The Mod Two Cohomology of the Moduli Space of Rank Two Stable Bundles on a Surface and Skew Schur Polynomials

Christopher W. Scaduto and Matthew Stoffregen

Abstract

We compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.

1 Introduction

Let Σ_{g} be a closed, oriented surface of genus g, and let N_{g} be the moduli space of flat $\mathrm{SU}(2)$ connections on Σ_{g} having holonomy -1 around a single puncture. The space N_{g} is a smooth symplectic manifold of dimension $6 g-6$, and twice the class of its symplectic form, denoted α, is a generator of $H^{2}\left(N_{g} ; \mathbb{Z}\right)$. If Σ_{g} is given a complex structure, then N_{g} can be identified with the moduli space of stable holomorphic bundles of rank two with fixed odd determinant.

The betti numbers of N_{g} were first computed by Newstead [New67]; Atiyah and Bott [AB83] later showed that $H^{*}\left(N_{g} ; \mathbb{Z}\right)$ is torsion free. Newstead [New72] also showed that the cohomology ring is generated by integral classes $\alpha, \beta, \psi_{1}, \ldots, \psi_{2 g}$ over the rationals. Here β is degree 4 , and each ψ_{i} is degree 3. Newstead conjectured the relation $\beta^{g}=0$, which Thaddeus [Tha92] and Kirwan [Kir92] proved. A beautiful presentation for the rational cohomology ring of N_{g} was established by several authors [Bar94, KN98, ST95, Zag95] following the work of Thaddeus [Tha92].

The nilpotency degree of an element x in a ring is the smallest $n \geqslant 1$ such that $x^{n}=0$. In the integral cohomology ring, the nilpotency degree of β is equal to g, while that of α is equal to $3 g-4=\frac{1}{2} \operatorname{dim} N_{g}+1$, since α is proportional to the symplectic form class. The situation is quite different with \mathbb{Z}_{2}-coefficients. First, the mod 2 reduction of α can be realized as $w_{2}(E)$ of an $\mathrm{SO}(3)$-bundle E over N_{g} for which $\beta=p_{1}(E)$. By the general relation $w_{2}(E)^{2} \equiv p_{1}(E) \bmod 2, \alpha^{2} \equiv \beta \bmod 2$. In particular, β is a redundant generator over \mathbb{Z}_{2}. Indeed, Atiyah and Bott [AB83] told us that to generate the cohomology ring over the integers, we need the classes $\alpha, \frac{1}{4}\left(\alpha^{2}-\beta\right), \psi_{1}, \ldots, \psi_{2 g}$ and additional classes $\delta_{1}, \ldots, \delta_{2 g-1}$. Here δ_{i} has degree $2 i$. We will see that we only

[^0]need the $\bmod 2$ reductions of $\alpha, \psi_{1}, \ldots, \psi_{2 g}$ and $\delta_{2^{i}}$ for $2 \leqslant 2^{i} \leqslant 2 g-1$ in order to generate $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$.

The moduli space N_{g} embeds into the moduli space M_{g} of projectively flat $U(2)$ connections on Σ_{g} of fixed odd degree without fixed determinant. This is again a smooth symplectic manifold, now of dimension $8 g-6$. It has a corresponding degree two class $a_{1} \in H^{2}\left(M_{g} ; \mathbb{Z}\right)$ that restricts to α. The nilpotency degrees of α and a_{1} with \mathbb{Z}_{2}-coefficients are as follows.

Theorem 1.1 The nilpotency degree of α as viewed in $H^{2}\left(N_{g} ; \mathbb{Z}_{2}\right)$ is equal to g :

$$
\alpha^{g} \equiv 0(\bmod 2), \quad \alpha^{g-1} \not \equiv 0(\bmod 2) .
$$

On the other hand, the nilpotency degree of a_{1} as viewed in $H^{2}\left(M_{g} ; \mathbb{Z}_{2}\right)$ is equal to $2 g$:

$$
a_{1}^{2 g} \equiv 0(\bmod 2), \quad a_{1}^{2 g-1} \not \equiv 0(\bmod 2) .
$$

To establish that α^{g} is zero $\bmod 2$, we consider its cup product pairings with monomials in the generators listed above. The pairing formula will be expressed as the extraction of a coefficient from a formal power series whose coefficients are symmetric functions. To state the result, it is convenient to introduce the rational cohomology classes ξ_{i} on N_{g} that satisfy

$$
\begin{equation*}
\xi_{i}=\sum_{j=0}^{i}\binom{2 g-1-j}{i-j}\left(-\frac{\alpha}{2}\right)^{i-j} \delta_{j}, \quad \delta_{i}=\sum_{j=0}^{i}\binom{2 g-1-j}{i-j}\left(\frac{\alpha}{2}\right)^{i-j} \xi_{j} . \tag{1.1}
\end{equation*}
$$

More precisely, the left-hand formula in (1.1) may be taken as the definition of ξ_{i}, and the right-hand formula is the induced inverse relation between the δ_{i} and ξ_{i} generators. Note that $2^{i} \xi_{i}$ is an integral cohomology class for N_{g} of degree $2 i$. Next, we let e_{i} denote the i-th elementary symmetric function, and m_{λ} the monomial symmetric function associated with a partition λ. Define $U(T)=\sum_{n \geqslant 0} m_{\left(2^{n}\right)}(-T)^{n}$ as a power series with coefficients in the ring of symmetric functions. Here, the notation ($\left.2^{n} 1\right)$ stands for the partition with 1 one and n two's. Also define

$$
Q(T)=e_{1}+e_{3} T+e_{5} T^{2}+e_{7} T^{3}+\cdots=\sum_{n \geqslant 0} e_{2 n+1} T^{n}
$$

We write $x\left[N_{g}\right]$ for the evaluation of a top-degree integral cohomology class x against the fundamental class of N_{g}. The following, along with (1.1), computes the pairings $\delta_{\lambda_{1}} \delta_{\lambda_{2}} \cdots \delta_{\lambda_{k}}\left[N_{g}\right]$, and is the main technical result of the paper.

Theorem 1.2 Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a partition of $3 g-3$. Then we have

$$
\xi_{\lambda_{1}} \xi_{\lambda_{2}} \cdots \xi_{\lambda_{n}}\left[N_{g}\right]=\frac{1}{2^{g-1}} \cdot \underset{m_{\lambda} T^{g-1}}{\operatorname{Coeff}}\left[U(T)^{g} / Q(T)\right]
$$

We obtain a similar formula for pairings on M_{g}. Since δ_{1} is a non-zero multiple of α, Theorem 1.2 can be used to compute pairings involving both powers of α and δ_{i} classes. In the sequel, we will also write down pairing formulas involving the ψ_{i} classes. The proofs of these pairing formulas follow the computational framework of Zagier [Zag95], whose starting point was Thaddeus's formula for the intersection pairings involving the Newstead classes $\alpha, \beta, \psi_{1}, \ldots, \psi_{2 g}$.

Figure 1: The skew tableaux defining the skew Schur functions in $1 / Q(T)$ and $1 / E(T)$, where $n=6$.

As pointed out to the authors by Ira Gessel, up to some renormalizing, the reciprocal power series $1 / Q(T)$ is a generating function for the skew Schur functions associated with a particular family of skew partitions. We briefly explain this. Let $\lambda(n, m)$ be the partition $(n, \ldots, n, n-1, n-2, \ldots, 2,1)$, where n appears m times. Note that $\lambda(n, 0)=(n-1, n-2, \ldots, 2,1)$. In general, if λ and μ are paritions, the skew partition λ / μ is pictorially the result of drawing the Young tableau for λ and deleting the part of the tableau given by μ. See Figure 1. To any skew tableau λ / μ there is defined a skew Schur-symmetric function $s_{\lambda / \mu}$. In Section 4.3 we will explain the identity

$$
\begin{equation*}
1 / Q(T)=\sum_{n \geqslant 0} e_{1}^{-n-1} s_{\lambda(n, 3) / \lambda(n, 0)}(-T)^{n} \tag{1.2}
\end{equation*}
$$

As the power series $U(T)$ is comparatively simple, we see that the complexity of the cup-product pairings among the δ_{i} classes comes from the skew Schur functions $s_{\lambda(n, 3) / \lambda(n, 0)}$.

Theorem 1.2 allows us to explicitly describe the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$ for low genus, and we do this in Section 6. Ideally, we would like to find presentations for these rings that are as nice as the recursive presentations for $H^{*}\left(N_{g} ; \mathbb{Q}\right)$ as found by [Bar94, KN98, ST95, Zag95]. However, as our computations suggest, the situation for non-rational coefficients seems more complicated.

The manifold N_{g} may be given a complex structure, and is in fact an example of a smooth Fano variety. In particular, in place of the δ_{i} above, we can consider the products of its Chern classes. Here another power series $E(T)$ with coefficients symmetric functions appears:

$$
E(T)=1+e_{2} T+e_{4} T^{2}+e_{6} T^{3}+\cdots=\sum_{n \geqslant 0} e_{2 n} T^{n}
$$

The analogue of (1.2) is the relation $1 / E(T)=\sum_{n \geqslant 0} s_{\lambda(n, 2) / \lambda(n, 0)}(-T)^{n}$. We then have the following, whose proof is very similar to the proof of Theorem 1.2.

Theorem 1.3 Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a partition of $3 g-3$. Set $c_{i}=c_{i}\left(T N_{g}\right)$. Then

$$
c_{\lambda_{1}} c_{\lambda_{2}} \cdots c_{\lambda_{n}}\left[N_{g}\right]=(-2)^{3 g-3} \cdot \operatorname{Mooeff}_{m^{3-1}}\left[U(T)^{g} / Q(T) E(T)\right] .
$$

This theorem has the following application. From [New72, §4], we know that the total Pontryagin class of N_{g} is equal to $(1+\beta)^{2 g-2}$. The relation $\beta^{g}=0$ mentioned above then implies that all Pontryagin numbers of N_{g} vanish. It is easy to see from Theorem 1.3 that the Chern numbers of N_{g} are all even, and hence all Stiefel-Whitney numbers of N_{g} vanish. A theorem of Wall [Wal60] says that two closed, oriented manifolds are oriented-cobordant if and only if they have the same Pontryagin and Stiefel-Whitney numbers. We then deduce the following, which we suspect was already known, but for which we could not find a reference.

Corollary 1.4 The manifold N_{g} is oriented null-cobordant.

We make a few historical remarks. The classes δ_{i} are Chern classes of the direct image of a universal rank-two complex bundle over the moduli space N_{g}. The RiemannRoch formula gives expressions for its Chern classes in terms of the more basic classes α, β, ψ_{j}. The direct image bundle has rank $2 g-1$, and so the expressions one obtains for Chern classes in degrees higher than $2 g-1$ are relations in the cohomology ring. Mumford is usually credited with conjecturing that these expressions, at least in the case of M_{g}, form a complete set of relations [AB83, p. 582]. This was proved by Kirwan [Kir92]. The beautiful recursive presentation for the rational cohomology ring found later by [Bar94, KN98, ST95, Zag95] uses relations that are most naturally viewed as Chern classes of a bundle over N_{g} induced by an embedding into a Grassmannian [ST95, $\$ 1]$. However, Zagier showed [Zag95, §6] that they can also be recovered from the Chern classes of the direct image bundle. We mention that the relation $\alpha^{g} \equiv 0$ ($\bmod 2$) of Theorem 1.1 can actually be recovered from this recursive presentation, but the authors did not see how $\alpha^{g-1} \equiv 0(\bmod 2)$ and the other results presented here follow from it.

The work presented here is motivated by a problem in instanton homology with mod two coefficients, and in particular, the analogue of Muñoz's work [Muñ99] in characteristic two. The mod 2 instanton homology of a surface times a circle with nontrivial SO(3)-bundle should be a deformation of the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, and should agree with a version of the quantum cohomology of the symplectic manifold N_{g} with mod 2 coefficients. We expect the nilpotency degree of α as viewed in this deformation, perhaps in the ring modulo the ψ_{i} classes, to be related to homology cobordism invariants defined in unpublished work by Frøyshov using mod 2 instanton homology. The analogue in rational coefficients is the nilpotency degree $[g / 2\rceil$ of $\beta \bmod \gamma$ that appears in Frøyshov's inequality [Fy04, Theorem 1] for his h-invariant. See also the related paper [CS]. The authors plan to return to these motivations in forthcoming work.

In a spin-off article, we will use the computations here to study the mod two betti numbers of the framed moduli space, which is an $\mathrm{SO}(3)$ bundle over N_{g}. These betti
numbers are determined by the ranks of the maps on $H^{i}\left(N_{g} ; \mathbb{Z}_{2}\right)$ given by cup-product with the degree two class α.

