined by
obtaining the entrainment rate along the wall plume. The streamline pattern is then derived
in § 4 via conformal mapping techniques. Following a discussion in § 5 on the actual flow
expected near the ceiling, in § 6, the near-wall flow in the uppermost layer is analysed
by considering both the vertical sidewall plume and horizontal ceiling jet components.
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Figure 1. Schematic showing a vertical section through a box with height H and width W, coordinate system
and stable stratification established by a turbulent wall plume from a vertically distributed buoyancy source
on the wall (left). The stratification induces a volume flow rate go through openings in the base and top. The
darkening grey scale indicates regions of increasing buoyancy.

A consequence of this analysis is that the multiple layers do not necessarily have equal
depth. In § 7, the streamfunction for the stratification with a ceiling jet is deduced, followed
by a discussion on the patterns and controlling parameters. This solution is then extended
to arbitrary locations of openings with finite widths. Finally, conclusions are drawn in § 8
where we focus on implications to room ventilation.

2. Wall plume and stratification

Consider a volume of incompressible fluid within a box of horizontal dimensions W x L
and height H, with rectangular openings at the upper and lower corners, as shown in
figure 1. The upper and lower openings connect the interior of the box to a quiescent
exterior environment of uniform density pg. The left wall of the box emits a constant
buoyancy flux per unit area x (m? s~>) towards the interior. The dimension L, normal to
the page in figure 1, is assumed to be sufficiently large that the time-averaged turbulent
convection can be considered as two-dimensional. The flow variables are referred to
hereafter with the adjective ‘time-averaged’ omitted for convenience. The developments
that follow assume that a displacement flow is established, i.e. unidirectional outflow at
the top opening and inflow at the base opening without interfacial mixing. Hunt & Coffey
(2010) establish the critical Froude number at the horizontal plane of the outflow opening
that corresponds to transition from unidirectional to bidirectional flow (see also Wise &
Hunt 2020) and the maximum Froude number at the inflow opening for which mixing
on the interface by the inflow can be considered to be negligible, and thereby identify
constraints on the openings and room geometry for which displacement flow is possible.
In practical terms, these constraints manifest as lower opening areas that exceed (by a
factor of three or greater) upper opening areas and for the turbulent plume that forms from
the outflow to be forced or pure, rather than lazy.
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Denoting y as the vertical coordinate with origin at the base of the wall, a thin buoyant
layer or plume with width b(y) will form and rise against the left wall. In the application
of primary interest, namely, to the buoyancy-induced flow in a room, such a wall plume
is expected to be turbulent except for the small laminar segment near the base of the
wall (Heiselberg & Sandberg 1990; Linden 1999). This plume entrains the ambient
fluid through the turbulent eddying motions at its perimeter. We focus exclusively on
Boussinesq plumes wherein the density change is so slight that its only significant effect is
to modify the body force term in the vertical momentum equation into g’ = g(p. — p)/ 0,
where p and p, denote the local density in the plume and environment, respectively, and
g is the acceleration due to gravity. Hereafter g’ is referred to as the buoyancy of the
plume. Similarly, we define the buoyancy of the environment external to the plume as
g, = &(po — pe)/ po-

Following the classic turbulent plume model of Morton, Taylor & Turner (1956), for
simplicity ‘top-hat’ profiles are adopted to approximate the vertical velocity and buoyancy
distributions across the plume. In this model, the entrainment velocity U,, representing
the horizontal velocity of fluid entrained into the plume, is assumed to be proportional to
the vertical plume velocity v at the same height, i.e.

U, = av, 2.1)

where the entrainment coefficient for a wall plume is chosen to be ¢ = 0.025. This value
is the midpoint of the range « € [0.02, 0.03] proposed by Cooper & Hunt (2010) based on
experimental measurements. With the molecular diffusion, turbulent transport and wall
shear stress neglected, the integral mass, momentum and buoyancy balances for the plume
cross-sections are

dbv dbv? be! dbvg’ _ bugdp,

— =V, = g s =
dy dy dy po dy

cf. Cooper & Hunt (2010). While Kaye & Cooper (2018) show how the wall shear stress
modifies the profiles across the plume, our focus herein is on the development of a
first-order model for the induced flow. As such, we make the simplification of neglecting
the shear stress. Based on the modelling framework we develop (§§ 2 and 3), wall shear
stress could be readily incorporated at a later stage.

According to Linden et al. (1990) and Cooper & Hunt (2010), n horizontal density
interfaces will form in the steady state, with the relationship between n and the
dimensionless effective area given by (1.1). The wall plume within each layer rises and
horizontally intrudes to form the layer above, where a new wall plume generates and
develops in the same manner. This gives rise to the stable layered stratification depicted
in figure 1. Thus, the conservation relations (2.2a—c) can be applied to the wall plume
in any layer to solve for the plume velocity and buoyancy variations with height as well
as the buoyancy of the layers. Since the plume volume flux in each layer, except for the
uppermost, always increases from zero to the ventilation flow rate, go, all n lower layers
must have an identical depth, hg. The depth %; of the top layer may be different, as we
explore in §§ 5 and 6, and is related to hg as follows

X (2.2a—c)

hy = H — nhy. (2.3)
Linden et al. (1990) and Cooper & Hunt (2010) both assumed
hi = ho, (2.4)

which predicted multiple layers, all of equal depth. However, in the three-layer
stratification observed in Cooper & Hunt (2010), their figure 6, while the two lower layers
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are of similar depth, the top layer is considerably thinner. In the present work, this classic
model of stratification will be adopted, at first to derive the induced flow field and then a
refined model for the stratification.

2.1. Non-dimensionalisation

To proceed, we non-dimensionalise (2.2a—c) based on the scalings

— by = 2BHM3 VB = bo? = o B2
7 X X (2.5a—d)

f=bvg =Hyxf*, y=H)y",

where g, m and f represent the specific mass, momentum and buoyancy fluxes,
respectively, and the starred variables their dimensionless counterparts. The corresponding
characteristic velocity and buoyancy scales are therefore o~ '/3H'/3 x1/3 and « =23 H~1/3
Xz/ 3, Finally, the dimensionless width of the box, denoted as 2a = W/H, is equivalent to
the box aspect ratio, A.

