
BOUNDEDNESS PROPERTIES IN FUNCTION-LATTICES 

M. H. STONE 

T H E continuous real functions on a topological space X are partially ordered 
in a natural way by put t ing/ ^ g if and only if f{x) S g(x) for all x in X. With 
respect to this partial ordering these functions constitute a lattice, the lattice 
operations U and C\ being defined by the relations (f U g) (x) = max (f(x), 
g 0*0)» ( / H g ) W = min (f(x), g(x)). The lattice character of any partially 
ordered system merely expresses the existence of least upper and greatest lower 
bounds for any finite set of elements in the system. Many partially ordered 
systems enjoy much stronger boundedness properties than these: for example, 
every subset with an upper bound may have a least upper bound, as in the 
case of the real number system. It is our purpose in this paper to determine 
the conditions under which the function-lattice described above exhibits be
haviour of this kind. As an illustration of the results established we may take 
the important case where X is a compact Hausdorff space : here we find that 
the boundedness property required of the function-lattice is equivalent to the 
condition that X be the Boolean space associated with a Boolean algebra which 
has a certain strong additivity property; and many curious and useful rela
tionships among the functions of Baire on the space X appear as a consequence 
of this condition, which implies that each bounded function of Baire on X 
differs from a uniquely determined continuous function only on a set of the 
first category.1 

1. The spectral analysis of a real function. We shall first lay the foun
dations for the main investigation by developing what may be called the 
spectral analysis of a real function. We denote by capital Latin letters the 
abstract set X and its subsets, by lower case Latin letters real-valued functions 
on X, by capital Greek letters the real number system 2 and its subsets, and 
by lower-case Greek letters real numbers. At certain points we shall suppose 
that X is a topological space and the functions on it continuous. We first 
make the following observation. 

Received May 6, 1948. 
^ h e results of this paper, for the case where X is compact, were announced in general terms 

and without proof in the Proceedings of the National Academy of Sciences, vol. 26 (1940), 
280-283; and important applications were indicated there. Full discussions for the case where 
X is a completely regular space satisfying the category condition (C) of Sec. 2 were presented 
in lectures at Harvard, Brown, Chicago, and the Universidad del Literal (Rosario, Argentina) 
in 1942 and 1943. As referee, Professor I. Halperin pointed out that it would be desirable 
to isolate and minimize the rôle played by the condition (C). His detailed suggestions to this 
end have been incorporated in Sec. 2. 

176 

https://doi.org/10.4153/CJM-1949-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-016-5


BOUNDEDNESS PROPERTIES IN FUNCTION-LATTICES 177 

THEOREM L ThesetEf(\)= {x;f(x) < X} C X increases with X and enjoys 
the properties 

fl £/(X) = 0, U £/(X) = X, U £/(M) = £/(X), 
XeS XeS /* < X 

{*;/(*) = X} = Pf(\) where Pf{\)= £/(X)Tl fl £ , 0 0 , 
/ I > X 

(and eflew /fee equivalent properties in which the operations fl, U affect only 
variables X, n which belong to a set A everywhere dense in 2). Pfee characteristic 
function ofE/Çk) is expressed by the formula $x X / , where #x(/z) is 1 or 0 according 
as ju < X or JU ^ X and (</>xX /)(#) = 4nSJ(x))-

The family of sets E/(X) may be called the spectral family for the function/. 
The formal analogy between this family and the spectral family for a self-
adjoint operator in Hilbert space explains our choice of terminology. Even
tually the analogy proves to be much more than formal, though we shall not 
discuss this circumstance in the present paper. 

It is now a simple task to invert the theorem above. 