1.1 Outline

Background is provided in Section 2, as well as several useful results regarding generators for the cohomology rings of N_{g} and M_{g} for different coefficient rings. In Section 3 we review Thaddeus's pairing formula for the Newstead generators. In Section 4 we prove Theorems 1.2 and 1.3 and discuss some of their implications, as well as the relationship with skew Schur functions. In Section 5 we prove Theorem 1.1. Finally, in Section 6 we present computations obtained using Theorem 1.2, and describe the mod two cohomology rings of N_{g} for low genus.

2 Background and Generators

In this section we describe sets of generators for the cohomology rings of N_{g} and M_{g} for different coefficient rings. We also write down generators for the subring of the cohomology of N_{g} invariant under the mapping class group action. As we proceed, we will introduce some necessary background, but see [Tha97] for a more proper introduction. We take a moment to emphasize here an important point about our notation regarding the generators δ_{i} and d_{i} introduced below. Singling out a handle of the surface Σ_{g} induces embeddings of N_{g-1} and M_{g-1} into N_{g} and M_{g}, respectively.

Caution. The restriction of $\delta_{i} \in H^{2 i}\left(N_{g} ; \mathbb{Z}\right)$ is not equal to $\delta_{i} \in H^{2 i}\left(N_{g-1} ; \mathbb{Z}\right)$. Similarly, the restriction of $d_{i} \in H^{2 i}\left(M_{g} ; \mathbb{Z}\right)$ is not equal to $d_{i} \in H^{2 i}\left(M_{g-1} ; \mathbb{Z}\right)$.

For this reason, in the sequel we sometimes write $\delta_{g, i}$ and $d_{g, i}$ for δ_{i} and d_{i}, respectively. Finally, we mention that the contents of this section are derived mostly from Atiyah and Bott [AB83], with the help of some additional observations.

2.1 Integral Generators for the Cohomology of M_{g}

We begin by defining the Atiyah-Bott generators for the ring $H^{*}\left(M_{g} ; \mathbb{Z}\right)$. Central to the discussion is a universal rank-two holomorphic bundle $U_{g} \rightarrow M_{g} \times \Sigma_{g}$. There is an ambiguity in the choice of this bundle: tensoring by any holomorphic line bundle over $M_{g} \times \Sigma_{g}$ produces another, possibly non-isomorphic, universal bundle. Atiyah and Bott fixed their choice of universal bundle by starting with any universal U_{g} and defining the following normalized bundle:

$$
V_{g}:=U_{g} \otimes f^{*}\left(\operatorname{det}\left(\left.U_{g}\right|_{M_{g}}\right)^{\otimes g} \otimes \operatorname{det}\left(f_{!} U_{g}\right)\right)
$$

Here and throughout, f denotes the projection from $M_{g} \times \Sigma_{g}$ onto M_{g}. The notation $f_{!} U_{g}$ denotes the direct image of U_{g}, which in our situation is a genuine holomorphic bundle of rank $2 g-1$, with its fiber over $y \in M_{g}$ equal to $H^{0}\left(\Sigma_{g} ;\left.U_{g}\right|_{y}\right)$. We remind the reader of the Grothendieck-Riemann-Roch theorem in this setting: writing $\omega \in H^{2}\left(\Sigma_{g} ; \mathbb{Z}\right)$ for the orientation class of the surface Σ_{g}, for any holomorphic vector bundle W lying over $M_{g} \times \Sigma_{g}$, we have

$$
\begin{equation*}
\operatorname{ch}\left(f_{!} W\right)=f_{*}(\operatorname{ch}(W)(1-(g-1) \omega)) \tag{2.1}
\end{equation*}
$$

From this one can obtain expressions for the Chern classes $c_{i}\left(f_{!} V_{g}\right)$ in terms of expressions for the Chern classes $c_{i}\left(V_{g}\right)$. Since V_{g} itself is rank two, the only non-zero Chern classes are $c_{1}\left(V_{g}\right)$ and $c_{2}\left(V_{g}\right)$. The first of these can be written as

$$
\begin{equation*}
c_{1}\left(V_{g}\right)=a_{1} \otimes 1+\sum_{j=1}^{2 g} b_{1}^{j} \otimes f_{j}+(4 g-3) \otimes \omega \tag{2.2}
\end{equation*}
$$

Here we are using the Künneth decomposition of $H^{*}\left(M_{g} \times \Sigma_{g}\right)$, and we have fixed a symplectic basis $f_{1}, \ldots, f_{2 g}$ of $H^{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$, such that, for $1 \leqslant i \leqslant g$, we have $f_{i} f_{i+g}=\omega$ and $f_{i} f_{j}=0$ for $j \neq i+g$. Next, the second Chern class can be written as

$$
\begin{equation*}
c_{2}\left(V_{g}\right)=a_{2} \otimes 1+\sum_{j=1}^{2 g} b_{2}^{j} \otimes f_{j}+\left((2 g-1) a_{1}-\sum_{j=1}^{g} b_{1}^{j} b_{1}^{j+g}\right) \otimes \omega . \tag{2.3}
\end{equation*}
$$

The terms appearing in front of ω were computed in [AB83]. Other than these tail terms, the expressions (2.2) and (2.3) implicitly define the elements

$$
a_{1} \in H^{2}\left(M_{g} ; \mathbb{Z}\right), \quad a_{2} \in H^{4}\left(M_{g} ; \mathbb{Z}\right), \quad b_{1}^{j} \in H^{1}\left(M_{g} ; \mathbb{Z}\right), \quad b_{2}^{j} \in H^{3}\left(M_{g} ; \mathbb{Z}\right)
$$

in which $1 \leqslant j \leqslant 2 g$. Next, we use the direct image bundle to define the classes $d_{i}=$ $d_{g, i}:=c_{i}\left(f_{!} V_{g}\right) \in H^{2 i}\left(M_{g} ; \mathbb{Z}\right)$, for $1 \leqslant i \leqslant 2 g-1$. We remark that the Riemann-Roch formula (2.1) implies $d_{1}=(g-1) a_{1}$, which can be written more explicitly as $c_{1}\left(f_{!} V_{g}\right)=$ $(g-1) c_{1}\left(\left.V_{g}\right|_{M_{g}}\right)$. This is briefly explained below. As warned in the introduction to this section, in contrast to the classes $a_{1}, a_{2}, b_{1}^{j}, b_{2}^{j}$, the restriction of $d_{g, i}$ to M_{g-1} is not equal to $d_{g-1, i}$. This is evident for d_{1}, as just seen, and will be clear more generally from the formulas below. We now state the fundamental result due to Atiyah and Bott.

Theorem 2.1 ([AB83, Theorem 9.11]) The elements $a_{1}, a_{2}, b_{1}^{j}, b_{2}^{j}, d_{i}$ generate the ring $H^{*}\left(M_{g} ; \mathbb{Z}\right)$, where the indices run over $1 \leqslant j \leqslant 2 g$ and $2 \leqslant i \leqslant 2 g-1$.

Since d_{1} is an integral multiple of a_{1}, it is in fact redundant. We can also show that the generator a_{2} is redundant for certain coefficient rings, as follows.

In principle, all the classes d_{i} can be computed from the Riemann-Roch formula (2.1) as rational expressions in the generators $a_{1}, a_{2}, b_{1}^{j}, b_{2}^{j}$. We will, essentially, accomplish this later using a computational framework set up by Zagier. As a basic example, however, we consider the computation of d_{2}. First, we remind the reader of the first few terms of the Chern character:

$$
\mathrm{ch}=\mathrm{rk}+c_{1}+\left(\frac{1}{2} c_{1}^{2}-c_{2}\right)+\left(\frac{1}{6} c_{1}^{3}-\frac{1}{2} c_{1} c_{2}+\frac{1}{2} c_{3}\right)+\cdots
$$

Here $c h$ is the Chern character of any complex vector bundle, $r k$ is the rank, and c_{i} stands for the i-th Chern class. To begin using Riemann-Roch on our universal bundle V_{g}, we first note that the powers of $c_{1}\left(V_{g}\right)$ and $c_{2}\left(V_{g}\right)$ are straightforward to compute:

$$
\begin{aligned}
c_{1}\left(V_{g}\right)^{n}= & a_{1}^{n} \otimes 1+n \sum_{j=1}^{2 g} a_{1}^{n-1} b_{1}^{j} \otimes f_{j}+\left(n(4 g-3) a_{1}^{n-1}-n(n-1) a_{1}^{n-2} B_{1}\right) \otimes \omega \\
c_{2}\left(V_{g}\right)^{n}= & a_{2}^{n} \otimes 1+n \sum_{j=1}^{2 g} a_{2}^{n-1} b_{2}^{j} \otimes f_{j} \\
& \quad+\left(n(2 g-1) a_{1} a_{2}^{n-1}-n B_{1} a_{2}^{n-1}+n(n-1) a_{2}^{n-2} B_{2}\right) \otimes \omega
\end{aligned}
$$

Here we have set $B_{i}=\sum_{j=1}^{g} b_{i}^{j} b_{i}^{j+g}$ for $i=1,2$. As the bundle V_{g} has rank two, we know that all Chern classes $c_{i}\left(V_{g}\right)$ for $i \geqslant 3$ are zero. It is then a routine matter to write out the first few terms of $\operatorname{ch}\left(V_{g}\right)-(g-1) \operatorname{ch}\left(V_{g}\right) \cdot 1 \otimes \omega$, and then apply f_{*}, which simply picks out the terms in this expression that factor out an ω. Setting this equal to $\operatorname{ch}\left(f_{!} V_{g}\right)=\operatorname{rk}\left(f_{!} V_{g}\right)+d_{1}+\frac{1}{2} d_{1}^{2}-d_{2}+\cdots$, as (2.1) dictates, yields the equalities $\operatorname{rk}\left(f_{!} V_{g}\right)=2 g-1$ and $d_{1}=(g-1) a_{1}$, which were mentioned above, and also

$$
\begin{equation*}
d_{2}=\frac{1}{2}\left((g-1)(g-2) a_{1}^{2}+(2 g-1) a_{2}+a_{1} B_{1}-B_{12}\right) \tag{2.4}
\end{equation*}
$$

where $B_{12}=\sum_{j=1}^{g} b_{1}^{j} b_{2}^{j+g}-b_{1}^{j+g} b_{2}^{j}$. From this equation we see that a_{2}, multiplied by the number $2 g-1$ is equal to an integral expression in the generators $a_{1}, b_{1}^{j}, b_{2}^{j}$, and d_{2}.

Corollary 2.2 If m and $2 g-1$ are coprime, then the residue classes of the elements $a_{1}, b_{1}^{j}, b_{2}^{j}, d_{i}$ generate the ring $H^{*}\left(M_{g} ; \mathbb{Z}_{m}\right)$, where the indices run over $1 \leqslant j \leqslant 2 g$ and $2 \leqslant i \leqslant 2 g-1$.

Finally, we take a moment to mention an elementary, but important, point. Recall that the cohomology ring of any space is a graded commutative ring. This means that $a b=(-1)^{|a||b|} b a$ for any two homogeneously graded elements a, b in the ring, where $|a|$ denotes the grading of a. When we take the tensor product of two such rings, the product is the graded commutative product, given by

$$
(a \otimes b) \cdot(c \otimes d)=(-1)^{|b||c|} a c \otimes b d
$$

This is relevant in the above computations, all done in the context of a Künneth decomposition, and the reader should be aware of this for the computations below. When all elements involved are of even gradings, as is often the case, there is, of course, no difference between this product and the ordinary product induced by tensor product.

2.2 The Redundancy of Some Generators Over \mathbb{Z}_{p}

Here we explain why some of the d_{i} are redundant generators when working over the field \mathbb{Z}_{p} for p prime. We begin by recalling where the Atiyah-Bott generators for $H^{*}\left(M_{g} ; \mathbb{Z}\right)$ come from.