Hereafter, all variables are dimensionless unless stated otherwise. With the superscript
(-)* omitted for convenience, the dimensionless conservation equations for the wall plume
are

dg m dm gqf df 1

=—, — ==, = (2.6a—c)
dy ¢ dy m dy
For the source conditions g =m =f = 0 at y = (j — 1)hg (counting from the base layer

where j = 1), the solution of (2.6a—c) for the jth layer is

g=cily— (= Dhol*?, m=14clly— (j— Dhol*?,
f=y—(—Dhy, b=3aly—(j— Dhol,

where ¢; = 3+/100/20 ~ 0.70 to two significant figures (2 s.f.). Details of the solution of
(2.6a—c) that leads to (2.7a—d) can be found in Cooper & Hunt (2010). Since conservation
of volume requires gg to be equal to the dimensionless volume flux across any horizontal
section of the box, g can be acquired by calculating the plume volume flux at an interface
height. Thus,

(2. 7a—d)

4/3
g0 = q(ho) = cihy”, (2.8)
where the depth of each of the (n 4 1) layers
ho =1/(n+1), (2.9)

is yet to be determined. The number of interfaces n can be calculated by combining (2.8)
with the relationship

1 12 R24 (] 12
_4 ay) =2 (Y (2.10)
qo - (XH 0 ge y - (XH gg’j bl .
j=1

where A and H have dimensions of length, and g/e’ ; denotes the buoyancy in the jth layer.
Details on the derivation of (2.10) are given, for example, in Linden et al. (1990) who
assume that Bernoulli’s principle is valid inside and outside the box. While we prescribe
g, .1 = 0 as the buoyancy of the base layer, the layer buoyancy increases upwards with a
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common difference of g’(h) between successive layers. Since, from (2.7a-d), the plume
buoyancy is

g =rflg=c'ly—(— Dhol™'3, 2.11)

the buoyancy of the layers must follow
g i=0G—De'hy'? j=1,.n+1. (2.12)

By substituting (2.8) and (2.12) into (2.10), the relation (1.1) determining the stratification
in Cooper & Hunt (2010) is recovered. With n known, the ventilation flow rate is then
determined by substituting /g from (2.9) into (2.8).
By differentiating the plume volume flux in (2.7a—d) with respect to height, the
entrainment rate in the jth layer is determined as
dg

4 . 1/3
Ue = — = zcily— (j— Dhol’", (2.13)
dy 3

which leads to the boundary condition for the induced flow at the left boundary.

3. Formulation for the induced flow

Following the classic assumption, the flow induced by the plume motion is treated as a
potential flow (e.g. Taylor 1958; Kotsovinos 1977; Yih 1980). Whilst this assumption is
weakest near the plume perimeter, a wall or an interface (see § 7.6) where there may be
a strong shear, in the bulk of the box interior where velocity gradients are anticipated to
be weak, this well-proven approximation is expected to provide an appropriate model for
the flow. Each layer, with dimensions & x 2a (h being either hg or i), will be considered
in turn after applying the coordinate translation (x;, y;) = (x —a,y — (j — 1)hg) which
shifts the jy, layer to the centred location, as shown in the left-hand side of figure 2. In the
following analysis, the subscript (-); is omitted for convenience. Within each rectangular
layer, the streamfunction satisfies the Laplace equation

V2y =0, 3.1

where v scales with o ~!/3H*3 x /3 The plume against the left wall (figure 1) is treated
as a single-sided ‘sink line’ which captures the effect of entrainment on the induced flow,
and is approximated as being distributed along the wall since the wall plume is very thin.
The strength of the sink sheet, I"(y) = di/dy, that quantifies the volume flux into the wall
plume, must be equal to the entrainment rate. Hence,

d
Y_ . 3.2)
dy
which, on referring to (2.13), indicates that at the left boundary of the j;, layer
¥ = — ey, (3.3)

where ¥y denotes the value of the streamfunction at the base of the wall plume in this layer.
Also, on account of the no-penetration condition at the walls and across the interfaces, the
streamfunction is constant along such boundaries, except where it changes abruptly owing
to inflow, either from the exterior or the wall plume in the layer below.

Since all intermediate layers are identical according to the description of the
stratification in §2, there are three types of layer: base, intermediate and top.
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Figure 2. The translation of the j;, layer to the centred location (a) and the conformal mapping of this layer,
under the mapping w = sn(z/C; k), to the upper half-plane (b).

Furthermore, to be compatible with the classic assumption of equal-depth layers, it is
proposed that once the wall plume turns through a right angle to form a horizontal current
at the ceiling, it flows towards the upper opening without any fluid exchange with the
ambient. Thus, the depth of the top layer must be identical to the other layers in order that
the volume flow rate of the ceiling current be equal to the ventilation flow rate. With the
streamfunction also being constant along the upper boundary, the top layer has the same
boundary conditions as the intermediate layers.

Assuming, without loss of generality, ¥» = 0 along the base of the box, the induced flow
in the base layer must satisfy the boundary conditions

V=—cpy*? onx=-a&0<y<h
Y =0 on —a<x<a&y=0 3.4
Y = —qo on other boundaries.

Similarly, the boundary conditions for any intermediate layer and the top layer are

v =—cy’? onx=-a&0<y<h

3.5
Y =—qo on other boundaries, 3-5)

where the lower-left corner is thereby treated as a potential flow point source of
strength go.