THEOREM 2. If E(X), — °° < X < + » , has the properties 

f l B ( X ) = 0 , U £ ( X ) = X , [}E(fx)=E(\) 
XeS XeS /* < X 

(or even the equivalent properties in which the operations fl, U affect only variables 
X, fi which belong to a set A everywhere dense in 2), then E(\) is the spectral family 
of a function f defined by putting f(x) = X when and only when x is in P(X) = 

E(\yn n EGO. 
Proof. First let us demonstrate that the non-void sets P(X) constitute a 

partition of X—in other words, that the relations 

P(Xi) Pi P(X2) = 0 when Xi^ X2, U P(X) = X 
XeS 

hold. In the typical case where Xi< X2, the first relation follows immediately 
from the relations P(Xi)C £(X2), P(X2)C E(X2)'. The other is not quite so 
easy to prove. If x is a fixed element in X, the relations xeE(ju) and x non 
eE(/x) define respectively the upper and lower sections of a Dedekind cut in 2 
by virtue of the fact that JLII< M2 implies E(/xi)C E(fx2). Let X(x) be the real 
number determining this cut. The relation U £(/x) =£(X(x)) shows that x 

M<M*) 
non e£(X(x)) and hence that X(x) belongs to the lower section. We conclude 
that xeE(\(x))f Pi fl £(/*) =P(X(x)), U P(A(*)) = X. We also see that a real 

/t>X(#) *«X 

function / can be defined in the manner described in the theorem, and that 
this function is indeed given also by the relation/(x) = \(x). In order to verify 
that £(X) = £/(X), we note that f(x) = M < X implies xeP(n) C £(X) while 
xe£(X) implies xe£(ju) for JU ^ X and hence x none P ( M ) C £(/*)' for M ê X, a 
relation which requires that / (x) < X. 

A result useful in applications may be noted here. 
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178 M. H. STONE 

THEOREM 3. If H{X)C. X is defined for all X in an everywhere dense subset 
A of 2 and has the properties f| H fa = 0, U H fa = X, H fa) C -ff(X2) «Ae» 

XeA XeA 

Xi< X2, ^ew /&e set JE(X) = U Hfa, — 00 < x < + °°, &#s ^ properties 
jtteA, JLC < X 

enumerated in Theorem 2. Iw order /&a£ E(X) = i?(X) /or XeA i/ is necessary and 
sufficient that H fa = U -ff(/*) / o r ^e^-

jieA, /i < X 

Various simple properties of functions are reflected by simple properties of 
their spectral families. Thus we see immediately that the following state
ments are true. 

THEOREM 4. In order that a g f(x) ^ /3 for all x in X it is necessary and 
sufficient that E/fa = 0 for X ^ a and E/fa = X for X > fi. 

THEOREM 5. In order that f fL g it is necessary and sufficient that E/faD 
Egfa for all X. 

When X is a topological space there are connections between topological 
properties of a function and topological properties of its spectral family. A 
very useful instance of this general remark is the following proposition. 

THEOREM 6. When X is a topological space, a necessary and sufficient con-
dition for the continuity of the function f is that E/fa) be strongly contained in 
E/fa) for Xi< X2—in other words, that the closure of E/fa) be interior to E/fa) : 
E/(Air c£/(x2y-'. 

Proof. W h e n / is continuous, the sets E/fa) and E/fa) are open while the 
set {x;f(x)S I (X1+X2)} is closed. When Xi< X2 the relations E/fa) 
C {x\ f(x) ^ \ (Xi+ X2)} C E/fa) hold, and the condition of the theorem 
follows from them. On the other hand, when this condition holds, the relations 
E,(X) = U E/GO C U E / G i ) - C U E/(i(X + M ) ) ' - 'C U E / ( i ( X + /i)) 

C E/fa are valid and show that E/(X) = U Ef(\(y + /x))' - / is an open set. 

In the same way the set H/fa = {x;f(x)> X} is seen to be open, since H/fa = 
U E,W C U £/(/*)'" C U £,(i(X + M))"' C U £/(i(X + n))' C ^ ( y ) . 

jt>X /x>X /x>X pt > X 

Thus the set {x; a<f(x)< /3J = H/(a) H E/(/3) is open and the function/ 
is continuous. 

In actual constructions the following variant of Theorem 3 is often useful. 