Recall that M_{g} can be identified with the moduli space of projectively flat connections on a $U(2)$ - bundle P over Σ_{g} with odd first Chern class. Let \mathscr{G} be the gauge group consisting of bundle automorphisms of P, and write $\overline{\mathscr{G}}$ for the quotient of \mathscr{G} by its constant central $U(1)$-subgroup. Further, write \mathscr{C} for the affine space of connections on P, and $\mathscr{C}_{\text {ss }}$ for stratum of projectively flat connections. From the holomorphic viewpoint, this is the semi-stable stratum. Atiyah and Bott showed that there is an induced surjection in equivariant cohomology $H_{\mathscr{G}}^{*}(\mathscr{C} ; \mathbb{Z}) \rightarrow H_{\mathscr{G}}^{*}\left(\mathscr{C}_{\text {ss }} ; \mathbb{Z}\right)$. Indeed, they showed that the Yang-Mills functional on \mathscr{C} is equivariantly perfect Morse-Bott, and $\mathscr{C}_{\text {ss }}$ is the manifold of absolute minima. The domain of this map can be identified with the ordinary cohomology of the classifying space $B \overline{\mathscr{G}}$ and the codomain with that of M_{g}. They then obtain the generators for the cohomology of M_{g} from generators for that of $B \overline{\mathscr{G}}$. The generators for the cohomology of $B \overline{\mathscr{G}}$ are obtained via the homological triviality of the following three fibrations:

We have written $\mathscr{G}^{\#}$ for the based gauge group and $\Omega U(2)$ for the identity component of the based loop space of $U(2)$. The classes a_{1} and a_{2} come from generators for the cohomology of $B U(2)$, while b_{1}^{j} and b_{2}^{j} correspond to generators of the j-th factor of $U(2)$ inside the product $U(2)^{2 g}$. The generators d_{i} are replaceable by generators e_{i} that can be traced back to generators for the cohomology of $\Omega U(2)$. See [AB83, Proposition 2.20] for more details.

Recalling that the loop space of a circle is homotopy equivalent to a countable set of points, and that $U(2)$ is topologically a circle times a 3 -sphere, we conclude that the based loop space of $U(2)$ is homotopy equivalent to $\mathbb{Z} \times \Omega S^{3}$, and in particular $\Omega U(2)$ can be identified with the loop space of the 3-sphere. Now, the cohomology ring of ΩS^{3} is well known to be isomorphic to a divided polynomial algebra. Recall [Hat02] that the divided polynomial algebra $\Gamma_{\mathbb{Z}}[x]$ at level n, for some even integer $n=$ $\operatorname{deg}\left(x_{1}\right)$, is a ring with generators x_{i}, for $i \geqslant 1$ with $\operatorname{deg}\left(x_{i}\right)=n i$, such that $x_{1}^{k}=k!x_{k}$. Consequently, $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$. Note that as a rational algebra, $\Gamma_{\mathbb{Z}}[x] \otimes \mathbb{Q}$ is generated by x_{1}. The cohomology ring of ΩS^{3} is isomorphic to $\Gamma_{\mathbb{Z}}[x]$ with $\operatorname{deg}\left(x_{1}\right)=2$.

For a prime number p, the divided polynomial algebra $\Gamma_{\mathbb{Z}_{p}}[x]$ over the field \mathbb{Z}_{p} does not need nearly as many generators. In fact, see for example [AB83, Proposition 2.20], we have an isomorphism $\Gamma_{\mathbb{Z}_{p}}[x] \cong \otimes_{i \geqslant 0} \mathbb{Z}_{p}\left[x_{p^{i}}\right] /\left(x_{p^{i}}^{p}\right)$. Since the lifts of the generators d_{i} in the cohomology of $B \bar{G}$ as in [AB83] come from generators for the cohomology of $\Omega U(2)$ via the homological triviality of the above fibrations, over \mathbb{Z}_{p} one only needs the $\bmod p$ residue classes of the generators $d_{p^{i}}$.

Corollary 2.3 If p is prime, then the residue classes of the elements $a_{1}, a_{2}, b_{1}^{j}, b_{2}^{j}, d_{p^{i}}$ generate the ring $H^{*}\left(M_{g} ; \mathbb{Z}_{p}\right)$, where the indices run over $1 \leqslant j \leqslant 2 g$ and $2 \leqslant p^{i} \leqslant 2 g-1$.

2.3 Integral Generators for the Cohomology of N_{g}

We now proceed to the generators of the fixed determinant moduli space N_{g}. Using the Künneth decomposition of $H^{*}\left(N_{g} \times \Sigma_{g}\right)$, we implicitly define

$$
\alpha \in H^{2}\left(N_{g} ; \mathbb{Z}\right), \quad \psi_{j} \in H^{3}\left(N_{g} ; \mathbb{Z}\right), \quad \beta \in H^{4}\left(N_{g} ; \mathbb{Z}\right)
$$

in which $1 \leqslant j \leqslant 2 g$, by the following Chern class expression, with constants arranged to follow the standard conventions in the literature:

$$
\begin{equation*}
c_{2}\left(\left.\operatorname{End}\left(V_{g}\right)\right|_{N_{g} \times \Sigma_{g}}\right)=-\beta \otimes 1+4 \sum_{j=1}^{2 g} \psi_{j} \otimes f_{j}+2 \alpha \otimes \omega . \tag{2.5}
\end{equation*}
$$

We will shortly relate these classes to the generators of M_{g} mentioned thus far. For this we will use the embedding $\iota: N_{g} \rightarrow M_{g}$. It will be useful for the sequel to consider how the intersection pairings for N_{g} and M_{g} are related, and for this we make use of a 4^{g}-fold covering map

$$
\begin{equation*}
p: N_{g} \times J_{g} \xrightarrow{4^{g}: 1} M_{g}, \tag{2.6}
\end{equation*}
$$

in which J_{g} is the Jacobian torus of Σ_{g}. More precisely, M_{g} is the quotient of $N_{g} \times J_{g}$ by a free $\mathbb{Z}_{2}^{2 g}$-action. The Jacobian is the moduli space of the flat $U(1)$ connection on Σ_{g}, and this covering is defined by tensoring the connection classes in N_{g} and J_{g}.

The map p induces an isomorphism in rational cohomology [AB83, §9]. This can be deduced from the fact that the relevant $\mathbb{Z}_{2}^{2 g}$-action on $H^{*}\left(N_{g} \times J_{g} ; \mathbb{Q}\right)$ is trivial. We now write down the effect of p^{*} on some of the generators that we have introduced thus far. Let $\theta_{j} \in H^{1}\left(J_{g} ; \mathbb{Z}\right)$ be the generator corresponding to $f_{j} \in H^{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$.

Proposition 2.4 The homomorphism $p^{*}: H^{*}\left(M_{g} ; \mathbb{Z}\right) \rightarrow H^{*}\left(N_{g} ; \mathbb{Z}\right) \otimes H^{*}\left(J_{g} ; \mathbb{Z}\right)$ is given by

$$
\begin{array}{ll}
p^{*}\left(a_{1}\right)=\alpha \otimes 1+1 \otimes 4 \Theta, & p^{*}\left(a_{2}\right)=\frac{1}{4}\left(p^{*}\left(a_{1}\right)^{2}-\beta \otimes 1\right) \\
p^{*}\left(b_{1}^{j}\right)=1 \otimes 2 \theta_{j}, & p^{*}\left(b_{2}^{j}\right)=\psi_{j} \otimes 1+p^{*}\left(a_{1}\right) \cdot\left(1 \otimes \theta_{j}\right)
\end{array}
$$

in which $\Theta=\sum_{j=1}^{g} \theta_{j} \theta_{j+g}$.
Proof The proof of this proposition is more or less implicit [AB83, p. 585]; we briefly sketch the argument. We first recall the identity $c_{2}(\operatorname{End}(W))=4 c_{2}(W)-c_{1}(W)^{2}$ for any rank two bundle W. Letting $\iota: N_{g} \rightarrow M_{g}$ denote the inclusion map, we then equate the terms of (2.5) with ι^{*} applied to the expression $4 c_{2}\left(V_{g}\right)-c_{1}\left(V_{g}\right)^{2}$ formed by (2.2) and (2.3) to obtain

$$
\begin{equation*}
\iota^{*}\left(a_{1}-B_{1}\right)=\alpha, \quad \iota^{*}\left(b_{2}^{j}-a_{1} b_{1}^{j} / 2\right)=\psi j, \quad \iota^{*}\left(a_{1}^{2}-4 a_{2}\right)=\beta . \tag{2.7}
\end{equation*}
$$

Next, observe that the endomorphism bundle of V_{g} is acted on trivially by J_{g}, and that the restriction of p to N_{g} is equal to ι. These observations imply the equations obtained from (2.7) by replacing each ι^{*} with p^{*}, and replacing α with $\alpha \otimes 1$, and similarly for ψ_{j} and β. Otherwise stated, the pullback of V_{g} via the map p factors through t. The relations of the resulting equations determine the proposition, except for the fact that $p^{*}\left(b_{1}^{j}\right)=1 \otimes 2 \theta_{j}$. This last point has only to do with how the 1 -skeleton
of $N_{g} \times J_{g}$ is mapped to M_{g} under p, which, at least up to sign, is transparent from the covering structure: each loop upstairs double covers a loop downstairs. To be more precise, we note that V_{g} pulls back and restricts over $J_{g} \times \Sigma_{g}$ to the bundle $U_{J}^{\otimes 2}$ in which U_{J} is a universal bundle over $J_{g} \times \Sigma_{g}$. One can then compute that $c_{1}\left(U_{J}\right)=\sum \theta_{j} \otimes f_{j}$, see for example [FL01, Lemma 2.23], which in turn implies $p^{*}\left(b_{1}^{j}\right)=1 \otimes 2 \theta_{j}$.

Observe that this proposition completely determines the map p^{*}, since the generators under consideration rationally generate the cohomology ring of M_{g}. From the above computation, we gather that the homomorphism $\iota^{*}: H^{*}\left(M_{g} ; \mathbb{Z}\right) \rightarrow H^{*}\left(N_{g} ; \mathbb{Z}\right)$ is determined as follows:

$$
\iota^{*}\left(a_{1}\right)=\alpha, \quad \iota^{*}\left(a_{2}\right)=\left(\alpha^{2}-\beta\right) / 4, \quad \iota^{*}\left(b_{1}^{j}\right)=0, \quad \iota^{*}\left(b_{2}^{j}\right)=\psi_{j}
$$

Now, with an eye towards producing generators for the integral cohomology ring of N_{g}, we define the δ_{i} from the introduction to be the restrictions of the classes d_{i} from M_{g} so that $\delta_{i}=\delta_{g, i}:=\iota^{*}\left(d_{i}\right)=c_{i}\left(\left.f_{!} V_{g}\right|_{N_{g}}\right)$.

Proposition 2.5 The elements $\alpha, \frac{1}{4}\left(\alpha^{2}-\beta\right), \psi_{j}, \delta_{i}$ generate the ring $H^{*}\left(N_{g} ; \mathbb{Z}\right)$, where the indices run over $1 \leqslant j \leqslant 2 g$ and $2 \leqslant i \leqslant 2 g-1$.

Proof Since these classes are the images of the generators for M_{g} under ι^{*}, it suffices to show that ι^{*} is onto. For this we consider the map $M_{g} \rightarrow J_{g}$ that sends a connection class to its determinant connection class. This is a fibration with fibers homeomorphic to N_{g}. The Leray-Serre spectral sequence for this fibration collapses at the E_{2}-page, since any non-trivial differentials, or non-trivial local-coefficient systems, are ruled out by the fact that the cohomologies of M_{g} and $N_{g} \times J_{g}$ are torsion-free and of the same rank. The collapsing at E_{2} then implies that the restriction map from the cohomology of M_{g} to that of N_{g} is surjective.

Corollary 2.6 If p is prime, then the residue classes of the elements $\alpha, \frac{1}{4}\left(\alpha^{2}-\beta\right)$, ψ_{j}, and $\delta_{p^{i}}$ generate the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{p}\right)$, where $1 \leqslant j \leqslant 2 g$ and $2 \leqslant p^{i} \leqslant 2 g-1$. If $p+2 g-1$, then $\frac{1}{4}\left(\alpha^{2}-\beta\right)$ is redundant.

2.4 Twisting by a Line Bundle to Define z_{i} and ξ_{i}

We now describe how the generators d_{i} and δ_{i} can be replaced with generators obtained from twisting by a line bundle, and then we define the classes z_{i} and ξ_{i}.