4. Solution via conformal mapping

To acquire the streamline pattern for the induced flow, it will simplify the problem
significantly to map the rectangular domain of each layer to an upper half-plane, as
illustrated in figure 2, as Poisson’s integral formula immediately provides us with the
solution in the half-plane. With z = x 4 iy denoting the original complex plane, where
i = +/—1, the inverse mapping from the upper half-w-plane, where w = u + iv, to the
z-plane, as a special case of the Schwarz—Christoffel transformation, is

w
1
7= C/o T e o (4.1)

Taking the inverse of (4.1), the conformal mapping to the upper half-plane is w =
sn(z/C; k), where sn is the Jacobian elliptic sine function with modulus k. The four vertices
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of the rectangle are mapped in such a way that —a + ih +— —1/k, —a +— —1,a+> 1 and
a + ih — 1/k (Driscoll & Trefethen 2002, chapter 2). According to the correspondences
of the vertices, k and the coefficient C can be determined from

a/C=sn"'(1;k) and (a+ih)/C =sn"'(1/k; k), (4.2a,b)
which implies
h  KWN1-k)

E = K(k) and C = %,

where K (k)

! 1
- dr
/0 VA =21 —k22)
4.3)

is the complete elliptic integral of the first kind. For a given layer aspect ratio h/(2a), k is
solved for using the bisection method, after which C is determined. With ¥ (w) denoting
the streamfunction on the w-plane, from the standard result szw = D(2) VV%II/ (Driscoll
& Trefethen 2002), where D(z) = |d sn(z) /dzl2 #0, it is deduced that szvllf =0 in the
upper half of the w-plane. Thus, the form of governing equation for the streamfunction is
unchanged through the mapping.

The boundary conditions change accordingly through the mapping. On the mapped
boundary, i.e. the real axis of the w-plane, they become

1
J— < _——
q0 u X
. —1 4/3 1
W, 0) = { —erl=iCon~ W + @l — <u< 1 (4.4)
0 —1<u<l1
—q0 u>l,
for the base layer, and for every other layer
1
q0 X
= 1
‘1/(147 O) —cl[—i(Csn_l(u) +a)]4/3 _% <u<-—1 (45)
—q0 u>—1.

With the boundary conditions along the real axis known, ¥ is given by the Poisson integral
formula

v [T WE0)
Hence,
v —1/k -1 1 1/k 00
W(u,v)=—<f F1d5+/ des+/ Fsds+/ F4ds+/ Fsds>,
Bl —00 —1/k —1 1 1/k

4.7)

where the integrand in each term is determined solely by the boundary condition on the
corresponding interval, as given in (4.4) and (4.5). Mapped and translated back to the
original rectangular domain, the streamfunction in the jy, layer is

V(z) =¥ (sn((z—20)/C; k), (4.8)
where zo = a + i(j — 1)hyp.
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Figure 3. Induced flow patterns driven by a plane vertically distributed buoyancy source in a
square emptying—filling box (A = 1) with the classic high- and low-level opening configuration. The
equal-layer-depth stratification model of Linden ez al. (1990) and Cooper & Hunt (2010) is adopted. The step
between two adjacent streamlines is Ay = 0.025. Arrows indicate the general direction of flow. Dashed lines
indicate interface positions. (a) Two-layer stratification, n = 1. (b) Three-layer stratification, n = 2.

4.1. Flow pattern

Streamlines for the induced flow solution (4.7) in a square box are plotted in figure 3 for (a)
two-layer and () three-layer stratifications. The base layer is characterised by what may be
regarded as a ‘smooth horizontal flush’: fluid entering through the lower opening moves
nearly horizontally across the region (from right to left) thereby continuously flushing
the layer. On approaching the left-hand wall, the induced flow tilts upwards before being
entrained into the wall plume. Meanwhile, common to each layer above is an induced flow
motion that is concentrated near the wall, adjacent to which is a region of near-stagnant
fluid.
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Prior to exploring these flow patterns further, we proceed by questioning and
subsequently relaxing the classic assumption of equal-depth layers (2.4). This allows for a
refined prediction of the stratification whose induced flow we then evaluate and assess.

5. Ceiling flow regimes

Uncertainty regarding the precise details of the interaction between the wall plume and
the ceiling necessitates the introduction of assumptions to model the outflow from the
impingement region. The model for the classic stratification (Linden et al. 1990) implicitly
assumes that, upon impingement with the ceiling (at y = 1), the entire body of buoyant
fluid transported vertically in the wall plume is turned through a right angle to propagate
as a horizontal current without further fluid exchange with the ambient. Although a useful
model, the actual flow scenario near the ceiling may be quite different. Indeed, in the flow
observations made by Cooper & Hunt (2010), layers of identical depth were not evident as
the top layer was markedly thinner.

If one considers where the wall plume impinges with the ceiling, we note that the
vertical momentum flux of the plume is reduced to zero and the volume flux transported
by the plume provides the ‘source’ volume flux for the horizontal current. Hunt & Dyke
(submitted), who consider the induced flow established by a localised line source at
the base of an emptying—filling box, initially proposed to model the outflow from the
impingement region into the ambient in two ways: first, in the spirit of a simplified model,
as a potential flow source; however, this simplification means that the buoyant outflow need
not remain attached to the ceiling as anticipated in practice; and second, as a turbulent
ceiling jet, since entrainment can occur across the perimeter of the current if the shear is
strong enough to overcome the stable stratification. Herein, we adopt the latter approach.

A final uncertainty we raise concerns the relative strengths of the ceiling current and
the draining flow. If, for example, the upper opening area is too small to sustain the entire
volume flux of the ceiling current, the excess fluid will impinge on the right-hand wall
and potentially drive an overturning motion, as described by Kaye & Hunt (2007) for
a current originating from the impingement of a point source plume. Remarkably little
is currently known about overturning motions associated with steady flows in ventilated
boxes and whilst ventilation flows driven by a range of different plume geometries have
been investigated (Linden et al. 1990; Cooper & Linden 1996; Linden & Cooper 1996;
Hunt & Linden 2001, 2005; Cooper & Hunt 2010), to our knowledge these motions have
not been reported in any detail. Moreover, acquiring meaningful experimental results on
the ceiling flow scenarios is extremely difficult for a number of reasons. For example,
when pumping saline solution through a porous wall to produce the plume in an aqueous
environment (cf. Cooper & Hunt 2010; Gladstone & Woods 2014; Bonnebaigt et al. 2018)
it is nearly impossible to maintain a uniform buoyancy flux. During the course of such an
experiment the developing stratification reduces the flux of buoyancy from the wall and
so the measurements made at a suitably large time are not those driven by the intended
source conditions.