THEOREM 7. If, when X is a topological space, the set H fa C X is defined 
for all X in an everywhere dense subset A of 2 and has the properties stated in 
Theorem 3 with the modification that H fa) is strongly contained in H fa) for 
Xi< X2, then the family of sets E(X) = U H fa is the spectral family for a con
tinuous function / . /*eA'M < x 

Proof. We have to verify that E/(X) = E(X) satisfies the condition of the 
preceding theorem. When Xi and X2 are given, Xi< X2, we choose /xi and /x2 

in A so that Xx< /xi< M2< X2. We then have E(Xi)C H fa) y Hfa)C Efa) 
and hence Efa)~ C Hfa)~ C Hfa)'~'C Efa)f~f, as we wished to show. 

https://doi.org/10.4153/CJM-1949-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-016-5


BOUNDEDNESS PROPERTIES IN FUNCTION-LATTICES 179 

We may digress briefly to show how Theorem 7 yields the crucial property 
of normal spaces—namely, the existence of a continuous function / vanishing 
throughout one closed set of a disjoint pair A, B and taking on the value 1 
throughout the other. We choose A as the set of all dyadically rational 
numbers; and for XeA, we put H(\)= 0, H(\) = A, H(\)= Bf, H(k) = X 

p 
according as X < 0 , \ = 0, X = 1,X> 1. We then determine H(\) for X = —, 

2 n 

0 ^ X ^ 1, by induction on n, starting from the case n — 0: if we have found 

H (4) f o r ^ = ° » l> 2> * * * ' 2n s o t h a t H \ i ) i s s t r o n ^ y contained in 
H ( I , we can then choose HI ;— J as an open set containing i7[ — ) 

V 2n ) \ 2n+l / S \ 2 V 

and strongly contained in H ( J , by virtue of the normality of the 

space X. Theorem 7 can now be applied to the family H(\), and shows that 
the required function / exists. Moreover 0 ^ f(x) ^ 1 for all x in X in accor
dance with Theorem 4. 

We close this section with a result of some intrinsic interest in the light of 
later investigations. 

THEOREM 8. In order that, when X is a topological space, the set {x;f(x)y^ 
g(x)} be of the first category (that is, be the union of a denumerable family of 
nowhere dense sets) it is necessary and sufficient that the symmetric difference 
Ef(\)+ E„(\) = (Ef(\ynEg(\)) U (£/(X) DEg(\y) be a set of first category for 
every X. Indeed this condition remains sufficient if X be restricted to an every
where dense subset A of S. 

Proof. It is clear that A C {x; f(x)= g(x)} if and only if £/(X) Pi A = 
Eg(\) fl A for all X. Thus if A C {*;/(*) = g(x)} and B = Af D {x; f(x) ^ 
g(x)} , where B is of the first category, we must have B D £/(X)+ E9(\) and 
can conclude that the latter set is of the first category. On the other hand, 
if E/(X)+ Eg(\) is of the first category for all X in an everywhere dense subset 
A of 2, we determine a denumerable everywhere dense subset M of A and put 
B = U (E/(X)+ Eg(k)). Here B is clearly a set of the first category. If 

XeM 

A = B' we have Ef(X) D A = Eg(\) H A for XeM. However this means that 
we must also have for arbitrary X 

Ef(\)nA= U Ef(v)nA= U EMHA = Eg(\)DA 

by virtue of Theorem 1. Accordingly we see that B D {#;/(#)?* g(x)} and 
the latter set is of the first category. 

2. The main investigation. Let C(X) be the partially ordered system of 
all continuous real functions on the topological space X. Of course, C(X) is 
a lattice. The following stronger boundedness conditions are, as is well known, 
equivalent: 
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180 M. H. STONE 

(A^) every non-void part of C(X) which has an upper bound and at most N 

members has a least upper bound; 
{B te) every non-void part of C(X) which has a lower bound and at most fc$ 

members has a greatest lower bound. 
Naturally if the cardinal number of C(X) does not exceed N these conditions 
become respectively: 

(A) every non-void part of C(X) which has an upper bound has a least 
upper bound; 

(B) every non-void part of C(X) which has a lower bound has a greatest 
lower bound. 