The elements d_{i} were defined as the Chern classes $c_{i}\left(f_{!} V_{g}\right)$ in which the universal bundle V_{g} is normalized such that $c_{1}\left(f_{!} V_{g}\right)=(g-1) c_{1}\left(\left.V_{g}\right|_{M_{g}}\right)$, i.e., $d_{1}=(g-1) a_{1}$. However, Theorem 2.1 as stated by Atiyah and Bott holds for any normalization of V_{g}. In particular, if we consider the universal bundle, which is V_{g} twisted by a power of the pull-back of $\operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)$, i.e., the bundle

$$
\begin{equation*}
V_{g} \otimes f^{*} \operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)^{\otimes n} \tag{2.8}
\end{equation*}
$$

then the Chern classes of its direct image will, along with $a_{1}, a_{2}, b_{1}^{j}, b_{2}^{j}$, still generate the integral cohomology ring of M_{g}. When we consider the direct image of (2.8) under the projection f, it is useful to mention that in general $f_{!}\left(W \otimes f^{*} L\right)$ is isomorphic
to $f_{!} W \otimes L$. Here we recall the Chern class formula for tensoring a vector bundle W of rank r by a line bundle L :

$$
\begin{equation*}
c_{i}(W \otimes L)=\sum_{j=0}^{i}\binom{r-j}{i-j} c_{1}(L)^{i-j} c_{j}(W) . \tag{2.9}
\end{equation*}
$$

This tells us how the generators d_{i} transform after twisting by a line bundle: upon setting $W=f_{!} V_{g}$ and $L=\operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)$, the above formula has $r=2 g-1, c_{j}(W)=d_{j}$, and $c_{1}(L)=(2 n-1) a_{1}$. Although setting $n=-1 / 2$ does not transform the d_{i} to integral generators, it is a case of particular computational interest to us, and so we define the transformed generators

$$
z_{i}:=c_{i}\left(f_{!} V_{g} \otimes \operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)^{-1 / 2}\right), \quad \xi_{i}:=c_{i}\left(f_{!} V_{g} \otimes \operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)^{-1 / 2}\right)
$$

Of course, the bundles here are not actual vector bundles, but z_{i} and ξ_{i} can be defined in terms of d_{i} and δ_{i} using (2.9). Alternatively, one can think of the bundles that appear in the setting of rational K-theory. The class $2^{i} z_{i}$ (resp. $2^{i} \xi_{i}$) is in the integral cohomology of M_{g} (resp. N_{g}). The formula (2.9) relating δ_{i} with ξ_{i} is what appears in the introduction as (1.1), and a similar formula holds replacing ξ_{i} with z_{i}, δ_{i} with d_{i}, and α with a_{1}. Note $\xi_{1}=-\alpha / 2$ and $z_{1}=-a_{1} / 2$. For the same reason as for d_{i} and δ_{i}, the classes z_{i} and ξ_{i} may sometimes be written $z_{g, i}$ and $\xi_{g, i}$.

Finally, we mention that if we are working over the coefficient ring \mathbb{Z}_{m} with m odd, then ξ_{i} can be defined as an honest class in $H^{2 i}\left(N_{g} ; \mathbb{Z}_{m}\right)$ by interpreting $1 / 2$ in the above formulas as the mod m inverse of 2 . A similar remark holds for the classes z_{i}.

Proposition 2.7 If m is odd, to generate the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{m}\right)$, we can replace the δ_{i} generators by the ξ_{i} classes as interpreted above. Similarly, to generate $H^{*}\left(M_{g} ; \mathbb{Z}_{m}\right)$, we can replace d_{i} by z_{i}.

2.5 Generators for the Invariant Subring of N_{g}

The mapping class group of Σ_{g} acts on the moduli space N_{g} in a natural way. The subgroup of the mapping class group that acts trivially on the homology of Σ_{g}, called the Torelli group, acts trivially on $H^{*}\left(N_{g} ; \mathbb{Z}\right)$. Thus the action of the mapping class group on $H^{*}\left(N_{g} ; \mathbb{Z}\right)$ descends to an action of the quotient group, which is $\operatorname{Sp}\left(H^{1}\left(\Sigma_{g} ; \mathbb{Z}\right)\right)$. Having previously chosen a symplectic basis for the first cohomology group of Σ_{g}, we can identify this as an action of $\operatorname{Sp}(2 g, \mathbb{Z})$.

The classes α and β are invariant under this action, while the classes ψ_{j} behave under the action as does a standard symplectic basis. It is conventional to define the degree 6 element $\gamma:=-2 \sum_{j=1}^{g} \gamma_{j} \in H^{6}\left(N_{g} ; \mathbb{Z}\right)$, where $\gamma_{j}:=\psi_{j} \psi_{j+g}$, for then α, β, γ generate the invariant ring over the rationals. This is a basic exercise in $\operatorname{Sp}(2 g, \mathbb{Z})$-representation theory: the free graded-commutative algebra generated by the ψ_{j} has its invariant ring over the rationals generated by γ. Over the integers, however, the invariant ring is a divided polynomial algebra $\Gamma_{\mathbb{Z}}[v]$, in which we define v_{k} for $k \geqslant 1$ as

$$
v_{k}:=\sum_{i_{1}<\cdots<i_{k}} \gamma_{i_{1}} \cdots \gamma_{i_{k}}=\frac{\gamma^{k}}{2^{k} k!}
$$

We learned earlier that when working over the field \mathbb{Z}_{p} for p prime, one only needs the generators $v_{p^{i}}$. Note that $v_{k}=0$ for $k \geqslant g$ for degree reasons. The classes δ_{i} as well as ξ_{i} are invariant under the action for the same reasons as are α and β; alternatively, we will later see explicit expressions for these classes as rational polynomials in α, β, γ.

Proposition 2.8 (i) The $\mathrm{Sp}(2 g, \mathbb{Z})$-invariant subring of $H^{*}\left(N_{g} ; \mathbb{Z}\right)$ is generated by $\alpha, \frac{1}{4}\left(\alpha^{2}-\beta\right), \delta_{i}, v_{k}$, where the indices run over $2 \leqslant i \leqslant 2 g-1$ and $1 \leqslant k<g$.
(ii) For p prime, the $\operatorname{Sp}(2 g, \mathbb{Z})$-invariant subring of $H^{*}\left(N_{g} ; \mathbb{Z}_{p}\right)$ is generated by α, $\frac{1}{4}\left(\alpha^{2}-\beta\right), \delta_{p^{i}}, v_{p^{k}}$, where the indices run over $2 \leqslant p^{i} \leqslant 2 g-1$ and $1 \leqslant p^{k}<g$.

As seen earlier, if in (ii) we have $p+2 g-1$, then $\left(\alpha^{2}-\beta\right) / 4$ is redundant. Furthermore, if p is odd, then the δ_{i} generators can be replaced by the ξ_{i} just as in the previous subsection. A similar proposition may be crafted for the invariant subring of M_{g}, for which one has the classes b_{1}^{j} and b_{2}^{j} instead of just the ψ_{j}, but we will not pursue this.

3 The Intersection Pairings for Newstead Classes

The computational framework of Zagier [Zag95] that we use to prove Theorem 1.2 is derived from intersection pairing formulas of Thaddeus [Tha92] for monomials in α, β, ψ_{j}. We will not work directly with these formulas, but will need some of their properties for later.

Recall that $\operatorname{dim} N_{g}=6 g-6$ and $\operatorname{deg}(\alpha)=2$ and $\operatorname{deg}(\beta)=4$. Thaddeus computed

$$
\begin{equation*}
\alpha^{i} \beta^{j}\left[N_{g}\right]=(-1)^{g} \frac{i!}{(i-g+1)!} 2^{2 g-2}\left(2^{i-g+1}-2\right) B_{i-g+1} \tag{3.1}
\end{equation*}
$$

whenever $i+2 j=3 g-3$, where B_{n} is the n-th Bernoulli number, and should not be confused with the elements B_{1} and B_{2} defined earlier. This formula is the most fundamental; the inclusion of the ψ_{j} terms is handled with the following genus recursive property. For any subset $K \subset\{1, \ldots, g\}$ with cardinality $|K|=k$, and any $j \geqslant 0$ such that $i+3 k+2 j=3 g-3$, we have

$$
\begin{equation*}
\alpha^{i} \beta^{j} \prod_{\ell \in K} \psi_{\ell} \psi_{\ell+g}\left[N_{g}\right]= \pm \alpha^{i} \beta^{j}\left[N_{g-k}\right] . \tag{3.2}
\end{equation*}
$$

The sign, which is $(-1)^{|K|}$, is not important for us. To prove (3.2), Thaddeus showed that $\psi_{j} \psi_{j+g}$ is Poincaré-dual to the homology class of an appropriately embedded N_{g-1} inside N_{g}. Thaddeus further showed that if a subset $K \subset\{1, \ldots, 2 g\}$ is such that $K \neq K+g$, then any pairing $\alpha^{i} \beta^{j} \prod_{\ell \in K} \psi_{\ell}\left[N_{g}\right]$ vanishes. Here $K+g$ is the set of elements $k+g$, where $k \in K$ in which addition is understood $\bmod 2 g$.

We now derive some similar properties for the intersection pairings of the larger moduli space M_{g}. The pairings in $H^{*}\left(M_{g} ; \mathbb{Z}\right)$ can be understood in terms of those in N_{g} using the covering (2.6) from $N_{g} \times J_{g}$ down to M_{g} : if $x \in H^{8 g-6}\left(M_{g} ; \mathbb{Z}\right)$ is a top degree element, then

$$
\begin{equation*}
x\left[M_{g}\right]=\frac{1}{4^{g}}\left(p^{*}(x) / \Omega_{g}\right)\left[N_{g}\right], \tag{3.3}
\end{equation*}
$$

where we have taken the slant-product with $\Omega_{g} \in H^{2 g}\left(J_{g} ; \mathbb{Z}\right)$, the orientation class of the Jacobian J_{g}. The factor of $\frac{1}{4^{g}}$ appears because p is a 4^{g}-fold covering. From Proposition 2.4 and (3.1) we compute

$$
\begin{equation*}
a_{1}^{4 g-3}\left[M_{g}\right]=\frac{(4 g-3)!}{(2 g-2)!} 2^{2 g-2}\left(2^{2 g-2}-2\right)\left|B_{2 g-2}\right| \tag{3.4}
\end{equation*}
$$

Indeed, this is the result of expanding $(\alpha \otimes 1+4 \otimes \Theta)^{4 g-3} / 4^{g}$, taking the slant product with Ω_{g}, which picks out the term in front of $\Theta^{g} / g!$, and evaluating against $\left[N_{g}\right]$. One can similarly use Proposition 2.4 and (3.1) to compute intersection pairings in M_{g} for monomials in a_{1}, a_{2}. Next, we have the following analogue for M_{g} of the vanishing property for the ψ_{j} classes.

Proposition 3.1 Suppose J_{1} and J_{2} are subsets of $\{1, \ldots, 2 g\}$, and that $x \in H^{*}\left(M_{g} ; \mathbb{Z}\right)$ is an element invariant under the $\operatorname{Sp}(2 g, \mathbb{Z})$-action. Then with $I_{i}=J_{i} \cap\left(J_{i}+g\right)$ for $i=1,2$ we have

$$
J_{1} \backslash I_{1} \neq\left(J_{2} \backslash I_{2}\right)+g \quad \Longrightarrow \quad x \prod_{j \in J_{1}} b_{1}^{j} \prod_{j \in J_{2}} b_{2}^{j}\left[M_{g}\right]=0
$$

Proof We adapt Thaddeus's argument [Tha92], and use that $\operatorname{Sp}(2 g, \mathbb{Z})$ acts in the same standard way on $\left\{b_{1}^{j}\right\}$ and $\left\{b_{2}^{j}\right\}$. First, suppose $k \in J_{1} \backslash I_{1}$ and either $k, k+g$ are both in J_{2} or both are not contained in J_{2}. Take an orientation-preserving diffeomorphism f of Σ_{g} such that the induced action f^{*} on $H^{*}\left(M_{g} ; \mathbb{Z}\right)$ fixes b_{i}^{j} for $j \notin\{k, k+g\}$ while $f^{*} b_{i}^{k}=-b_{i}^{k}$ and $f^{*} b_{i}^{k+g}=-b_{i}^{k+g}$. Then

$$
x \prod_{j \in J_{1}} b_{1}^{j} \prod_{j \in J_{2}} b_{2}^{j}\left[M_{g}\right]=x \prod_{j \in J_{1}} f^{*} b_{1}^{j} \prod_{j \in J_{2}} f^{*} b_{2}^{j}\left[M_{g}\right]
$$

where we have used invariance of the pairing. The right side, by our choice of f^{*} and our hypothesis on $k \in J_{1}$, is equal to minus the left side, forcing the pairing to be zero. The remaining case is when $k \in\left(J_{1} \backslash I_{1}\right) \cap\left(J_{2} \backslash I_{2}\right)$. Note $p^{*}\left(b_{1}^{k} b_{2}^{k}\right)=2 \psi_{k} \otimes \theta_{k}$. The vanishing then follows via (3.3) from the vanishing condition for the ψ_{k}, since the only way to produce ψ_{k+g} via p^{*} is to include b_{2}^{k+g}.

We can also derive an analogue of (3.2) for M_{g} using Proposition 2.4 and formula (3.3):

$$
\begin{equation*}
x b_{1}^{j} b_{1}^{j+g} b_{2}^{j} b_{2}^{j+g}\left[M_{g}\right]= \pm i^{*} x\left[M_{g-1}\right] \tag{3.5}
\end{equation*}
$$

Here x is any element of $H^{*}\left(M_{g} ; \mathbb{Z}\right)$, and i is the embedding of M_{g-1} into M_{g} corresponding to collapsing the j-th handle of Σ_{g}.