However, among the few, the experiments of Cooper & Hunt (2010) did suggest
a representative ceiling flow regime. They observed that the ceiling current was well
established without any indication of mixing associated with an energetic impingement at
the ceiling, or evidence of overturning at the side wall opposite the plume source. Thus, in
the flow regime they observed, the wall plume turned smoothly upon reaching the ceiling
and the resulting current drained out totally through the upper opening without inducing
an overturning motion.
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In the modelling that follows (§ 6) we adopt this description of the flow, wherein we
assume that net entrainment is present along the perimeter of the ceiling current. This
assumption will be justified in § 7.6 on account of the high shear rate that we deduce from
the induced flow solution.

6. Stratification with an entraining ceiling current

As proposed in § 5 and depicted in figure 1, for the top layer of the ceiling flow regime
the sum of the volume fluxes entrained horizontally by the wall plume and vertically by
the ceiling current over the interval [0, 2a] must be equal to the ventilation flow rate go.
Defining g..(x) as the volume flow rate in the ceiling current, we therefore write

Gee(x = 2a) = qo. (6.1)
Continuity at the top-left corner requires

Geex=0)=q(y=1), g, ax=0=g¢(y=1, delx=0)=b(y=1),
(6.2a—c)

where g/, (x) and d..(x) denote the reduced gravity and the depth of the ceiling current.
Thus, the depth-averaged horizontal velocity of the current uc.(x) = gee(x)/dee(x). To
establish the dynamical condition of the ceiling current we define the ratio of the inertia
and buoyancy forces at its source (x = 0) by means of the Froude number

Froom M@ (6.3)

/2.0(0) dec(0)

With reference to (2.7a—d), (2.11) and (6.2a—c) we have

4e1\"?
Fry = (3—> ~ 226. (6.4)

o

Thus, given Frg > 1 it is reasonable to neglect the role of the buoyancy force in the
development of the ceiling current and proceed under the assumption that the dynamical
aspects of the current are approximated by those of a horizontal wall jet.

The scalings and empirical relationships of Rajaratnam (1976) for a horizontal plane
wall jet enable the local volume flux g..(x) and depth d..(x) of the ceiling current to be
expressed as

X — Xys

dce(0)

Gee(*) = €2Gce(0) and  deo(x) = c3(x — xyy), (6.5a,b)

respectively. In (6.5a,b), the constant c; = 0.26 (Rajaratnam 1976) and x,; denotes the
virtual source location of the ceiling current. By substituting x = 0 into (6.5a,b), the
location of the virtual source is

dc.(0) _ 3ahy

Xys = . 6.6
vs C% 46% ( )

Substituting for (2.8) and (6.5a,b) into (6.1), and recalling that 41 = 1 — nhy, yields
(1= nho)* + (4cda/ Gy ) (1 = o) — g = 0. ©6.7)
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Re-deriving (2.10) without making the assumption of equal-depth layers gives
1/2

A ! S
0= g (/0 8e dJ’) =Sl Zg/e,jho + 8o np1h : (6.8)
j=1

Substituting for (2.8) and (2.12) into (6.8) leads to the following cubic in hg:
2cia? (H/A)? b + (n* + n)hg — 2n = 0. (6.9)

To proceed, we note that on specifying n and a = W/(2H), the two equations (6.7) and
(6.9) form a closed system for the two unknowns /g and A/H.

At this stage it is useful to highlight some key distinctions between the classic model
(1.1) and the approach taken herein. Distinct from other emptying—filling-box flows, whose
steady states do not exhibit a dependence on the lateral dimension of the box (e.g. Linden
et al. 1990; Linden & Cooper 1996; Gladstone & Woods 2001; Hunt & Linden 2001,
2005), (6.7) clearly indicates such a dependence. Additionally, (1.1) only permits solutions
for A/H that correspond to integer values of n. Our model overcomes this limitation given
that a range of different {A/H, a} corresponds to a given n on account that the layer depths
adjust due to entrainment by the ceiling current.

6.1. Predictions of layer depth and constraints on model

Before solving for the induced flow, it is informative to examine the refined stratification
pattern and assess how it differs from the equal-depth-layer stratification. Figure 4 shows
the correspondence between the number of layers n in a box with aspect ratio A = W/H
and effective area A/H. A point of note is that A/H cannot be prescribed a priori, but
rather there is a unique value of A/H that corresponds to a given number of interfaces
for a box of aspect ratio .A. From a practical perspective, e.g. in a ventilated room, A/H
cannot be specified precisely, even if a;, a, and H can be. The underlying reason for
this is that the discharge coefficient associated with the upper opening, ¢, in (1.2), has
been shown by Hunt & Holford (2000) and Holford & Hunt (2001) to depend on the
local Richardson number for flow through that opening — a quantity whose value is not
known at the outset and would require a complex set of measurements in order to estimate.
Moreover, on activating the wall plume, the value of ¢, will continuously adjust as the flow
develops toward a steady state until (A, A/H) falls onto a nearby contour of n = constant
(figure 4); ¢; will also adjust as the Reynolds number of the flow through the lower opening
increases (Ward-Smith 1980). While for n > 2 the stratification is insensitive to the box
aspect ratio, decreasing the effective opening area A/H tends to increase the number of
layers. To achieve at least three layers requires A/H < 0.007. Moreover, as the number of
layers increases, the incremental reduction in A/H that gives rise to an additional layer
becomes increasingly small (figure 4).