It is our object to determine topological properties of the space X which are 
equivalent to (A\>) and CBj^). In doing so there is no essential loss of generality 
in assuming that X is completely regular : for the study of the real continuous 
functions on a general topological space X can always be reduced to the study 
of corresponding continuous functions on a certain completely regular con
tinuous image of X which is a topological invariant of X. On the other hand, 
the interests of simplicity are often served by making this assumption, as we 
shall do here at our convenience. 

At certain points it will also be convenient to introduce the hypothesis that 

(C) every non-void open subset of X is of the second category {i.e. is not of 
the first category). 

A simple condition for a completely regular space X to have the property (C) 
is that X be locally No-compact in the following sense : every point of X has 

00 

such a neighbourhood U that the relations f| Xn = 0, Xn(Z U for closed sets 

Xn imply Xi O • • . O Xm = 0 for some m. We sketch the proof. Let Y be 
a non-void open set, { Fn} a sequence of nowhere dense sets. For a point of Y 
let U be such a neighbourhood as was described above. Let Xo= X, and 
suppose that closed sets Xi, . . . , X n_i have been determined so that 0 ^ 

Xk'-'c XkC Y n u n Yrfn.. .n Yk-'n x*-i'-' for & = i,... n - 1. 
Since Yn is nowhere dense the open set F ^ T l I n - i ' " ' is non-void. Hence, 
by the complete regularity of X, there exists a continuous function fny 0 ^ 
fnû 1> which vanishes at some point of this open set and assumes the value 1 
on its complement. The set Xn= [x]fn(x)S §} is then a closed set such that 

o^xn'-'cxnc YD un F1-
,n...nFB-/nx»-l,-,. sincexln...niw= 

CO 

Xm^ 0 and XnC. U, we see that f| Xn^ 0 and hence that Y contains at 
oo n=l 

least one point not in U Yn. 
We now assume that the equivalent conditions (AM), (B\y) are satisfied for a 

fixed infinite cardinal number fc$ and a given completely regular space X\ and 
we investigate the consequences for X and C(X). As a first step let {/n} be 
a sequence in C(X) with a lower bound—and hence, by hypothesis, a greatest 
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lower bound, / . The sequence of functions gn = min (/i— / , . . . , fn— f) is in 
C(X), it decreases with 1/w, and it has in C (X) the greatest lower bound 0 
(the constant everywhere equal to zero). Since gn(x) decreases with 1/n, and 
is non-negative, the limit g(x) = lim gn(x) exists and defines a function g ^ 0 

« > 0 0 

which is not necessarily continuous. We now observe that the set {x ; g(x) > 0} is 
00 CO 

expressible in the form U Xp where Xp = {x; g(x)*£ l/p} = fl {x; gn(x) ^1/p}, 

and is therefore an TV-set—that is, is the union of a sequence of closed sets» 
If the interior of Xv were non-void, we could derive a contradiction, as follows-
Since X is completely regular, the existence of a point Xo in Xv'~

f would imply 
the existence of a function h belonging to C(X), bounded between 0 and 1, 
assuming the value 1 at Xo, and vanishing on the closed s e t X / - . It would 
then be true that g ^ 0-/P)h and hence that gn^{l/p)h for n = 1, 2, 3, . . . . 
Consequently, Oet(l/p)h—in contradiction with the fact that (l/p)h(xa) = 
l/p > 0. Inasmuch as Xv is closed and contains no interior point it must be 
nowhere dense. Hence the set {x\ g(x) > 0} is a set of the first category. In 
terms of the original functions fnif, this means that the continuous function/ 
is uniquely determined as the maximum element in C(X) which is everywhere 
less than or equal to inf/n(x); and that the set {x;f(x)< inf fn(x)} is of the 

n n 

first category. From this general result we can now infer that, if the sequence 
of continuous functions fn is bounded in C(X), then lim sup fn (and similarly 

n+co 
lim inf fn) exists and differs from a continuous function only on a set of first 
« > o o 

category. Indeed, the result just established shows that lim max (/w, . . . , 
«-^- oo 

fn+p)S gn where gn is the minimal element in C{X) with this property; and 
that Yn= {x\ lim max (/n, . . . , fn+p)< gn) is a set of the first category. 