4 The Computation of Integral Intersection Pairings

Here we present the main computation of the paper: we prove a generalization of Theorem 1.2 and its analogue for M_{g}. The proofs rely on the work of Zagier [Zag95]. We will use very basic symmetric function theory, background for which can be found in Appendix A.

First, some convenient notation. Let E be a complex vector bundle over an oriented, closed manifold M with $\operatorname{dim} M$ even. For later use, we define the Chern class
polynomial $c(E)_{x}$ to be $c(E)_{x}=\sum_{i \geqslant 0} c_{i}(E) x^{i} \in H^{*}(M ; \mathbb{Z})[x]$. For a partition $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, we write $c_{\lambda}(E)$ for the product $c_{\lambda_{1}}(E) \cdots c_{\lambda_{k}}(E)$. We define the Chern number polynomial of the vector bundle E, written $\mathrm{CN}(E)$, by the formula $\mathrm{CN}(E)=$ $\sum_{\lambda} c_{\lambda}(E)[M] \cdot m_{\lambda}$ in which the sum is over all partitions λ. Here m_{λ} is the monomial symmetric function associated with λ. The only partitions λ contributing nonzero terms are those with $|\lambda|=\operatorname{dim}(M) / 2$. Thus the Chern number polynomial is a symmetric function in the variables x_{1}, x_{2}, \ldots that is homogeneous of degree $\operatorname{dim}(M) / 2$. It records all of the Chern numbers of the bundle E over M.

In addition to $Q(T)$ and $U(T)$ from the introduction, define the following formal power series in the variable T whose coefficients are in the ring Λ of symmetric functions with integer coefficients:

$$
R(T)=\sum_{i \geqslant 0}(-1)^{i} m_{\left(2^{i}\right)} T^{i}, \quad P(T)=\sum_{i \geqslant 0}(-1)^{i}\left(2 m_{\left(2^{i} 1^{2}\right)}+(i+1)^{2} m_{\left(2^{i+1}\right)}\right) T^{i} .
$$

Now, recall that for $k \leqslant g$, we have an embedding of the lower genus moduli space M_{k} into M_{g}, and similarly of N_{k} into N_{g}. The particular choice of embedding is not important.

Theorem 4.1 Let $Z_{g}=f_{!} V_{g} \otimes \operatorname{det}\left(\left.V_{g}\right|_{M_{g}}\right)^{-1 / 2}$ be the virtual bundle with $c_{i}\left(Z_{g}\right)=z_{i}$. For $g \geqslant k \geqslant 1$,

$$
\begin{align*}
& \mathrm{CN}\left(\left.Z_{g}\right|_{M_{k}}\right)=\frac{(-1)^{k}}{2^{2 k-1}} \cdot \operatorname{Coeff}_{T^{k-1}}^{\operatorname{CN}}\left[P(T)^{k} R(T)^{g-k} Q(T)^{-1}\right] \tag{4.1}\\
& \mathrm{CN}\left(\left.Z_{g}\right|_{N_{k}}\right)=\frac{1}{2^{k-1}} \cdot \operatorname{Coeff}_{T^{k-1}}\left[U(T)^{k} R(T)^{g-k} Q(T)^{-1}\right] \tag{4.2}
\end{align*}
$$

Recall from the introduction that $1 / Q(T)$ does not quite have coefficients in the ring Λ of symmetric functions: its coefficient in front of T^{i} has a factor of $1 / e_{1}^{i+1}$. However, since the constant coefficients of $R(T)$ and $P(T)$ are, respectively, 1 and e_{1}^{2}, the formal power series inside the brackets of (4.1) has Λ coefficients in front of T^{i} for $0 \leqslant i \leqslant k-1$. A similar remark holds for (4.2).

Before proceeding to the proof, we explain how this theorem completely determines all of the integral intersection pairings in the cohomology ring of N_{g}, and most of the pairings for that of M_{g}. First of all, from the definitions, the left-hand side of (4.2) is equal to

$$
\begin{equation*}
\sum_{\lambda} \xi_{g, \lambda_{1}} \xi_{g, \lambda_{2}} \cdots \xi_{g, \lambda_{n}}\left[N_{k}\right] \cdot m_{\lambda}, \tag{4.3}
\end{equation*}
$$

and so when $g=k$, we obtain Theorem 1.2. In this expression, we conflate $\xi_{g, i}$ with its restriction to N_{k}. On the other hand, as explained in Section 3, the pairing $\xi_{g, \lambda_{1}} \cdots \xi_{g, \lambda_{n}}\left[N_{k}\right]$ is equal to $\xi_{g, \lambda_{1}} \cdots \xi_{g, \lambda_{n}} \Pi_{j \in J} \psi_{j} \psi_{j+g}\left[N_{g}\right]$ for any subset $J \subset$ $\{1, \ldots, g\}$ with $|J|=g-k$. With (1.1), this determines all pairings on N_{g} for monomials involving the classes δ_{i} and ψ_{j}. Since $\alpha=\delta_{1} /(g-1)$ and $\left(\alpha^{2}-\beta\right) / 4$ can be written in terms of α and δ_{2} by restricting (2.4) to N_{g}, we get all pairings in monomials involving all the integral generators for the cohomology of N_{g} in Proposition 2.5.

The situation for M_{g} is quite similar, except certain pairings, such as

$$
b_{1}^{j} b_{2}^{j+g} z_{\lambda_{1}} \cdots z_{\lambda_{n}}\left[M_{g}\right]
$$

are not covered by (3.5) in conjunction with (4.1), and are not shown to vanish by (3.1). For the proof of Theorem 1.1 later, we will handle these pairings in a less direct way.

Proof of Theorem 4.1 We first prove (4.1). We will perform the computation by passing from M_{k} to the covering space $N_{k} \times J_{k}$ via (2.6). Define the product of Chern polynomials $F\left(x_{1}, x_{2}, \ldots\right):=\prod_{\ell \geqslant 1} p^{*} c\left(Z_{g}\right)_{-2 x_{\ell}}$, where $p^{*} Z_{g}$ is the pulled back bundle over $N_{k} \times J_{k}$. From the pairing formula (3.3), and keeping note of the factors of -2 in the variables of the Chern polynomials, we have

$$
\left(F\left(x_{1}, x_{2}, \ldots\right) / \Omega_{k}\right)\left[N_{k}\right]=(-2)^{4 k-3} \cdot \mathrm{CN}\left(p^{*}\left(\left.Z_{g}\right|_{M_{k}}\right)\right)=(-2)^{4 k-3} 4^{k} \cdot \mathrm{CN}\left(\left.Z_{g}\right|_{M_{k}}\right)
$$

As usual, the factor 4^{k} accounts for the number of sheets of the covering p. On the other hand, we can give an explicit formula for the product of Chern polynomials. Henceforth, we will write β instead of $\beta \otimes 1$, and so on, omitting the tensor notation from elements in the Künneth decomposed cohomology $H^{*}\left(N_{k} \times J_{k} ; \mathbb{Q}\right)$. Then, according to Zagier [Zag95, Equation 29],

$$
\begin{equation*}
p^{*} c\left(Z_{g}\right)_{-2 x}=\left(1-\beta x^{2}\right)^{g-1 / 2}\left(\frac{1+\sqrt{\beta} x}{1-\sqrt{\beta} x}\right)^{\gamma^{*} / 2 \beta \sqrt{\beta}} \exp \left(\frac{4 \Theta x+4 \Xi x^{2}-2 \gamma x / \beta}{1-\beta x^{2}}\right) \tag{4.4}
\end{equation*}
$$

in which $\Xi=\sum_{j=0}^{i} \psi_{j} \otimes \theta_{j+g}-\psi_{j+g} \otimes \theta_{j}$ and $\gamma^{*}=2 \gamma+\alpha \beta$. Zagier actually considered the direct image of a universal bundle over $N_{k} \times J_{k}$, rather than taking the direct image on M_{k} and then pulling back. This is why (4.4) has 4 in front of Θ and Ξ. We then compute the product to be

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots\right)=u_{0}^{g-1 / 2} \exp \left(\left(u_{3}-u_{1}\right) \gamma^{*} / \beta+u_{1} \alpha+4 u_{1} \Theta+4 u_{2} \Xi\right) \tag{4.5}
\end{equation*}
$$

with the terms $u_{m}=u_{m}(\beta)$ for $0 \leqslant m \leqslant 3$, which are formal power series in β with coefficients that are symmetric polynomials in the variables x_{ℓ}, defined as follows:

$$
\begin{array}{ll}
u_{0}:=\prod_{\ell \geqslant 1}\left(1-\beta x_{\ell}^{2}\right), & u_{1}:=\sum_{\ell \geqslant 1} \frac{x_{\ell}}{1-\beta x_{\ell}^{2}}, \\
u_{2}:=\sum_{\ell \geqslant 1} \frac{x_{\ell}^{2}}{1-\beta x_{\ell}^{2}}, & u_{3}:=\sum_{\ell \geqslant 1} \tanh ^{-1}\left(x_{\ell} \sqrt{\beta}\right) / \sqrt{\beta}
\end{array}
$$

To take the slant product of $F\left(x_{1}, x_{2}, \ldots\right)$ with Ω_{g}, we use the following fact, which is provided by a slight restatement of [Zag95, Corollary to Lemma 3]:

$$
\exp (\Theta \kappa+\Xi v) / \Omega_{k}=\kappa^{k} \exp \left(v^{2} \gamma / 2 \kappa\right)
$$

Applying this to the expression 4.5, we obtain the expression

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots\right) / \Omega_{k}=4^{k} u_{1}^{k} u_{0}^{g-1 / 2} \exp \left(\left(\left(u_{3}-u_{1}\right) / \beta+u_{2}^{2} / u_{1}\right) \gamma^{*}+\left(u_{1}-\beta u_{2}^{2} / u_{1}\right) \alpha\right) \tag{4.6}
\end{equation*}
$$

We are now in a position to use the following result of Zagier.

Lemma 4.2 ([Zag95, Proposition 3]) Let f, h, u, w be power series in one variable, $h(0) u(0) \neq 0$. Then

$$
\begin{align*}
\sum_{i \geqslant 1}\left(f(\beta) h(\beta)^{i} e^{w(\beta) \gamma^{*}+u(\beta) \alpha}\right)\left[N_{i}\right] & \left(-\frac{1}{4} T\right)^{i-1} \tag{4.7}\\
& =\left.\frac{\sqrt{\beta} f(\beta) M^{\prime}(T)}{\sinh (\sqrt{\beta}(u(\beta)+\beta w(\beta)))}\right|_{\beta=M(T)}
\end{align*}
$$

where $M(T)$ is the power series defined by $M^{-1}(\beta)=\beta / u(\beta) h(\beta)$.
We apply this in such a way as to avoid taking any functional inverses, i.e., such that $M(T)=T$. This is equivalent to choosing $h=1 / u$. With this in mind, apply the lemma to (4.6) with

$$
w=\left(u_{3}-u_{1}\right) / \beta+u_{2}^{2} / u_{1}, \quad u=u_{1}-\beta u_{2}^{2} / u_{1}, \quad f=4^{k} u_{1}^{k} u_{0}^{g-1 / 2} u^{k}, \quad h=1 / u
$$

Now note that $u+\beta w=u_{3}$. Henceforth $\beta=T$. Thus the denominator in (4.7) is equal to

$$
\begin{equation*}
\sinh \left(\sum_{\ell \geqslant 1} \tanh ^{-1}\left(x_{\ell} \sqrt{T}\right)\right)=\frac{1}{2} \prod_{\ell \geqslant 1}\left(\frac{1+x_{\ell} \sqrt{T}}{1-x_{\ell} \sqrt{T}}\right)^{1 / 2}-\frac{1}{2} \prod_{\ell \geqslant 1}\left(\frac{1-x_{\ell} \sqrt{T}}{1+x_{\ell} \sqrt{T}}\right)^{1 / 2} \tag{4.8}
\end{equation*}
$$

