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1. Introduction and statement of the main results

Throughout this paper an /-group will always mean an archimedean
lattice-ordered group and we shall confine our attention to such groups. An
/-group splits if it is a cardinal summand of each /-group that contains it as an
/-ideal. Suppose that G is an /-subgroup of an /-group H. Then G is large in
H or H is an essential extension of G if for each /-ideal L^O of H,
Lf lG^O. G is essentially closed if it does not admit any proper essential
extension. Conrad (1971) proved that each essentially closed /-group splits,
but not conversely.

An /-group is projectable if each principal polar is a cardinal summand;
laterally complete if each disjoint subset has a least upper bound; ortho-
complete if it is both laterally complete and projectable. Each essentially
closed /-group is orthocomplete. Jakubik (1974) proved that each orthocomp-
lete /-group splits, and since a laterally complete vector lattice is orthocomp-
lete (Veksler and Geiler (1972)) each laterally complete vector lattice splits.
Bernau (1976) proved that each laterally complete /-group is orthocomplete.
Thus each laterally complete /-group splits.

An essentially closed essential extension of G will be called an essential
closure of G. Conrad (1971) proved that each /-group admits a unique
essential closure G'. Moreover, G' = Gd"L where Gd is the divisible hull of
G, GA is the Dedekind-Mac Neille completion of G, and GL is the lateral
completion of G.

Consider the following properties of an /-group G.

(1) Each essential extension of G splits.
(2) GdA splits.
(3) Gs splits.
(4) GA is laterally complete.
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(5) G is an /-subgroup of a laterally complete /-group H, and G generates
H as an /-ideal.

(6) Each disjoint subset of G is bounded.
(7) G"=G'
(8) Gd* is laterally complete.
(9) G generates G' as an /-ideal.
(10) G splits.
(11) If G is an /-ideal of an /-group K, then K = G " 0 C .
(12) If 0 < x G G'\G"\ then g AHX£G for some 0 < g G G and n G JV.
(13) G is the only /-subgroup of G' that contains G as an /-ideal.
(14) If G is a large /-ideal of an /-group H, then G = H.

We prove (1) through (9) are equivalent, (10) through (14) are equivalent,
and clearly (1) implies (10). We show by example that (10) does not imply (1).
However, if G is complete clearly (10) implies (3), so (1) through (14) are
equivalent. Thus we recover the results that a complete /-group splits if and
only if it is laterally complete (Jakubik (1974)), and that for a complete vector
lattice the following are equivalent: G is essentially closed; G splits; G is
laterally complete (Conrad (1971)).

If G is a conditionally laterally complete /-group, then (1) through (14)
are equivalent and each is equivalent to

(15) G is laterally complete.

Note that a laterally complete /-group satisfies (5). Thus from (1) we get a
stronger version of the Jakubik-Bernau result, namely that each essential
extension of a laterally complete /-group splits; from (7) we get that
Gw" = GL' = G'.

We generalize the Veksler-Geiler-Bernau theorem by showing that each
essential extension of a laterally complete /-group is projectable.

We show that GL is the subgroup of G' that is generated by the joins of
disjoint subsets of G.

Let S be the class of /-groups that satisfy (6), and hence (1) through (9).
Then it is interesting to note that S is closed with respect to cardinal
summands, cardinal products, and essential extensions; and if G is an
/-subgroup of H G S and G generates H as an /-ideal, then G E S.

Finally, we wish to acknowledge the contribution of Simon Bernau, who
suggested numerous improvements to an earlier version of this paper. In
particular, Theorem 3.2 is due to him.

NOTATION. R will always denote the naturally ordered additive group of
reals and N the set of natural numbers. We shall denote the direct sum of two
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/-groups by A © B and the cardinal sum by A B B . The cardinal sum
(product) of the /-groups {AA | A G A} will be denoted by 2AA (ITAA). If A is a
subset of an /-group G, then A ' = {g G G 11 g | A | a | = 0 for all a G A} is the
polar of A. [x ] will denote the cyclic group generated by x. A C B will always
mean proper containment.