£->°o 

Moreover the characterization of gn shows that lim max (fm, . . . , fm+p) ^ gn 
p+co 

when m ^ n and hence that gm^ gn. The lower bounds of {/n} are also lower 
bounds of {gn}- Now lim gn exists and differs from a continuous function/ 
only on a set of the first category ; and at the same time lim gn and lim sup fn 

oo «->• oo n-^ oo 

differ only on the set Y = U Fn , which is of the first category. Hence lim sup 
M = l W - > 0 0 

fn differs from/, a continuous function, only on a set of the first category. As 
a corollary of the facts established above, we remark that if a sequence {/n} 
bounded in C(X) converges everywhere then its limit differs only on a set of the 
first category from a continuous function which is bounded by the bounds of 
{fn} . In fact we can generalize this result to the family of all functions of 
Baire on X, as follows: 

THEOREM 9. For a completely regular space X the conditions ( 4 M ) , (#S$) 

imply that every real function of Baire which is bounded by continuous functions 
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differs only on a set of the first category from a continuous function (which under 
the hypothesis (C) is uniquely determined) ; and these conditions further imply 
that every (finite) real function of Baire differs only on a set of the first category 
from the quotient of two continuous functions (with denominator vanishing only 
on a nowhere dense set when hypothesis (C) is valid). 

Proof. It is necessary to proceed by transfinite induction based on the 
classical procedure of Baire. Let 12 be the first ordinal number such that the 
class of all preceding ordinal numbers is non-denumerable. The class of all 
ordinal numbers a such that 0 ^ a < 12 is the substratum for the recursive 
definition of the Baire classes: the continuous functions on X are taken as 
constituting the Oth Baire class; and, when the /3th Baire class has been defined 
for every /3 < a < 12, then those functions which are limits of sequences of 
functions in the available classes without being members of any such class are 
taken as constituting the ath Baire class. The union of all the Baire classes 
is the family of Baire functions. We have already seen above that every 
function of the first Baire class which is bounded with respect to C(X) differs 
from a continuous function only on a set of the first category. Suppose we 
have proved the like result for every function in the /5th Baire class, for /3 < a. 
Let / be in the ath Baire class—specifically let fn be in the /3nth Baire class, 
(3n< a, and let the sequence {/n} be bounded with respect to C(X) and con
verge to / . By hypothesis there exists a continuous function gn which differs 
from/n only on a set of the first category. We may suppose that the sequence 
{gn} is bounded in C(X): otherwise we could replace gn by the function max 
(h, min (gn, k)) where h and k are continuous functions such that h S fn^ k 
for all n. Thus we see that lim sup gn exists and differs from / = lim fn = 

w>oo w > o o 

lim sup fn only on a set of the first category. The results proved above show 
W-^- 00 

that there is a continuous function g which differs from lim sup gn, and hence 
w > oo 

also from/, only on a set of the first category. Now (C) implies the uniqueness 
of g: for if gx and g2 are continuous functions each differing from / only on a 
set of the first category, then the set {x; g(xi) ^ g(x2)} is open and of the first 
category, hence void ; and g\ = g2. The part of the theorem dealing with func
tions of Baire which are bounded by continuous functions now follows in 
accordance with the principle of transfinite induction. When / is a general 
(finite) function of Baire, the functions//(l + / 2 ) and 1/(1 + f2) are bounded 
functions of Baire, equal except on a set of the first category to continuous 
functions g and h respectively. It is evident that / = g/h except on a set of 
the first category. When (C) holds we see that the closed set {x; h(x) = 0}, 
being of the first category, has void interior and is therefore nowhere dense. 