After taking common denominators, with a bit of manipulation we see that (4.8) is equal to

$$
u_{0}(T)^{-1 / 2} \cdot \sum_{\substack{J \subset\{1,2, \ldots\} \\|J| \text { odd }}} \sqrt{T} T_{\ell \in J}^{|J|} \prod_{\ell} x_{\ell}=R(T)^{-1 / 2} \sqrt{T} \cdot Q(T),
$$

where $Q(T)$ is defined above, and we have observed that $R(T)=u_{0}(T)$. Thus the right-hand side of (4.7) can be identified as the power series in T with coefficients in Λ given by $4^{k} R^{g}\left(u_{1}^{2}-T u_{2}^{2}\right)^{k} / Q$, where $R=R(T)$, and so forth. The remaining step is to show that $R\left(u_{1}^{2}-T u_{2}^{2}\right)=P$. Indeed, this implies that the above expression is equal to $4^{k} P^{k} R^{g-k} / Q$, from which the proposition is proved by taking the coefficient of T^{k-1} on both sides of (4.7). To show $R\left(u_{1}^{2}-T u_{2}^{2}\right)=P$, we first observe that

$$
u_{1} \pm \sqrt{T} u_{2}=\sum_{\ell \geqslant 1} \frac{x_{\ell} \pm \sqrt{T} x_{\ell}^{2}}{1-T x_{\ell}^{2}}=\sum_{\ell \geqslant 1} \frac{x_{\ell}}{1 \mp \sqrt{T} x_{\ell}}
$$

Now, set $u_{0}^{ \pm}=\prod_{\ell \geqslant 1}\left(1 \pm \sqrt{T} x_{\ell}\right)$, so that $u_{0}=u_{0}^{+} u_{0}^{-}$. Then $u_{0}\left(u_{1}^{2}-T u_{2}^{2}\right)$ is the product of $u_{0}^{+}\left(u_{1}-\sqrt{T} u_{2}\right)$ and $u_{0}^{-}\left(u_{1}+\sqrt{T} u_{2}\right)$, and treating these two factors separately leads to the expression

$$
u_{0}\left(u_{1}^{2}-T u_{2}^{2}\right)=\left(\sum_{\ell \geqslant 1} x_{\ell} \prod_{\ell \neq k \geqslant 1}\left(1+\sqrt{T} x_{k}\right)\right)\left(\sum_{m \geqslant 1} x_{m} \prod_{m \neq n \geqslant 1}\left(1-\sqrt{T} x_{n}\right)\right) .
$$

We can then multiply the two terms on the right to get the following, noting along the way that the coefficients in front of odd powers of \sqrt{T} are zero, as expected:

$$
\begin{equation*}
u_{0}\left(u_{1}^{2}-T u_{2}^{2}\right)=\sum_{\ell \geqslant 1} x_{\ell}^{2} \prod_{\ell \neq k \geqslant 1}\left(1-T x_{k}^{2}\right)+2 \sum_{\ell>m \geqslant 1} x_{\ell} x_{m}\left(1-T x_{\ell} x_{m}\right) \prod_{\substack{j \geqslant 1 \\ j \neq m, \ell}}\left(1-T x_{j}^{2}\right) . \tag{4.9}
\end{equation*}
$$

Now we identify the monomials in the variables x_{ℓ} that appear in (4.9), in order the rewrite it in terms of monomial symmetric functions. In the first sum on the right side of (4.9), the only monomials are of the form $x_{r_{1}}^{2} x_{r_{2}}^{2} \cdots x_{r_{i}}^{2}$. These are the monomials that appear in m_{λ} for which $\lambda=\left(2^{i}\right)$ is the partition with i parts all equal to 2 . For each set of distinct indices r_{1}, \ldots, r_{i}, there are i instances of the monomial $x_{r_{1}}^{2} x_{r_{2}}^{2} \cdots x_{r_{i}}^{2}$ in the sum under consideration, one for each time $\ell=r_{j}$, where $j=1, \ldots, i$. In other words, taking into account the signs, and keeping track of powers of T, we deduce that

$$
\sum_{\ell \geqslant 1} x_{\ell}^{2} \prod_{\ell \neq k \geqslant 1}\left(1-T x_{k}^{2}\right)=\sum_{i \geqslant 0}(-1)^{i}(i+1) m_{\left(2^{i+1}\right)} T^{i}
$$

Now we consider the second sum on the right side of (4.9), in which we can count two kinds of monomials: those of the form $x_{\ell} x_{m} x_{r_{1}}^{2} \cdots x_{r_{i}}^{2}$, which belong to the partition $\left(2^{i} 1^{2}\right)$, and those of the form $x_{r_{1}}^{2} x_{r_{2}}^{2} \cdots x_{r_{i}}^{2}$, which belong, as before, to the partition $\left(2^{i}\right)$. The first kind are easy to count; apart from signs, there is exactly one. For the second kind, ignoring signs and powers of T, note that, after expanding for any distinct indices r_{1}, \ldots, r_{i}, we get $\binom{i}{2}$ many instances of the monomial $x_{r_{1}}^{2} x_{r_{2}}^{2} \cdots x_{r_{i}}^{2}$ for the different possibilities of choosing which indices among the r_{j} are ℓ and m. Thus

$$
2 \sum_{\ell>m \geqslant 1} x_{\ell} x_{m}\left(1-T x_{\ell} x_{m}\right) \prod_{\substack{j \geqslant 1 \\ j \neq m, \ell}}\left(1-T x_{j}^{2}\right)=2 \sum_{i \geqslant 0}(-1)^{i}\left(m_{\left(2^{i} 1^{2}\right)}+\binom{i+1}{2} m_{\left(2^{i+1}\right)}\right) T^{i},
$$

in which we interpret $\binom{1}{2}=0$. Now, adding these two expressions involving monomial symmetric functions as in the right side of (4.9) easily leads to the expression that defines $P(T)$. This completes the proof of (4.1).

The computation of (4.2) is quite similar. First, $\mathrm{CN}\left(\left.Z_{g}\right|_{N_{g}}\right)$ is the restriction of (4.5) from $N_{k} \times J_{k}$ to the factor N_{k}, which simply sets Θ and ξ to zero, evaluated against [N_{k}]. We then apply (4.7) to compute this evaluation by setting $w=\left(u_{3}-u_{1}\right) / \beta$, $u=u_{1}, f=u_{0}^{g-1 / 2} u^{k}$, and $h=1 / u$. The computation proceeds just as above, but is simpler. We obtain that $\mathrm{CN}\left(\left.Z_{g}\right|_{N_{g}}\right)$ is $1 / 2^{g-1}$ times the coefficient of T^{k-1} of the expression $u_{0}^{g} u_{1}^{k} / Q$, and it is straightforward to identify $u_{0} u_{1}=U$.

We showed in the proof that in expression (4.1), $P^{k} R^{g-k} / Q=4^{k} u_{0}^{g}\left(u_{1}^{2}-T u_{2}^{2}\right)^{k} / Q$, and similarly, in expression (4.2), $U^{k} R^{g-k} / Q=u_{0}^{g} u_{1}^{k} / Q$. Note from the definitions that $u_{1}(T)=\sum_{i \geqslant 0} p_{2 i+1} T^{i}$, and $u_{2}(T)=\sum_{i \geqslant 0} p_{2 i+2} T^{i}$ in which p_{n} is the n-th power sum symmetric function. We also mention that an expression for $P(T)$ in terms of elementary symmetric polynomial is

$$
P(T)=\sum_{n \geqslant 0}(-1)^{n}\left(\widehat{e}_{n+1}^{2}-2 \sum_{i=0}^{n-1}(-1)^{i} \widehat{e}_{n-i} \widehat{e}_{n+2+i}\right) T^{n}
$$

where we have defined $\widehat{e}_{k}=k e_{k}$. We will not use this, and we leave its verification to the reader.

We also mention a generalization of (4.1) that incorporates the classes b_{1}^{j} into the pairings. The proof is a modification of the proof for Theorem 4.1, and so we only briefly sketch it. The goal is to find a formula for a power series in T whose coefficients are in $\Lambda[t]$, and such that the coefficient of $m_{\lambda} t^{j} T^{k-1}$ is the pairing of the monomial $z_{g, \lambda_{1}} \cdots z_{g, \lambda_{n}} B_{1}^{j}$ against $\left[M_{k}\right]$. To achieve this, since $p^{*}\left(B_{1}\right)=4 \Theta$, within
the exponential of (4.5) we add the term $4 \Theta t$. We then proceed with the computation as before, and at the end, the extraction of the coefficient in front of $t^{j} T^{k-1}$ suitably normalized gives the pairings we want. Next, we observe that B_{1}^{j} is the sum of $\prod_{i \epsilon J} b_{1}^{i} b_{1}^{i+g}$ with $|J|=j$. The pairing for each term in this product with $z_{g, \lambda_{1}} \cdots z_{g, \lambda_{n}}$ against $\left[M_{k}\right]$ is the same, by $\operatorname{Sp}(2 g, \mathbb{Z})$-invariance. This allows us to write the result in terms of the classes b_{1}^{j}.

Proposition 4.3 For $g \geqslant k \geqslant 1, J \subset\{1, \ldots, g\}, j=|J|$, and λ a partition with $|\lambda|=4 k-3+j$, we have

$$
\begin{aligned}
z_{g, \lambda_{1}} \cdots z_{g, \lambda_{m}} \prod_{i \in J} b_{1}^{i} b_{1}^{i+g} & {\left[M_{k}\right] } \\
& =\frac{(-1)^{k}}{2^{2 k-1}}\binom{j}{k} \cdot \underset{m_{1}}{\operatorname{Coefl}}\left[R(T)^{g+k-2 j} U(T)^{j} P(T)^{j-k} Q(T)^{-1}\right] .
\end{aligned}
$$

We can go further and try to incorporate the classes b_{2}^{j}. For this we can use the same method sketched above, but instead of only adding one formal variable t to keep track of the powers of B_{1} in the pairings, we add three variables to record separately the powers of B_{1}, B_{2}, and B_{12}. However, it is not clear that pairings between $z_{g, \lambda_{1}} \cdots z_{g, \lambda_{n}}$ and a general monomial in the classes b_{1}^{j} and b_{2}^{j} can be extracted from this data.

4.1 Extracting Pairings via Specializations

Before proving Theorem 1.3, we digress and show how to recover formula (3.4) from Theorem 4.1. We then compute some other pairings in a similar way.

We use the well-known method of specializations in the theory of symmetric functions. There is a ring homomorphism, ex: $\Lambda \rightarrow \mathbb{Q}$ from the ring of symmetric functions to the rationals, characterized, for example, by its evaluation on the monomial symmetric functions: $\operatorname{ex}\left(m_{\left(1^{n}\right)}\right)=1 / n!$ and $\operatorname{ex}\left(m_{\lambda}\right)=0$ if $\lambda \neq\left(1^{n}\right)$ for some n. In particular, if $f \in \Lambda$ is a homogeneous symmetric function of degree n, then we have $\operatorname{ex}(f)=\frac{1}{n!} \cdot \operatorname{Coeff}_{x_{1} x_{2} \cdots x_{n}}[f]$. This homomorphism is a version of what is often called the exponential specialization for symmetric functions. In general, a specialization is just a homomorphism from Λ to another ring. The homomorphism ex just defined extends in the obvious way to a homomorphism ex: $\Lambda \llbracket T] \rightarrow \mathbb{Q}[[T]]$. We can then directly apply this homomorphism to our previously defined power series:

$$
\operatorname{ex}(R(T))=1, \quad \operatorname{ex}(P(T))=1, \quad \operatorname{ex}(Q(T))=\sinh \sqrt{T} / \sqrt{T} .
$$

We can now see that applying ex to the computation (4.1) of Theorem 4.1 with $g=k$ yields

$$
z_{1}^{4 g-3}\left[M_{g}\right]=(4 g-3)!\cdot \operatorname{ex}\left(\operatorname{CN}\left(Z_{g}\right)\right)=(4 g-3)!\cdot \frac{(-1)^{g}}{2^{2 g-1}} \underset{T^{s-1}}{\operatorname{Coeff}}\left[\frac{\sqrt{T}}{\sinh \sqrt{T}}\right] .
$$

At this point we recall an identity for the Bernoulli numbers, which may as well be taken as a convenient definition of B_{n} for our purposes, which holds for even indices
n :

$$
\underset{T^{g-1}}{\operatorname{Coeff}}\left[\frac{\sqrt{T}}{\sinh \sqrt{T}}\right]=-\frac{\left(2^{2 g-2}-2\right) B_{2 g-2}}{(2 g-2)!} .
$$

Finally, the identity $a_{1}=-2 z_{1}$ recovers formula (3.4), the expression for the pairing of the top degree power of the class a_{1}. We can similarly recover the formula (3.1) with $i=3 g-3$ for the pairing $\alpha^{3 g-3}\left[N_{g}\right]$ upon observing $\operatorname{ex}(U(T))=1$.