Figure 5 illustrates how the layer depths, /1 (top layer) and Ay (lower layers), vary with
n in a square box. The predictions of our model are shown (4 solid line, Ao dot-dashed
line) together with those of Linden et al. (1990) (dashed line). The depth of the lower
layer we predict is greater than that predicted in Linden et al. (1990) and the difference
decreases with n. Evidently, the top layer is significantly thinner than the lower layers
and thins on increasing n. The prediction of a markedly thinner top layer in this refined
stratification model aligns well with the observations in Cooper & Hunt (2010). Our model
predicts that 71 — 0 as n — 00. As such, for sufficiently large n, the top layer would
only marginally exceed the depth of the ceiling current, turbulent entrainment into which
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Figure 4. Plot of the solution of (6.7) and (6.9) showing the correspondence between the number of layers n
with aspect ratio A and effective area A/H.

could then erode the interface in practice. In such a case, our model breaks down and the
potential coalescence of layers may offer a reason as to why the number of layers observed
in experiments is limited to just a few. Insisting d..(1) < A, with reference to (6.5a,b),
we obtain the following constraint:

2

C
hi(A=1 — 2 ~0.07. 6.10
A=D> T 3q/d (6.10)

Equivalently, an upper bound on the aspect ratio, A = A4y, for which our model is valid
may be acquired on letting de (A;nax) = A1 in (6.5a,b), from which

Apas = by (ﬂ) . (611)

=)

Substituting this and a = A,,4,/2 into (6.7), we obtain A, (n = 1) = 3.25 for a two-layer
stratification and A, (n = 2) = 1.83 for a three-layer stratification.

For a square box (A = 1), the constraint 2; (A = 1) > 0.07 (6.10) restricts the number
of interfaces to no more than three (see 41-curve in figure Sa). Cooper & Hunt (2010) used
a box with dimensions 60 cm x 41.2 cm x 15 cm (W x H x L) giving A = 1.46. For this
geometry we require i1 (A = 1.46) > 0.10 which, with reference to figure 5(b), indicates
that at most two interfaces should be possible — this is indeed what Cooper & Hunt (2010)
observed.

7. Induced flow pattern
7.1. Solution for the refined stratification

The approach developed in §§ 2—4 remains valid for the new model of stratification (§ 6),
but the boundary conditions for the top layer developed earlier need to be modified.
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Figure 5. The reduction in the dimensionless layer depth with the number of interfaces. The depths of lower
layers ho and top layer A are plotted from the solution of (6.7) and (6.9). The Linden et al. (1990) prediction,
(1.1), is displayed for comparison. The red line, with scale given on the right-hand side vertical axis, plots the
variation of A/H with n: (a) A = 1; (b) A = 1.46, the aspect ratio used in the experiments of Cooper & Hunt
(2010).

Since the gradient of the streamfunction along the upper boundary is equal to the
entrainment flux of the ceiling current, the boundary conditions for the top layer are

v = —cpy*3 onx=—-a&0<y<
Vo= on —a<x<a&y=mh (7.1)
= —qo on other boundaries.

On applying the conformal mapping (4.1), the physical boundaries map to the real axis of
the w-plane with the following boundary conditions

1 .
4/3 2(Csn™ " (u) + a — ihy) 1 1
—ciooh _ ——
e \/ 3arhy a2 Tk
1
—c1[—i(Csn~ ' (w) + a)]*/? ——<u< -1
b _ |al=iCsn™w +a) p .
—q0 —1<u<l1/k
2(Csn~! —ih 1
N (Csn™ (u) +a—ihy) L us ik
3ah c%

Substitution of (7.2) into (4.7) yields the solution for the induced flow in the top layer.
Although now of an increased height, the solution for the flow in any of the lower layers
is unchanged from that developed in § 4. The induced flow solution for the stratification
in a square box with ceiling current is plotted in figures 6(a)-6(c) for n =1, 2 and 3,
respectively.

7.2. General flow pattern

A first point of note is that the general pattern of flow in each type of layer, types which
we shall refer to as the top, intermediate and base layers, remains unchanged regardless of
the number of interfaces n (figure 6). To assist the following discussion, the distribution of

912 Al1-15


https://doi.org/10.1017/jfm.2020.1034

https://doi.org/10.1017/jfm.2020.1034 Published online by Cambridge University Press

Z. Yu and G.R. Hunt

(b) 1.0 M

0.8 F

(@) 10

0.8

0.6 ¢ 0.6
Y

0.4« 0.4 F

0.2 ¢ 02F

0 0.5 1.0
X

Figure 6. Induced flow patterns in a square emptying—filling box (A = 1) driven by a plane vertically
distributed buoyancy source with ceiling current; (a) n = 1, (b) n = 2, (c¢) n = 3. The step between adjacent
streamlines is Ay = 0.025. Arrows indicate the general direction of flow. The position of each interface is
shown as a horizontal line; the solid part of the line represents where the interface is predicted to be linearly
stable (and the dotted part, unstable) based on the simplified analysis of § 7.6.

dimensionless flow velocity magnitude U(x, y) for the three-layer case, corresponding to
the streamline plot figure 6(b), is plotted in figure 7.

Entering through the lower opening at (x = 1, y = 0), the flow turns smoothly and is
drawn near horizontally towards the buoyancy source (left wall, y-axis). Interestingly, the
streamlines tend to tilt upwards at the left wall in response to the wall-plume entrainment.
Evidently, the flow in the upper-right region of the base layer is relatively slow (figure 7c).

The flow in the bulk of the intermediate layer (figure 6b), or intermediate layers
(figure 6¢), is near stationary. The majority of the motion is confined to the region adjacent
to the left wall. This motion is created as buoyant fluid, discharged into an intermediate
layer from the outflow of the wall plume below, is re-entrained into the wall plume
of the intermediate layer. The existence of the large-scale quiescent region (figure 7b)
implies that, for the application of room ventilation, the air is stale at middle heights.
As highlighted in appendix A, correctly locating the lower opening is crucial to avoid
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Figure 7. Colour map and contours showing the distribution of dimensionless velocity magnitude U(x, y)
corresponding to the streamline pattern for A =1 and n =2 shown in figure 6(b). (a) Top layer.
(b) Intermediate layer. (¢) Base layer. The velocity associated with each colour is indicated on the horizontal
scale above (a).

similar large-scale regions of stale air within the base layer. Designers should ensure that
the stale region is above the height, H; (m), of the living zone. The corresponding design
criterion is ho(n, A) > H;/H.