An immediate consequence of the property just established for the Baire 
functions is this: 

THEOREM 10. Let <f> be any real function of Baire of the real variable X on a 
domain which includes the range of a given continuous function f on a completely 
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regular space X; and let the function </>Xf, where ($X/)(#) = <K/(x)), be bounded 
in C{X). Then the conditions 04s>), (Bs>) imply that (f>Xf differs only on a set of 
the first category from a continuous function {which is uniquely determined under 
hypothesis (C)).2 

The next step in our investigation depends essentially upon a particular 
case of Theorems 9 and 10. 

THEOREM 11. For a completely regular space X, the conditions 04 s>), Ĉ fc$) 
imply that the spectral family {E/(\)} for a continuous real function f on X has 
the properties : 

(1) Ef(\)~ is open as well as closed-, 
(2) Ef(\) is expressible as the union of a sequence of closed-and-open sets, 

through the specific formula E/(\) = U E/(X)_, where A is a de-
/ i€À, fl < X 

numerable everywhere dense subset of 2. 
Proof. The function $x denned in Theorem 1 is a function of Baire, being 

the limit of the increasing sequence of continuous functions <£x,n where <£x,n 

( M ) = 1 for M ^ X — 1/fij <t>\,n(v)= n(\ — fi) for X — 1/n ^ M ^ X, and 
<£\>n(Ai) = 0 for fx ^ X. The function <£XX/ is therefore equal except on a set 
of the first category to a continuous function g which can be taken as the least 
upper bound in C(X) of the family of continuous functions <£x,nX/. For this 
function it is evident that 0 ^ g ^ 1 and that g{x) = 1 when xeE/Çk). The 
continuity of g implies that g(x) = 1 for xeEf(X)~. Now let x0eE/(X)-/. In 
accordance with the fact that X is completely regular, there exists a con
tinuous function h such that 0 ^ h S 1, h(x0) =0 , h(x) = 1 for xeEf(\)~~. The 
inequality #x> nX / ^ h is valid and implies that g ^ h. In particular, g(xo) = 
0. Thus the continuous function g is a characteristic function, being equal 
to 1 on E/(X)"" and to 0 on its complement; and both these sets are therefore 
closed-and-open sets. The remainder of the present theorem follows from 
the relations Ef(\)= U Ef(ix), E/(ju)~C-E/(X), noted in Theorems 1 and 6. 

fieA, fi<\ 

Concerning the subsets of X which are both closed and open we can now 
make the following general statements. 

THEOREM 12. For a completely regular space the conditions (As>), (B^) imply 
that the closed-and-open subsets of X are an additive basis for the open subsets of 
X, and that they are an ^-additive family in the following sense: the union of at 
most N closed-and-open sets has a closure which is both closed and open. 

Proof. If U is an open set and xo a point of U, there exists a continuous 
function/bounded between 0 and 1 which vanishes at x and assumes the value 
1 on U'. The set E/(\)~ is closed-and-open, in accordance with Theorem 11. 
Moreover xeE/(|)~ C {%', f(x) ^ h} C U. It follows that U is the union of 
closed-and-open sets. In order to establish the N-additivity asserted above, 

2The proof is supplied by observing that <f> X / is a function of Baire. For implications of 
this theorem, see Stone, footnote 4. 
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we consider the union G of a family of closed-and-open sets Gp, where the 
index p belongs to a class of cardinal number at most N. The characteristic 
function g for G is defined in terms of the characteristic functions gp for the 
sets Gp by the formula g(x) — sup gp(x). The functions gp are continuous and 