We can generalize the discussion and perform a similar extraction to obtain a formula for pairings of the form $a_{1}^{4 g-3-k} z_{k}\left[M_{g}\right]$. For this, we consider the specialization $\overline{\mathrm{ex}}: \Lambda \rightarrow \mathbb{Q}[x]$ characterized by sending a homogeneous symmetric function f of degree n to the following:

$$
\overline{\mathrm{ex}}(f)=\sum_{k \geqslant 0} \frac{x^{k}}{(n-k)!} \cdot \underset{x_{1}^{k} x_{2} x_{3} \cdots x_{n-k+1}}{\text { Coeff }}[f]
$$

This extends in the obvious way to a homomorphism $\overline{\mathrm{ex}}: \Lambda[[T]] \rightarrow \mathbb{Q}[x][[T]]$, and is equal to the above ex if we set $x=0$. From the definition note that for $n>0$ we have

$$
\overline{\operatorname{ex}}\left(m_{\left(1^{n}\right)}\right)=x /(n-1)!+1 / n!, \quad \overline{\operatorname{ex}}\left(m_{\left(1^{n-k} k\right)}\right)=x^{k} /(n-k)!\quad \text { for } k>1
$$

We can apply this homomorphism to our power series just as before, and we get

$$
\begin{gathered}
\overline{\mathrm{ex}}(R(T))=1, \quad \overline{\mathrm{ex}}(P(T))=(1+x)^{2}-x^{2} T \\
\overline{\mathrm{ex}}(Q(T))=x \cosh \sqrt{T}+\sinh \sqrt{T} / \sqrt{T}
\end{gathered}
$$

Then applying the homomorphism $\overline{\mathrm{ex}}$ to the formula in (4.1) with $g=k$ yields

$$
z_{1}^{4 g-3-i} z_{i}\left[M_{g}\right]=(4 g-3-i)!\cdot \frac{(-1)^{g}}{2^{2 g-1}} \cdot \underset{x^{i} T^{g^{-1}}}{\operatorname{Coeff}}\left[\frac{\left(1+2 x+x^{2}-x^{2} T\right)^{g}}{x \cosh \sqrt{T}+\sinh \sqrt{T} / \sqrt{T}}\right]
$$

We also see in this situation that a recursion property holds for lower genus moduli spaces: for $1 \leqslant k \leqslant g$, we have $z_{g, 1}^{4 k-3-i} z_{g, i}\left[M_{k}\right]=z_{1}^{4 k-3-i} z_{i}\left[M_{k}\right]$. Such a recursion always holds for any pairings obtained from a specialization that sends $R(T)$ to 1 . Similarly, noting that $\overline{\mathrm{ex}}$ applied to $U(T)$ yields $1+x-x^{2} T$, we obtain the following formula for N_{g} by applying $\overline{\operatorname{ex}}$ to (4.2) with $g=k$:

$$
\xi_{1}^{3 g-3-i} \xi_{i}\left[N_{g}\right]=(3 g-3-i)!\cdot \frac{1}{2^{g-1}} \cdot \underset{x^{i} T^{g^{-1}}}{\operatorname{Coeff}}\left[\frac{\left(1+x-x^{2} T\right)^{g}}{x \cosh \sqrt{T}+\sinh \sqrt{T} / \sqrt{T}}\right]
$$

Again, using $\xi_{1}=-\alpha / 2$ and relation (1.1), this determines the pairings $\alpha^{3 g-3-k} \delta_{k}\left[N_{g}\right]$. A recursive property similar to that mentioned above also holds for these pairings.

In a different direction, we can define specializations by setting some of the variables x_{1}, x_{2}, \ldots in the definition of the symmetric functions equal to zero. For example, setting $x_{1}=x, x_{2}=y$, and $x_{\ell}=0$ for $\ell \geqslant 3$, we obtain a specialization $\mathrm{ev}_{2}: \Lambda[[T]] \rightarrow \mathbb{Z}[x, y][[T]$ which acts as follows:

$$
\mathrm{ev}_{2}(U(T))=x\left(1-y^{2} T\right)+y\left(1-x^{2} T\right), \quad \mathrm{ev}_{2}(Q(T))=x+y
$$

We then obtain a formula for the pairings $\xi_{i} \xi_{j}\left[N_{g}\right]$ with $i+j=3 g-3$ by applying the specialization ev_{2} to equation (4.2) with $g=k$, after some elementary manipulations.

$$
\begin{equation*}
\sum_{i+j=3 g-3} \xi_{i} \xi_{j}\left[N_{g}\right] \cdot x^{i} y^{i}=g \cdot \frac{(-1)^{g-1}}{2^{g-1}} \cdot\left(x y^{2}+y x^{2}\right)^{g-1} \tag{4.10}
\end{equation*}
$$

Recall from Proposition 2.7 that we can view ξ_{i} as generators of the cohomology of N_{g} with \mathbb{Z}_{p} coefficients when p is odd. Suppose $p=g-1$ is an odd prime. In (4.10), the constants in front of the right-hand expression are invertible mod p (interpreting $1 / 2^{g-1}$ as the inverse of $2^{g-1} \bmod p$), and we conclude that the only pairing of the form $\xi_{i} \xi_{j}\left[N_{g}\right]$ that is nonzero $\bmod p$ is given by $\xi_{g-1} \xi_{2 g-2}\left[N_{g}\right]$.

4.2 Chern Numbers for the Tangent Bundle

In this subsection we prove Theorem 1.3. The proof is similar to that of Theorem 4.1, so we only indicate where it differs. We write $T N_{g}$ for the tangent bundle of N_{g}, viewed as complex vector bundle.

Proof of Theorem 1.3 According to Zagier [Zag95, eq. (27)], the Chern class polynomial of N_{g} is

$$
c\left(T N_{g}\right)_{x}=\left(1-\beta x^{2}\right)^{g-1} \exp \left(\frac{2 \alpha x}{1-\beta x^{2}}+2\left(\frac{\tanh ^{-1} x \sqrt{\beta}}{\beta \sqrt{\beta}}-\frac{x}{\beta\left(1-\beta x^{2}\right)}\right) \gamma^{*}\right)
$$

where as before $\gamma^{*}=2 \gamma+\alpha \beta$. Note the relation $c\left(T N_{g}\right)_{x}=\left(1-\beta x^{2}\right)^{-g} c\left(\left.Z_{g}\right|_{N_{g}}\right)_{-2 x}^{2}$. Proceeding as in the proof of Theorem 4.1, the Chern number polynomial CN(TNg) is given by $F_{0}\left(x_{1}, x_{2}, \cdots\right)\left[N_{g}\right]$, where F_{0} is the product of the Chern class polynomials $c\left(T N_{g}\right)_{x_{\ell}}$ for $\ell \geqslant 0, F_{0}\left(x_{1}, x_{2}, \cdots\right)=u_{0}^{g-1} \exp \left(2\left(u_{3}-u_{1}\right) \gamma^{*} / \beta+2 u_{1} \alpha\right)$. Here the expressions for u_{0}, u_{1}, u_{3} are defined as before. Now we apply Lemma 4.2 as was done previously, but with $w=2\left(u_{3}-u_{1}\right) / \beta, u=2 u_{1}, f=u_{0}^{g-1} u^{g}$, and $h=1 / u$. From this we obtain

$$
\begin{equation*}
\mathrm{CN}\left(T N_{g}\right)=2^{g}(-4)^{g-1} \frac{\sqrt{T} \cdot u_{0}(T)^{g-1} u_{1}(T)^{g}}{\sinh \left(2 \sum_{\ell \geqslant 1} \tanh ^{-1}\left(x_{\ell} \sqrt{T}\right)\right)} \tag{4.11}
\end{equation*}
$$

The denominator here is computed as in (4.8), but now the right side of (4.8) loses the fractional $1 / 2$ exponents due to the presence of the 2 in (4.11). After a short manipulation we instead find

$$
\begin{aligned}
\sinh \left(2 \sum_{\ell \geqslant 1} \tanh ^{-1}\left(x_{\ell} \sqrt{T}\right)\right) & =\frac{1}{2} \prod_{\ell \geqslant 1}\left(\frac{1+x_{\ell} \sqrt{T}}{1-x_{\ell} \sqrt{T}}\right)-\frac{1}{2} \prod_{\ell \geqslant 1}\left(\frac{1-x_{\ell} \sqrt{T}}{1+x_{\ell} \sqrt{T}}\right) \\
& =\frac{2 \cdot Q(T) E(T) \sqrt{T}}{u_{0}(T)},
\end{aligned}
$$

where $E(T)$ is defined in the introduction, and is readily identified with

$$
\sum T^{|J| / 2} \prod_{\ell \in J} x_{\ell}
$$

the sum being over finite subsets $J \subset\{1,2, \ldots\}$ of even cardinality. Finally, recalling that $u_{0} u_{1}=U$, we obtain from (4.11) the formula given in Theorem 1.3.

The specializations of Section 4.1 can, of course, also be applied to this situation. As an example, since $\operatorname{ex}(E(T))=\cosh \sqrt{T}$, applying the specialization ex to Theorem 1.3 yields

$$
c_{1}\left(T N_{g}\right)^{3 g-3}\left[N_{g}\right]=(3 g-3)!(-2)^{3 g-3} \underset{T^{g-1}}{\operatorname{Coeff}}\left[\frac{\sqrt{T}}{\sinh \sqrt{T} \cosh \sqrt{T}}\right]
$$

Then, using that $c_{1}\left(T N_{g}\right)=2 \alpha$, and the hyperbolic-trig identity

$$
\sinh (2 x)=2 \sinh (x) \cosh (x)
$$

we once again recover the formula for $\alpha^{3 g-3}\left[N_{g}\right]$ given in (3.1).

4.3 Skew Schur Functions

This section is mostly expositional, and serves to explain how the power series $1 / Q(T)$ and $1 / E(T)$ are generating functions for certain skew Schur symmetric functions as mentioned in the introduction. In particular, we explain (1.2). This interpretation was pointed out to the authors by Ira Gessel, and appears as a particular example in [GV89, §11]. The reader may consult [Mac15, I.5] for more background on skew Schur functions.

We begin by defining skew Schur functions. To begin, for any partition λ, the Schur symmetric function s_{λ} associated with λ is defined as the determinant

$$
\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)_{1 \leqslant i, j \leqslant k}
$$

in which h_{λ} is the complete monomial symmetric function (see Appendix A), and k is the length of the partition λ. One of the Jacobi-Trudi identities says that s_{λ} is also equal to $\operatorname{det}\left(e_{\lambda_{i}^{\prime}+j-i}\right)_{1 \leqslant i, j \leqslant k}$, where λ^{\prime} is the partition conjugate to λ. More generally, the skew Sch ch symmetric function $s_{\lambda / \mu}$ is equal to $\operatorname{det}\left(h_{\lambda_{i}-\mu_{i}+j-i}\right)_{1 \leqslant i, j \leqslant k}$. By a JacobiTrudi identity, we have the following identity.

$$
\begin{equation*}
s_{\lambda / \mu}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-\mu_{j}^{\prime}+j-i}\right)_{1 \leqslant i, j \leqslant k} . \tag{4.12}
\end{equation*}
$$

In this situation, μ is always a subpartition of λ, and the pair of data (λ, μ) is often called a skew partition, and written λ / μ.