The streamline pattern in the top layer is most easily appreciated in figure 6(a).
Immediately above the interface and adjacent to the wall plume, the flow pattern is similar
to that in any intermediate layer. While a portion of the volume flux supplied to the top
layer from below is transported by entrainment towards the left wall, the bulk forms the
ceiling current. The region near the upper opening (at x = 1, y = 1) is relatively quiescent,
cf. figure 7(a).
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7.3. Velocity magnitude distribution

With reference to figure 7, the velocity magnitude U within each layer is the highest at
the region of inflow, and gradually decays away from this region. In the base layer, the
velocity magnitude in the central region is between U = 0.5 and U = 0.6, and relatively
uniform; elsewhere, U tends to increase towards the upper-left and lower-right corners, and
decreases towards the other two corners. In the intermediate layer, at locations sufficiently
far away from the inflow (here for x = 0.3), U varies little with height but primarily with
the horizontal coordinate, as illustrated by the near-vertical iso-lines. Moving away from
the left wall, U declines so quickly that more than three-fifths of the layer has a velocity
magnitude of less than 0.1. Since, according to the scalings (2.5a-d), U = 0.1 is equal to
the plume velocity at the height y = 1/800, the induced flow is generally weak compared
with the primary plume motion. Though lacking immediate practical interest due to its
location, the induced flow pattern in the top layer is distinct and worthy of comment. The
bulk flow is the most rapid of the three layers and has a complex distribution of velocity.
In the central and right sides of this layer, the velocity magnitude is mainly dependent on
the horizontal coordinate (cf. the intermediate layer). Interestingly, along the ceiling, the
velocity magnitude has a maximum at x = 0.15 (to 2 s.f.), which results directly from the
specific profile adopted that accounts for entrainment into the ceiling current, (6.5a,b).

To gain further insight into how the velocity magnitude varies spatially, figure 8
displays the variation of U(x = const., y) along three vertical sections in the box, x =
{0.25, 0.5, 0.75}. For convenience, the depth of each layer is scaled so as to have unit
height. The velocity magnitude in the base layer shows more vertical variation, but less
horizontal variation than the intermediate and top layers; there is a velocity increase with
height on the left side of the box (x = 0.25) and a decrease on the right side (x = 0.75).
For the intermediate layer, all three profiles exhibit low velocity magnitudes (consistent
with the large-scale, near-stagnant region reported in § 7.2) and little variation with height.
The velocity magnitude in the top layer is generally high (exceeding U = 0.9 on x = 0.25)
while the vertical variation is relatively slight.

7.4. Controlling the induced flow

In practical terms, the area of the openings and the room aspect ratio, {A/H, A}, are
the two key quantities that are available to a ventilation engineer at the design stage to
control the induced flow. Since the number of interfaces can be estimated from figure 4,
by experience, or by estimating A/H, the two controllable variables are chosen to be n and
A in the following discussion (as is consistent with § 6).

We note from figure 6 that the number of interfaces has little effect on the fundamental
pattern of flow in any type of layer but significantly influences the dimensionless velocity
magnitude U within the whole box. With more layers, U declines rapidly, which results
from the decreasing ventilation flow rate g. Take the base layer for instance. The spatially
averaged velocity magnitude, U, defined as the ventilation flow rate divided by layer
depth, is

U= qo/ho ~ hy/”. (7.3)

The reduction of hy with n leads to overall slower motion with correspondingly sparser
streamlines. Similar arguments may be applied to the top and intermediate layers.

When 7 increases from one to three, the velocity magnitude U in the base layer declines
almost by half. In the meantime, the stale air region in the intermediate layer widens
considerably. Thus, to enhance the natural ventilation, n should be as small as possible,
which is primarily achieved with larger effective opening areas A/H.
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Figure 8. Vertical profiles of dimensionless velocity magnitude U at a quarter (x = 0.25), a half (x = 0.5) and
three quarters (x = 0.75) of the box width from the wall plume; A = 1, n = 2. (a) Top, (b) intermediate and
(c) base layer. Here, Ay denotes the vertical distance from the base of each layer.

Figure 9 highlights the role of box aspect ratio .4 in the induced flow for (a) A = 0.5
and (b) A = 1.5. Evidently, the general flow pattern is weakly dependent on A, which is
relatively unchanged despite the factor of three increase in .A. There is, however, a marked
decrease in the depth of the top layer and increase in the velocity magnitude within the
layer. The latter increase is due to the reduced top layer depth transporting the increased
volume flux that has resulted from the deepening of the lower layers. By comparison, the
velocity magnitude in the lower layers only changes slightly. Interestingly, with increasing
A, the streamlines in the base layer indicate an increasingly uniform flow, a desirable
characteristic for the ventilation of many rooms. Despite this, there is a widening of the
near-stagnant region in the intermediate layer, which is undesirable.

7.5. A comment on box size and wall buoyancy flux

The box size, as fully specified by the box height H (m) for a given aspect ratio
A, and the source buoyancy flux y (m?> s~3) have no effect on the dimensionless
induced flow field since they both vanish in the non-dimensionalisation. Nevertheless, on
dimensional grounds (2.5a—d), the velocity magnitude U oc H'/3 x!/3 and the buoyancy
g, o« H='3x2/3 For given (n, A), there is no change to the pattern of flow on increasing
x or H. However, there will be an increase in the magnitude of the velocity. Moreover, the
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Figure 9. Colour map of dimensionless velocity magnitude U(x, y) overlain with streamline pattern for the

n = 2 stratification; (a) A = 0.5, (b) A = 1.5. The step between two adjacent streamlines is Ay = 0.05. The
vertical colour bar indicates the magnitude of the dimensionless velocity.

layer buoyancy and the buoyancy jump across each interface increase with x and decrease
with H.

7.6. Stability of interfaces and instability of ceiling jet

All solutions above for the induced flow suggest a velocity jump and, thereby, a shear flow
at each interface and between the perimeter of the ceiling current and its surroundings.
The destabilising influence of the shear competes against the stabilising stratification,
potentially leading to a breakdown of the flow through the Kelvin—-Helmholtz mechanism.
Previously, Cooper & Hunt (2010) suggested that interfacial instability might be the reason
that fewer interfaces were observed than predicted. For this reason, it is prudent to assess
the stability of the situation we predict via a simplified analysis. The corresponding
linear stability criterion, developed by Taylor—Goldstein (Turner 1979, Chapter 4), is well
established as

T Au?