p 

bounded by the constant 1. Hence they have in C{X) a least upper bound,/ . 
Obviously the relations gp^ f imply g(x)^f(x) for every x; in particular 
0 ^ f(x) everywhere and 1 g f(x) for xeG. Since gp^ 1, gpS f, we must have 
gPS min (1,/) and hence/ ^ min ( 1 , / ) ^ 1 . It follows tha t / (x) is equal to 1 
for every x in G—and by continuity even for every x in G~. On the other 
hand, we can show that f(x) vanishes for every x in the open set U = G~'. 
Let #o be in U. Then there exists a continuous function h bounded between 0 
and 1, vanishing at x0, and assuming the value 1 on U' = G~~. Since gpS g ^ h 
for every p, we see that gp^ min (/, h)S / for every p and hence t h a t / ^ min 
(/, h). Thus / = min (/, h) and 0 ^f(x0) = min (/(x0), ft(ffo))^ h(x0) = 0, 
/(xo) = 0. We now see that / is the characteristic function of G~~, this set 
therefore being open as well as closed. This completes the proof of the 
theorem. 

By combining some of the necessary conditions obtained in Theorems 9-12 
we can now exhibit a set of conditions on X and C(X) which implies (A s>) 

and (Bs>) and which is therefore equivalent to each of the latter conditions 
taken separately. Indeed, some of the properties assumed for the space X 
are consequences of this set of conditions, so that we can even state a somewhat 
stronger theorem, as follows. 

THEOREM 13. If X is a topological space, the conditions 

(1) the closed-and-open sets in X have the ^-additivity property of the 
preceding theorems] 

(2) for any continuous function f, the spectral set E/Qs) is the union of at 
most ft closed-and-open sets 

jointly imply that X has the properties (As*) and (Bs>) ; and also that (2) actually 
assumes the stronger form stating that E/(\) is the union of at most NQ closed-and-
open sets. If X is completely regular, then (2) implies that the closed-and-open 
sets constitute an additive basis for X (a condition which is sufficient to imply 
complete regularity). 

Proof. The final assertion of the theorem requires no detailed examination. 
Clearly (1) and (2) together imply that E/(\)~ is open as well as closed. As 
in the proof of Theorem 11, it then follows that (2) assumes the stronger form 
stating that E/(\) is the union of at most &0 closed-and-open sets. Now let 
us consider a family of at most fc$ continuous functions fp with a lower bound 
in C{X). The function h such that h{x) = inf/p(x) is then defined for all x in X 

p 

but is not necessarily a continuous function. It is clear that Eh(\) = U Ef (X). 
p 

Hence EhÇk) is the union of at most N closed-and-open sets by (2); and its 
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closure is an open set by (1). Putting E(X) == U Eh(ix)~~, we see that E(X) C 
/ x < X 

Eh(\)~. If Xi< X2, then E(Xi)"C £*(Xi)~C E(X2) ; and since £fc(Xi)" is closed-
and-open, it follows that E(Xi) is strongly contained in E(X2). Theorem 6 now 
shows that E(X) is the spectral family of a continuous function/, E(X) = E/(X). 
Since E / (X) C EA(X) = U Eh(n) C E(X) for all p, it follows t h a t / ^ /p for every 

P ix<\ 

p, in accordance with Theorem 5. On the other hand, if g is a continuous 
function such that g tk fp for all p, we have E^(X)D E / (X) for all p and hence 
Eg(\)Z) U E / (X)3 Efc(X). Since g is continuous, it is true that Eg(\)Z) Eg(fx)~ 

when X > M. Hence Eg(\)D Eg(fi)~D Eh(n)~ for X > M and Eg(X)D U E*G0"" 
/*<X 

= E/(X). Theorem 5 then shows that g S f> Hence the function / is the 
greatest lower bound in C(X) for the family of functions fp. This completes 
the proof that the property (5w) is true for X and C(X). The property (As*) 
is, of course, equivalent to (5s>). 

When the cardinal number of C(X) does not exceed K the results obtained 
above may be expressed in the following terms: 

THEOREM 14. For a completely regular space X, the conditions (A) and (B) 
hold if and only if every open set has a closure which is open. For a topological 
space X, the latter condition implies both (A) and (B). 