2. The equivalence of (10) through (14)

We use the fact that if X is an /-ideal of an /-group H and Y is an
/-subgroup of H, then X + Y is an /-subgroup of H. For if h =
x + y G X + Y , then X + h = X + y; thus X + (h v 0) = X + (y v 0) and
hence h v O = a + ( y v O ) G X + Y .

LEMMA 2.1. Lef G be an l-group.

(a) GdA is the l-ideal of G' generated by G.
(b) GdA is the minimal complete vector lattice in which G is large.

PROOF, (a). Gd is dense in G' so GdA is the /-ideal of G' generated by
G" (Conrad and McAlister (1969)). But any /-ideal of G' is divisible, so if it
contains G it must contain Gd.

(b). Suppose G is a large /-subgroup of the complete vector lattice K.
Then Gd is dense in K, so GdA is an /-ideal of K. However, GdA is a complete
vector lattice since it is an /-ideal of G''.

THEOREM 2.2. Statements (10) through (14) are equivalent.

PROOF. (10) => (11). Clear. (11) => (12). If (12) is false, then there exists
0 < x E Ge\Gd* such that g A nx G G for all 0 < g G G and n G N. Then we
claim that G 0 [ x ] is an /-subgroup of G e ; it suffices to show that (g +
mx) A 0 G G 0 [x ] for all g G G and integers m. If m s 0, then

g" + [(g + mx) A0] = (g*+ mx) A g~ = m i A g e G

and if w < 0 then

g-mx + [(g + W X ) A 0 ] = g" A ( g ~ - m x ) = g* A ( - mx)G G.

Thus in either case (g + mx) A 0 G G 0 [x], so G 0 [ x ] is an /-subgroup of
G'. Furthermore G is an /-ideal of G 0 [ x ] . For if not, then 0 < g + nx <
h E G for some n ^ 0, so - g < nx < - g + ft. Then MX E GdA, so x E GdA.
Now, let L = {/ G C[0,1]: /(j) = 0}, a maximal /-ideal of the /-group C[0,1].
Let X = ( G E I L ) © [ ( x , l ) ] C G © [ x ] E ] C [ 0 , 1 ] = 5, where T ( y ) = l for all
y G [0,1]. Then GEBL is an /-ideal of 5 and [(x, I)] is an /-subgroup of S, so
by the fact above K is an /-subgroup of S. Then G is an /-ideal of K and
G = G", but K/ GSG', so (11) is false.
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(12) => (13). If G is a proper /-ideal of K C G' and 0 < x £ K\G, then
x £ G'\Gd* and nx A g £ G for all 0 < g £ G and n £ JV.

(13) => (14). Clear.
(14) => (10). Let G be an /-ideal of H. Then G is /-isomorphic to

GQG'/G'CH/G'. If G'<G'+h GH/G1, h A g >0 for some 0< g £ G.
Hence G' + h g G'+ (h A g)£ G 0 G'/G', since h A g £ G. Thus
G © G'/G' is large in H/G', so G © G'/G' = H/G'. Therefore G^G' =
H.

3. The structure of G L

The proof that a laterally complete /-group is projectable (Bernau
(1976)) can be slightly altered to obtain stronger results.

LEMMA 3.1 (Bernau). Let x and y be positive elements in the l-group G,
and for n = 0,1,2, • • • let wn = ((n + 2)x - y)+ A (y - nx)+. Then wn A wm = 0
if | m — n | g 2. Lef u fee an upper bound for {(2n + l)w2n: n = 0,1,2, • • •} and u
be an upper bound for {(2n + 2)w2n+i: n = 0,1,2, • • •}. Then
y - y A(U + v)E: x'. In addition if y £ x" and u and v are least upper bounds,
then y = u + v.

PROOF. The first part of the lemma is proved by Bernau (1976) with the
unnecessary (and unused) assumption that u and v are least upper bounds.
We have only to show that if u, v are least upper bounds, u + t)gy. For this
we note that

(n + l)wn = [y + (n + 2)((n + l)x - y)]+ A [y + n(y - (n + l)x)]+

= [y+ [(n + 2)((n + l)x - y) A n(y - (n + l)x)]]+ ^ y.