<1, (7.4)
AAg,

where Au and Ag/, denote the jump in the horizontal component of flow velocity and layer
buoyancy, and A is the wavelength of a normal mode perturbation. For stability, the above
criterion needs to be satisfied for the longest possible wavelength 4 = 2aq, i.e. a wavelength
equal to the width of the box.

For each interface Ag, = cl_1 ha /3 from (2.12), and hence (7.4) may be written in terms
of an interfacial critical velocity jump, Aucis

2a
Au < |[——= = Aucpis. (7.5)

1
nclh0/3

As the velocity jump Au varies with x (figure 7), the stability situation may vary along
each interface. For the ceiling current, stability would require Au < Aucyir,ce, and we take
Au to be that at the source (x = 0, y = 1) as here the velocity jump between current, with
an average velocity of g..(0)/d..(0), and ambient is the greatest.
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Interface(s) Ceiling current

n Alteris Stable range (counting from the lowest interface) Alerit ce Au Unstable

1 0.72 059 <x<1 0.81 26 v
2 0.78 024 <x<1,025<x<1 0.91 21 Ve
3 0.83 014 <x<1,010<x<1,02l <x<1 0.99 18 v

Table 1. Entries (to 2 s.f.) relating to the stability, or otherwise, of the interfaces between layers and the
ceiling current. A = 1.

The corresponding stability parameters for n = 1, 2 and 3 in a square box are given in
table 1. Column three shows that an interface is stable on the right-hand side but linearly
unstable on the left-hand side. With the stable locations being marked with solid lines
in figure 6, the length of the unstable part increases markedly with decreasing n. While
it is likely that viscosity and nonlinear effects stabilise the unstable part of an interface
in practice, it should also be noted that criterion (7.4) fails at the left end of an interface
because two of the assumptions underlying (7.4), i.e. potential flow and uniform streams,
break down there. Comparing columns four and five, Au >> Aucpir ce 1S consistent with a
turbulent ceiling current.

8. Discussion and conclusion

We considered the steady flow that a turbulent wall plume induces in an emptying—filling
box where openings, slots made in the base and top of the box, connect the interior to
a uniform, quiescent exterior. Previous developments focus, almost exclusively, on the
stratification, modelling this as a stack of equal-depth layers. Our focus has instead been
on the development of a simplified theoretical model for predicting the streamline pattern
and velocity distribution within the layers. These important aspects of the flow had not
been examined previously, either theoretically or experimentally, despite having important
practical implications for achieving comfort in naturally ventilated buildings and for the
indoor spread of airborne contagions, such as an influenza virus. These flows can be
induced in a room by a wall or glass facade heated by the Sun (or for the vertical inversion
of the case we consider, cooled by the exterior air) and our primary motivation has been
to gain insights into the patterns of flow established in ventilated buildings, together with
a grasp of the parameters that control them.

Our contribution is essentially fourfold. First, for the ‘classic’ stratification of
equal-depth layers, we developed closed-form solutions for the streamfunction that
describe the wall-plume-induced flow within each layer. Second, recognising that the
classic stratification neglects the flow near the ceiling, we introduced an entraining
ceiling current hypothesis and the corresponding theoretical description of the resulting
stratification, removing the need to assume that all layers have equal depth. This
re-evaluation of the stratification highlighted the dependence of the layer depths on the
entraining current. Third, we solved for the induced flow for the refined stratification
and, finally, assessed the implications of our predictions for stratified flows in ventilated
rooms. Cooper & Hunt (2010) comment that persistent interfaces are hard to maintain
in experiment and, whilst this could be attributed to the challenges of achieving and
maintaining a source of uniform and constant buoyancy flux, this provided motivation for
us to consider the stability of the interfaces. In principle, the simplified linearised analysis
we present serves only to justify that the interfaces can be stable in general cases and, via
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this analysis, we can be more confident about the stratification model we present. A full
investigation of the interfacial stability, including nonlinear effects and viscosity, would
likely offer considerable additional insight although this falls outside the immediate scope
of our work.

Working in the complex plane, conformal mapping techniques and Poisson’s integral
theorem were deployed to solve for the flow induced within each layer, with the boundary
conditions established by treating the wall plume as a vertical line of sinks. Advantages
of this approach over alternatives include the ability to rapidly re-evaluate the solution on
altering the dimensions and locations of the openings (appendix A), and the ease with
which multiple additional openings can be included.

In existing emptying—filling-box studies, where turbulent entrainment occurs solely over
the vertical rise of the plume, layer depths depend exclusively on the dimensionless
effective opening area. The inclusion of an entraining horizontal current reveals an
additional dependence, namely, on the box aspect ratio A = W/H, taken herein as width
relative to height, and a top layer that is thinner than the other layers and which adjusts in
depth with effective opening area. According to our model, the layers can only have equal
depth if there is no entrainment by the ceiling current. Increasing A causes a reduction in
the depth of the top layer and an increase in the depth of the layers below, while the number
of interfaces n shows a weak tendency to increase with .4. Overlooking the ceiling current,
which contributes significantly to overall entrainment, the classic model of stratification
leads to an underestimation of the ventilation flow rate.

The flow patterns characterising the base layer, intermediate layer(s) and top layer
that comprise the stratification each have distinguishing characteristics which vary only
quantitatively with n and .A. The source buoyancy flux x (m? s~) and box size (referring
to box height H (m) for a given aspect ratio) have no influence on the patterns of flow
but determine the velocity magnitude, which scales as x '/3 and H'/3. Consistent with the
classic stratification, the dimensionless velocity magnitude declines significantly in each
layer with n. Moreover, the buoyancy of the top and intermediate layers increases with x
but decreases with H.