Proof. If X is a completely regular space for which (A) or (B) is valid, 
then Theorem 12 shows that every open set is the union of closed-and-open 
sets and, as such, has a closure which is an open set. When X is a topological 
space in which every open set has a closure which is open, the condition (1) of 
Theorem 13 is obviously verified. As for condition (2), we observe that, if/ 
is a continuous function and X > /*, then E/(ju)C E/(ju)~C E/(X) and E/(X) = 
U E/(JU)~ where the set E/(JU)~ is open as well as closed. 

There is no corresponding simplification in the other extreme case, ^ = fr$0 , 
unless X is assumed to be a normal space. We can then assert: 

THEOREM 15. In order that a normal Hausdorff space X have the properties 
(A# ) , (Bs^ ) it is necessary that every open Fa-set in X have a closure which is 
open; and in order that a normal space X have the properties (As^)f (Bs^ ) it is 
sufficient that the latter condition hold. 

Proof. It is well known that in a normal space an open set is an E^-set if 
and only if it is a spectral set E/(X) for some continuous function/. Hence in 
a normal Hausdorff space with the properties (As* ), (Bs* ) we see by Theorem 
11 (1) that "every open Eff-set has a closure which is open. In a normal space 
with the latter property, the condition (2) follows from the fact that E/(X) = 
00 

U E/(X - l/n)~ where Ef(X - l/n)~ is open as well as closed. 

Theorems 14 and 15 have been given by H. Nakano in a paper published 
subsequently to our original announcement.3 

3H. Nakano, Proc. Imp. Acad. Tokyo, vol. 17 (1941), 308-310. 
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3. The case of a compact Hausdorff space. If we now concentrate our 
attention upon the case of a compact Hausdorff space X, we can simplify the 
results developed in Sec. 2. The simplification results from the following facts. 

THEOREM 16. If X is a compact Hausdorff space, then 
(1) X is completely regular; 
(2) no non-void open set is of the first category ; 
(3) if f is a continuous function, then the spectral set Ef(\) is the union of 

at most i^0 sets chosen from any specified additive basis for the open 
sets in X. 

Proof. (1) is well known, and (2) follows by application of the sufficient 
condition given at the time when (2) was introduced as hypothesis (C). To 
prove (3) we note first that Ef(k) is an 7^-set, being the union of the closed 
sets Fn= {x;f(x) ^ X — l/n} . From any specified additive basis for the open 
sets of X, let us select a family of open sets having E/Çk) as their union. This 
family is a covering for Fn and therefore contains a finite subcovering for Fni 

by virtue of the compactness of X. We thus obtain a sequence of such finite 
coverings. Taken together they clearly provide a countable exact covering 
of Ef(\) by sets from the specified basis. 

In view of Theorem 14 and the results of Sec. 2, we now have the following 
result. 

THEOREM 17. In order that a compact Hausdorff space X have the equivalent 
properties 04 w), C^S*) it is necessary and sufficient that 

(1) the closed-and-open sets constitute a basis for X; 
(2) the closed-and-open sets have the ^-additivity property of Theorem 12. 

On any such space every bounded Baire function differs from a continuous function 
only on a set of the first category. 

If we take into account the known results of the theory of Boolean algebras,4 

we can put the above result in the following form. 

THEOREM 18. A compact Hausdorff space has the equivalent properties (AM) > 

(Bs>) if and only if it is the representative Boolean space for an ^-additive Boolean 

algebra. 

University of Chicago 

4See Stone, Bull. Amer. Math. Soc, vol. 44 (1938), 807-816; Trans. Amer. Math. Soc, 
vol. 40 (1936), 37-111, and vol. 41 (1937), 375-481. In Sec. 7 of the Bulletin paper (which 
is a brief general survey) the union of any non-void subclass of a Boolean ring is defined. 
The property of ^-addi t iv i ty is the property that the union of every subclass of a t most fc$ 
members exists. In the topological representation (Theorem 67 of the first Transactions 
paper, and Theorems 1, 2, 4 of the second) this property is equivalent to the following: the 
union G of any family of a t most fcÇ closed-and-open sets is contained in a smallest closed-and-
open set, necessarily the closure of G. 
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