Now, u + v - Vm>n((2n +2)vv2n+i + (2m + l)w2m) and since wnA\vm=0 if
m - n | g 2 it is enough to show that (n + l)wn + (n + 2)wn+1 g y for n =

0,1,2, •• •. Since a* + b+ = (a + b)* v a* v b* we have only to show that

(n + l)[((n + 2)x - y) A (y - nx)] + (n + 2)[((n + 3)x - y) A (y - (n + l)x)] § y

However, this last quantity is less than or equal to (n + l)((n + 2)x - y) +
(n + 2)(y-(n + l)x)=y.

REMARK. Note that each wn £ x", so if we can choose u,tiE x", then

y = [y A (u + «)] + [y - (y A (U + v)] £ x"© x'.

Thus, if each disjoint subset of x" is bounded in x", then G = x"E9x'.

COROLLARY (Bernau (1976)). A laterally complete l-group is ortho-
complete.
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In Conrad (1973) it is shown that G°A = GA°, where G° is the orthocom-
pletion of G. Thus, since G° = GL, we have

COROLLARY (Bernau (1976)). GLA = G A L .

THEOREM 3.2. G°= GL is the subgroup of G' generated by the joins of
disjoint subsets of G.

PROOF. If 0 < w E G°, then there exists a collection {Ma} of disjoint
polars of G, and a collection {ya} of positive elements of G, so that
w = Va[Ma]ya. Here [Ma]ya is the projection of ya, considered as an element
of G°, on the unique polar of G° which corresponds to Ma (Bernau (1966)).
For each a, Ma = V Aj&, for some disjoint collection {xaA} of elements in G.
Thus w = V A ^ V A , for some disjoint collection {xA} in G and {yA}C G.

Define wn(A) = ((n + 2)xA - yA)+ A (yA - nxA)+. By Lemma 3.1,
wn(A)A wm(A) = 0if A^ M, orif | n - m | S 2 . Let u = VnA(2n + l)w2n(A) and
v = VnA(2n + 2)w2n+i(A). Consider

A ) - v (2n + 2)w2n+1(A).

This last quantity is unchanged if we replace yA by [xA]yA in the expressions
for wn(A). Hence, by Lemma 3.1, [x"](w — (u + v)) = 0 for all A. Since w is an
element of the G° polar corresponding to x", we see that w = u + v.

REMARK. Our original version of this theorem was that G(l ) generates
G' as an /-ideal, where G(l ) is the /-subgroup of GL that is generated by the
joins of disjoint subsets of G. But now since G ( l ) = GL, this follows from
Theorem 4.1. We wish to thank Simon Bernau for this proof of Theorem 3.2.

4. The equivalence of (1) through (9)

THEOREM 4.1. Statements (1) through (9) are equivalent.

PROOF. (1) 4> (2). Clear.

(2)=> (3)GA d"= G d A = GdAdA and (12) holds for G " \ and hence for G \
(3)=> (4). GA is an /-ideal in G A L (Jakubik (1963)), and so by (14)

G*= G L .
(4) 4> (5). Clear.
(5) 4> (6). Clear.
(6) => (7). If {gA} is a disjoint subset of Gd, there exist positive integers mx

so that {migx} is a disjoint subset of G. Hence Vg*.E.Gd\ so by Theorem 3.2
GdL C GdA. Thus G' = Gd*L = GdLA C Gd\

(7) 4> (8). Clear.
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(8)=> (9). Gd A= GdAL = G'.
(9) => (1). Clearly G satisfies (13) and hence G splits; but any essential

extension of G also satisfies (13) and so splits.

REMARK. The equivalence of (1), (2), (7), (8) and (9) does not depend on
Section 3.

COROLLARY 1. Gl generates G' as an l-ideal.

COROLLARY 2 {Conrad (1971)). / / 1TXCG CUT,, when each T, is a
subgroup of R, and G generates UTX as an l-ideal, then G splits.

PROOF. This follows from the fact that G' = YIR^.

COROLLARY 3. Each essential extension of a laterally complete l-group is
projectable.

PROOF. Let G be an essential extension of a laterally complete /-group
H, and consider 0 < x, y G G. Now H C G C H\ and H generates H' as an
/-ideal so there exists h G H so that h > y > 0. Let {xA | A G A} be a maximal
disjoint subset of x" n H and let z = VxA. Then x' = z' and sox"= z". By the
corollary to Lemma 3.1 H is projectable, so there exist hi, h2E H such that
/i, G z', h2 G z" and h = h, + h2. Then

y = y A h = y A (hi + h2) = y A (h, v h2) = (y A h , ) v (y A h2)

= (y A h i) + (y A h2) G z 'E3z" = x 'EHx",

so G is projectable.