Although our wall-jet hypothesis excludes the effect of the stratification on the ceiling
current, and thus may overestimate entrainment, this has little impact on the prediction
of the induced flow pattern within the lower layers which is of paramount interest
for the application to room ventilation. While there is evidence that a lateral ceiling
current produces mixing along its perimeter (e.g. Kaye & Hunt 2007), there are currently
no detailed measurements that we are aware of that are specific to the wall-plume
emptying—filling box considered herein. Beyond the unresolved complication of achieving
a uniform source buoyancy flux and that specifying the effective opening area a priori
is simply not possible, analogue experiments (cf. Cooper & Hunt 2010) are notoriously
difficult to conduct and so a more detailed quantitative validation of our predictions is not
currently possible. Even so, we have smoothly varying predictions of stratification across
a spectrum of effective opening areas and gained a first insight into the streamline pattern
and velocity distribution. That stated, our approach is simplified, and although, according
to Cooper & Hunt (2010), experimental difficulties lead to a departure from the target,
idealised wall-plume boundary conditions, some of the previous experiments exhibited
vertical density gradients within layers and evidence of detrainment from the wall plume
(Gladstone & Woods 2014). As such, we suggest that the current model be applied in cases
when entrainment is dominant along the wall plume, i.e. for a wall plume with relatively
high local Richardson numbers.

Finally, from the perspective of airflow in buildings, both in terms of achieving comfort
for natural ventilation and with regards to the movement of passive airborne contaminants
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or fine aerosol mists by the induced flow, our results indicate that (i) the choice of location
of the lower opening is crucial to successfully ventilating the lower layer given it can lead
to a desirable smooth flushing of this region or to a large-scale region of near-stagnant air
and (ii) intermediate layers are characterised by large-scale stagnant regions, irrespective
of opening location. We end with a cautionary note regarding the direct application of
our work to room ventilation where the movement of occupants, an external wind flow
or variations in the solar heat gains received by a facade would cause a departure from
the idealised, albeit already complex, steady situation we have considered. Whilst this
idealisation has offered new insights into the airflow patterns induced and a simplified
predictive capability, the situation in practice is unquestionably far more complex and
such well-defined layers may not form.
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Appendix A. Wider applicability: general configurations and finite-width openings

By contrast with alternative methods of solution, e.g. separation of variables, the
conformal mapping approach developed above can be applied with ease to obtain
closed-form solutions for the streamline pattern in emptying—filling boxes with openings
of arbitrary width and location. The general form of the induced flow solution (4.7), as
expressed in terms of ¥ (&, 0), for each layer in the mapped domain is unchanged. It is
convenient here to express this solution as

v
¥ (u,v) = ;(11 + L+ L+ 1+ 1s), (A1)

where Iy (k =1, ...,5) refers, in order, to the five integrals in (4.7). In the classic
configuration, ¥ (&, 0) is determined from the boundary conditions (4.4) for the base layer,
(4.5) for an intermediate layer and (7.2) for the top layer.

For a lower opening centred on x = x; with finite width a;, with the stratification
unaffected, only the boundary condition along the base of the box needs to be modified.
With the classic high Reynolds number assumption of a uniform inflow velocity profile,
the original boundary condition at the lower opening is replaced with a linearly varying
streamfunction. Thus, only the solution for the base layer is altered and this change is

& ar+1 !
13=/ _ (csn—ls—x,Jr 12 )d§+/ —qo de, (A2)
¢ ¢

1 ai 2

where & = sn((x; — a;/2)/C) and & = sn((x; + a;/2)/C). To acquire the solutions
plotted in figure 10(a—c), one needs to substitute into (A2): (a) x; = 0.5 and @; = 0;
(b) x; = 0.925 and a; = 0.15; and (c¢) x; = 0.5 and aq; = 0.15, respectively.

For an upper opening centred at x = x,, the formulation of a practical boundary
condition at the ceiling, accounting for the interaction of the current with buoyancy-driven
flow toward the opening, would appear to be extremely complicated and beyond the scope
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Figure 10. Streamlines superimposed on a colour map of velocity magnitude for four opening configurations
in a square box with n = 2. The buoyancy source is uniformly distributed along the left wall (y-axis). The
deviations from the opening configurations examined in §§ 6 and 7 are (a) lower opening moved to mid-point
of base, (b) lower opening of finite width 0.15, (¢) lower opening of finite width 0.15 centred at mid-point of
base and (d) top opening moved to mid-point of ceiling. The black dots indicate opening location and width.
The increment between adjacent streamlines is Ay = 0.05.

of this study. Indeed, not only could the current horizontally overshoot the location of
the upper opening but the variation of volume flux across the opening, affected by the
outflow, is expected to deviate considerably from that of the ceiling jet. However, to
demonstrate the applicability of our solution approach, we adopt the boundary condition
for an ‘ideal’ ceiling current which drains out totally through a point opening without
horizontal overshooting. The stratification needs to be re-determined by replacing (6.1)
with g..(x,) = qo, thereby accounting for the reduction in entrainment along the ceiling
current. Based on the updated stratification, the boundary condition at locations to the
right of the upper opening becomes 1 = —go. Only the induced flow solution for the
top layer is altered. Defining & = sn((x, — 1/2 +ih1)/C), the change, with reference
to (Al), is

3 -1 2(Csn~Y(uw)+a+1/2—ihy) 1
I =/ —qo d§ +/ —02610\/ ah / +—5d§,  (A3)
—00 & an c5

when x, < 0.5, or
& o0 2(Csn~l(u)+a+1/2 —ih) 1
15 = / —q0 dri: +/ —CQQQ\/ 3 / + —2 dé, (A4)
1 £ ahy 5

when x,, > 0.5. Substituting x,, = 0.5 into (A3) leads to the solution shown in figure 10(d).
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A few features of the induced flows generated with these opening configurations in
figure 10 are worthy of mention. First is the appearance of a region of near-stagnant fluid
forming to the right side of the opening in the base layer on moving the lower opening
(figure 10a,c). Second, if not too wide (a; <« 1), the width of a lower opening does not
significantly alter the induced flow pattern (compare figure 10a with 10c¢), other than
adjacent to the opening.
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