5. The implication (10) ^> (1)

' In the next section we give an example of an /-group that satisfies (10) but
not (1). In this section we provide conditions for (10) to imply (1).

PROPOSITION 5.1. For an l-group, the following are equivalent:
(a) G does not split,
(b) There exists 0 < x G Ge\Gdn such that G © [x] is an l-subgroup of

Ge.
(c) There exists 0 < x G G'\Gd* such that g A nx G G for all 0 < g G G

and n G N.

PROOF, (a) and (c) are the negations of (10) and (12), and so are

equivalent by Theorem 2.2.
(a) => (b). Since G does not satisfy (13), G is a proper /-ideal of an

/-subgroup K of G'.li 0 < x G K\G then G © [x] is an /-subgroup of K with
G as an /-ideal, so x G G'\G"\
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(b) => (a). It suffices to show that G is an /-ideal of G © [x]. If not, then
0 < g + n x < h G G for some n ̂  0, so —g<nx<—g + h. Thus nx G Gd",
and so x G GdA, which is a contradiction.

As a corollary, we obtain

PROPOSITION 5.2. For an l-group G, the following are equivalent:
(a) (10) implies (1).
(b) If GdACG', then G $ [ x ] is an l-subgroup of G' for some 0<

i£GV".
(c) 7/ GdA CG', tften fhere exisfs 0 < x G G'\GdK such that g A nx G G

/or a// 0 < g G G and n G N.

THEOREM 5.3 For a conditionally laterally complete l-group G, (1)
through (14) are equivalent and each is equivalent to

(15) G is laterally complete.

PROOF. If G"A C Ge then there is a disjoint subset {g« | 8 G A} of G that
is not bounded in G. Then x = Vg s GG' \G"\ For 0< g G G and n G N, we
have

= gA(V ng5) = V (g A ng5)

and since {g A ng« | 5 G A} is a disjoint subset of G that is bounded by g, it
follows that g A nx G G. Thus, by Proposition 5.2, (10) implies (1) and so (1)
through (14) are equivalent. Finally, for a conditionally laterally complete
/-group, (6) is clearly equivalent to (15).

Note that a complete /-group is conditionally laterally complete and so
there is an obvious corollary which contains and generalizes some of the
results in Jakubik (1974) and Conrad (1971).

6. Examples and some additional results

6.1. A projectable vector lattice that splits but is not conditionally
laterally complete.

Let H be the cardinal product Flf-i Z, of integers and let G be the vector
lattice in nr=iR, generated by H. Then SR.CGcnR^ G is an essential
extension of HZ,, so it is projectable by Corollary 3 to Theorem 4.1, and it
satisfies (6). Thus G is conditionally laterally complete if and only if it is
laterally complete, but (SR,)' = nR,, so G is not laterally complete.

REMARK. Jakubik (1974) claims that his example (2) satisfies this condi-
tion, but it is not a group.

All the examples in the literature of /-groups that split are essential
extensions of laterally complete /-groups and hence projectable.
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6.2. An /-group G such that each disjoint subset is bounded but is not
projectable. Then G splits but does not contain a large laterally complete
/-subgroup.

For each 0< x G H = 117-1 Ri pick an element i g i in H such that
2̂k+i = x2k+2 for k = 0,1,2, • • •. Let G be the /-subgroup of H generated by

Y = {x 10 < x G H}, 2R, and g = (1,0,1,0, • • •). Then G generates H as an
/-ideal and hence splits. Pick an x which is unbounded and such that xt > 0 for
all i G N. Suppose (by way of contradiction) that G is projectable. Then since

z = ( x 1 , 0 , i 3 , 0 , - ' - ) e G

and so z = V, Aj (/3iy + «i,g), where each /3i; belongs to the subgroup of H
generated by Y and 2R,, and / and / are finite.

x2k + i = z2k+1 = [V, A/ (j8iy + nvg)]2k+1 = V, Aj ( (# , ) 2 t ^ + nti)

since R2k+i is totally ordered. Now 0 = z2k+2 — V; A} (/3i;)2)t+2 so for each i,
Aj(Pii)2k+2 = 0 and hence in particular A/(/3w)2k.2S0. Thus (/3Wl)2k+2§0 for
some ji. Since

we have

and hence nWl g x2k + l. Thus for each k we have ik G 7 and jk G / such that
nikjk g Jc2k +1- But / U / is finite and the x2k+i are unbounded, so this is
impossible. Therefore Z0. G, so G is not projectable.

6.3. An /-subgroup G of H = Y17=iR> such that G generates H as an
/-ideal but G is not large in H.

Let G be the /-subgroup of H generated by the subset Y defined above.

6.4. An /-subgroup of H = nie[0.i]R« that splits, but not every essential
extension splits. Let

G = {g G H | g(x) = a for some fixed a

for all but countably many of the x's}.

Note that G is the direct sum of the /-ideal of all functions in H with
countable support and the /-subgroup of all the constant functions, so G is an
/-subgroup of H.
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(a) G is a projectable vector lattice and G D 2R». Thus GL = G' = H.
Moreover, if {gn | n £ N} is a countable subset of G that is bounded in H then

(b) G does not generate G' as an /-ideal.

PROOF. Partition [0,1] into a countable number of subsets each with the
same cardinality as [0,1]. Denote these by XuX2, •••. Define h(x)=n if
x £ Xn. Then h is not bounded by any element of G.

(c) G splits.

PROOF. Suppose G C K C G' where G is an /-ideal of K and pick
0<kEK. Then g A k £ G for each 0 < g £ G. For n £ N define n £ G by
n(x) = n for all x £ [0,1 ]. Then (n A k) (JC) = a for all but a countable number
of the x's. If a < n, then fc(x) = a for all but a countable number of the x's,
and so fc £ G. Now if a = n, then fc(x)g n for all but a countable number of
the x's, so k(x)< n for at most a countable number of the x's.

Let Yn = {x £ [0,1] | k(x) < n}. Then [0,1] = U n Yn, which is countable, a
contradiction. Therefore G = K, and so by Theorem 4.1 G splits.

REMARKS. If T is an /-subgroup of G that contains 2R, and generates G
as an /-ideal, then it follows that T splits. In particular, one can restrict the
elements of G to be integral valued.

6.5. If Gd splits then so does G.

PROOF. If G is an /-ideal of K C G', then G" is an /-ideal of K" so
G" = K". Thus if 0 < k £ K C G", then nk^G for some n > 0, so fc £ G.
Therefore G = K and so G splits.

6.6. If G splits and G = A EBB then A splits.

PROOF. If A is an /-ideal of an /-group H, then G is an /-ideal of
K = HSB, so K = GmC = AE1BE1C. Thus H = ASC.

6.7 (Jakubik (1974)). If {AA | A £ A} is a set of /-groups that split, then
nAAA splits.

PROOF. Suppose by way of contradiction that

IIAA CH

where I1AA is an /-ideal of H. Let Hk be the image of the projection of H into
AA. Then for some A we have

AAC//ACAA

and AA is an /-ideal of HA, but this contradicts the fact that AA splits.

https://doi.org/10.1017/S1446788700018231 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018231


256 Marlow Anderson, Paul Conrad and Otis Kenny [10]

6.8. nAA splits if and only if each AA splits.

Each /-group G is contained in a unique minimal projectable /-group Gp

in which G is large (Conrad (1973)).

6.9. If each essential extension of Gp splits, then each essential exten-
sion of G splits.

PROOF. Conrad (1973) shows that GdP = GPd and GPA = G "p = G\
Thus

G"= GdP* = GPd" = GPe = G'.

6.10. For an /-group G the following are equivalent.
(a) G is essentially closed.
(b) If G is an /-subgroup of an /-group H and G is large in G", then

H= GHG'.

PROOF, (a =£> b). Since G is essentially closed, G = G" and so is an
/-ideal of H. Then since G splits, H = GGBG'.

(b => a). G is large in G' and G C G" = G'. Then G' = GE1G', and
since G' = 0, G = G' is essentially closed.
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