We turn to some general remarks on generating functions and determinants that are standard in enumerative combinatorics, see e.g. [Stal1]. Suppose that a_{i} with $i \geqslant 0$ are a list of elements in some commutative ring. Then the reciprocal of the generating function $\sum_{i \geqslant 0} a_{i} T^{i}$ has coefficients in terms of some determinants formed from the a_{i} up to some powers of a_{0} :

$$
\sum_{n \geqslant 0} \frac{1}{a_{0}^{n+1}} \operatorname{det}\left((-1)^{j-i+1} a_{j-i+1}\right)_{1 \leqslant i, j \leqslant n} T^{n}=\frac{1}{\sum_{i \geqslant 0} a_{i} T^{i}} .
$$

As written, we are assuming the element a_{0} is invertible. More generally, as long as a_{0} is not a zero-divisor, then the coefficient of T^{n} on the left-hand side, after multiplying by a_{0}^{n+1}, is a well-defined element of the ring with which we started. Now we set $a_{i}=e_{2 i+1}$ so that the right-hand side is equal to $1 / Q(T)$. In this application, the commutative ring is the ring of symmetric polynomials, and $a_{0}=e_{1}$. Then, defining r_{n} to be e_{1}^{n+1} times the coefficient of T^{n} in $1 / Q(T)$, we obtain that $r_{n}=$ $\operatorname{det}\left((-1)^{j-i+1} e_{2 j-2 i+3}\right)_{1 \leqslant i, j \leqslant n}$. Upon observing that r_{n} is a homogeneous symmetric

$$
\begin{aligned}
& \nu=(2,2,2) \\
& \begin{array}{|l|l|}
\cline { 2 - 2 } & 1 \\
\hline 1 & 2 \\
\hline 2 & 3 \\
\hline 3 & \\
\hline
\end{array} \\
& \nu=(2,2,1,1) \\
& \quad \\
& \nu=(2,1,1,1,1)
\end{aligned}
$$

$$
\begin{aligned}
& \nu=(1,1,1,1,1,1)
\end{aligned}
$$

Figure 2: Here we list the SSYT of shape λ_{2} / μ_{2} with type v for each partition v. Using equation (4.14) we conclude $s_{\lambda_{2} / \mu_{2}}=m_{(2,2,2)}+2 m_{(2,2,1,1)}+5 m_{(2,1,1,1,1)}+14 m_{(1,1,1,1,1,1)}$.
polynomial of degree $3 n$, expanding the determinant allows us to factor out the sign, and we obtain

$$
\begin{equation*}
r_{n}=(-1)^{n} \operatorname{det}\left(e_{2 j-2 i+3}\right)_{1 \leqslant i, j \leqslant n} . \tag{4.13}
\end{equation*}
$$

Now, $\lambda(n, 3)^{\prime}=(n+2, n+1, \ldots, 4,3)$ and $\lambda(n, 0)^{\prime}=(n-1, n-2, \ldots, 2,1)$, where $\lambda(n, m)$ is defined in the introduction. It follows from (4.12) and (4.13) that r_{n} is equal to $(-1)^{n} s_{\lambda(n, 3) / \lambda(n, 0)}$. This establishes formula (1.2) for $1 / Q(T)$, and

$$
1 / E(T)=\sum s_{\lambda(n, 2) / \lambda(n, 0)}(-T)^{n}
$$

is similarly obtained.
The skew Schur function $s_{\lambda / \mu}$ admits the following combinatorial interpretation. Let λ / μ be any skew partition. Define a semi-standard (skew) Young tableau (SSYT) of shape λ / μ to be a filling of λ / μ with positive integers that are non-decreasing from left to right in each row and strictly increasing from top to bottom in each column. If a SSYT of shape λ / μ has α_{i} instances of i for each positive integer i, we say that the type of the SSYT is the composition $\alpha=\left(v_{1}, v_{2}, \ldots\right)$. Then we have the following identity, in which the sum is over all partitions v, thought of in this context as compositions of
non-increasing non-negative integers:

$$
\begin{equation*}
s_{\lambda / \mu}=\sum_{v} K_{\lambda / \mu, \nu} m_{v}, \quad K_{\lambda / \mu, v}=\#\{\text { SSYT of shape } \lambda / \mu \text { and type } v\} \tag{4.14}
\end{equation*}
$$

The numbers $K_{\lambda / \mu, v}$ are called the (skew) Kostka numbers. The example for $s_{\lambda_{2} / \mu_{2}}$ is spelled out in Figure 4.3. These numbers can become large quite fast: the coefficient in front of $m_{\left(1^{9}\right)}$ within $s_{\lambda_{3} / \mu_{3}}$ is equal to 744, and in front of $m_{\left(1^{7} 2\right)}$ is equal to 323 .

The relationship we have established between the integral pairings on the moduli spaces and these skew Schur functions will not be exploited in this paper, although some of the arguments below may have combinatorial interpretations.

5 Mod Two Nilpotency

In this section we prove Theorem 1.1. We first consider the degree 2 class α in the cohomology of N_{g}, and later handle the corresponding class a_{1} in the cohomology of M_{g}. We begin by showing that α^{g} is zero $\bmod 2$. In fact, we have more generally the following.

Proposition 5.1 For $n \geqslant g-1$, the element α^{n} is divisible by 2^{n-g+1}.
Proof From Section 2.3, we gather that the residue classes of $\alpha, \delta_{i}, \psi_{j}$ for $2 \leqslant i \leqslant$ $2 g-1$ and $1 \leqslant j \leqslant 2 g$ generate the $\bmod 2^{m}$ cohomology ring of N_{g} for any $m \geqslant 1$, and in particular $m=n-g+1$. It suffices then to show that for every partition λ, subset $J \subset\{1, \ldots, 2 g\}$, and $\ell \geqslant 0$ we have

$$
\alpha^{n+\ell} \delta_{\lambda_{1}} \cdots \delta_{\lambda_{k}} \prod_{j \in J} \psi_{j}\left[N_{g}\right] \equiv 0 \quad \bmod 2^{n-g+1}
$$

Now recall that $\alpha=-2 \xi_{1}$, and from (1.1) that each δ_{i} is an integral combination of terms $\xi_{1}^{b} \xi_{j}$. The above pairing is then an integral combination of pairings of the form

$$
\begin{equation*}
2^{n+\ell} \xi_{v_{1}} \ldots \xi_{v_{r}} \prod_{j \in J} \psi_{J}\left[N_{g}\right] \tag{5.1}
\end{equation*}
$$

Now either J is not invariant under the involution $j \mapsto j+g(\bmod 2 g)$, in which case (5.1) is zero, or else (5.1) is the coefficient of m_{v} within $2^{n+\ell} \mathrm{CN}\left(\left.Z_{g}\right|_{N_{k}}\right)$, where $k=g-|J| / 2$. It is apparent from Theorem 4.1 that $2^{n} \mathrm{CN}\left(\left.Z_{g}\right|_{N_{k}}\right)$ has coefficients divisible by 2^{n-g+1}, since the power series inside the brackets of (4.2) has coefficients that are symmetric functions with integer coefficients.

The nilpotency degree of $\alpha \bmod 2$ is then computed by the following lemma, which implies that α^{g-1} is nonzero in the cohomology ring $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$.

Lemma 5.2 The parity of the integer $2^{g-1} \xi_{1}^{3 g-3-j} \xi_{j}\left[N_{g}\right]$ is determined as follows:

$$
2^{g-1} \xi_{1}^{3 g-3-j} \xi_{j}\left[N_{g}\right] \equiv 1(\bmod 2) \Longleftrightarrow \begin{cases}j \in\{g-1, g-2\} & \text { geven }, \\ j \in\{g, g-1\} & \text { godd } .\end{cases}
$$

Proof By Theorem 1.2, the term $2^{g-1} \xi_{1}^{3 g-3-j} \xi_{j}\left[N_{g}\right]$ is equal to the coefficient of $m_{\lambda} T^{g-1}$ within $U(T)^{g} / Q(T)$, where $\lambda=\left(j, 1^{3 g-3-j}\right)$. We use this to reformulate
the claim of the lemma as follows. Let $I \subset \Lambda$ be the ideal generated by $2 \in \mathbb{Z}$ and the monomial symmetric functions m_{λ} with λ having at least two parts greater than 1, i.e., $\lambda_{1}, \lambda_{2}>1$. Here, as before, Λ is the ring of symmetric functions with integer coefficients. Then the lemma is equivalent to the congruence

$$
\begin{align*}
& \text { Coeff } T^{g-1}\left[U(T)^{g} / Q(T)\right] \tag{5.2}\\
& \quad \equiv g \cdot m_{\left(g, 1^{2 g-3}\right)}+m_{\left(g-1,1^{2 g-2}\right)}+(g-1) \cdot m_{\left(g-2,1^{2 g-1}\right)}(\bmod I)
\end{align*}
$$

Let $J \subset I$ be the ideal generated only by m_{λ} with λ having at least two parts greater than 1 , omitting $2 \in \mathbb{Z}$. The following relations are easily verified in the quotient ring Λ / J, in which $r, s>1$:

$$
\begin{aligned}
m_{\left(1^{p}\right)} m_{\left(1^{q}\right)} & \equiv\binom{p+q}{p} m_{\left(1^{p+q}\right)}+\binom{p+q-2}{p-1} m_{\left(2,1^{p+q-2}\right)}(\bmod J), \\
m_{\left(r, 1^{p}\right)} m_{\left(1^{q}\right)} & \equiv\binom{p+q}{p} m_{\left(r, 1^{p+q}\right)}+\binom{p+q-1}{p} m_{\left(r+1,1^{p+q-1}\right)}(\bmod J), \\
m_{\left(r, 1^{p}\right)} m_{\left(s, 1^{1 q}\right)} & \equiv\binom{p+q}{p} m_{\left(r+s, 1^{p+q}\right)}(\bmod J) .
\end{aligned}
$$

These follow by simply expanding the monomial symmetric functions as the sums of monomials that define them, and multiplying. Along the same lines, we leave the following to the reader:

$$
\begin{equation*}
m_{\left(1^{p}\right)}^{n} \equiv \sum_{k=1}^{n}\binom{n}{k}(p n-k)!p^{k} p!^{-n} m_{\left(k, 1^{p n-k}\right)}(\bmod J) \tag{5.3}
\end{equation*}
$$

We list some cases for which (5.3) vanishes modulo I. First, a special case of an elementary result, often called Lucas's Theorem, says that a multinomial coefficient $\left(\alpha_{1}+\cdots+\alpha_{k}\right)!/ \alpha_{1}!\cdots \alpha_{n}!$ is even if and only if, in the binary expansions of the α_{i}, there is some position, i.e., digit location, for which two distinct α_{i} have digit equal to 1 . Next, $(p n-k)!p^{k} p!^{-n}$ is equal to the multinomial coefficient in which $\alpha_{1}=\cdots=\alpha_{k}=p-1$ and $\alpha_{k+1}=\cdots=\alpha_{n}=p$. If $n \geqslant 3$, then either p or $p-1$ appears at least twice, so by Lucas's Theorem this number is even. Thus $m_{\left(1^{p}\right)}^{n} \equiv 0(\bmod I)$ if $n \geqslant 3$. If $n=2$, the $k=1$ term in (5.3) drops out because of $\binom{n}{k}$, so we need only consider $n=2=k$. This case has the term $\binom{2 p-2}{p-1}$, which is even, unless $p \leq 2$. Thus $m_{\left(1^{p}\right)}^{n} \equiv 0(\bmod I)$ if $p \geqslant 3$ and $n=2$.

As in Section 4.3, define $r_{n} \in \Lambda$ to be e_{1}^{n+1} times the coefficient of T^{n} of $1 / Q(T)$. The general formula for the reciprocal of a power series applied to $1 / Q(T)$ yields

$$
r_{n}=\sum_{\substack{\alpha_{1}, \ldots, \alpha_{k} \geqslant 0, k \geqslant 1 \\ \alpha_{1}+2 \alpha_{2}+\cdots+k \alpha_{k}=n}}(-1)^{\alpha_{1}+\cdots+\alpha_{k}} \alpha_{1}+\cdots+\alpha_{k} \alpha_{1}, \ldots, \alpha_{k} e_{1}^{n-\sum \alpha_{i}} e_{3}^{\alpha_{1}} \cdots e_{2 k+1}^{\alpha_{k}}
$$

Now, recalling that $e_{p}=m_{\left(1^{p}\right)}$ and taking our above remarks regarding e_{p}^{n} into consideration, we see that only terms with all $\alpha_{i} \leqslant 2$ can contribute odd coefficients. Further, by Lucas's Theorem, if all $\alpha_{i} \leqslant 2$, then the multinomial coefficient appearing is even unless $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ has one of

- some i such that $\alpha_{i}=1$ and $\alpha_{j}=0$, for $j \neq i$,
- some i such that $\alpha_{i}=2$ and $\alpha_{j}=0$, for $j \neq i$,
- some i, j such that $\alpha_{i}=2, \alpha_{j}=1$, and $\alpha_{\ell}=0$, for $\ell \neq i, j$.

Only the first case actually contributes something nonzero mod 2 , since we remarked above that $m_{\left(1^{p}\right)}^{2}$ is even when $p \geqslant 3$. We conclude that $r_{n} \equiv e_{1}^{n-1} e_{2 n+1}(\bmod I)$. From the relations above we easily compute e_{1}^{n-1} modulo I. It is congruent to

$$
m_{(n-2,1)}+m_{(n-1)}
$$

if n is even, and simply $m_{(n-1)}$ if n is odd. From this we obtain

$$
\begin{equation*}
r_{n} \equiv m_{\left(n, 1^{2 n}\right)}+n \cdot m_{\left(n-1,1^{2 n+1}\right)}(\bmod I) \tag{5.4}
\end{equation*}
$$

Note that r_{n} can be replaced here with the skew Schur function $s_{\lambda_{n} / \mu_{n}}$, and for $n=2$ the congruence (5.4) is apparent from Figure 4.3. Next, since $U(T) \equiv m_{(1)}-m_{(2,1)} T$ $(\bmod J)$, the coefficient of T^{i} within $U(T)^{g}$ is congruent to $(-1)^{i}\binom{g}{i} e_{1}^{g-i} m_{(2,1)}^{i} \bmod -$ ulo J. We then gather the following:

$$
\begin{align*}
\underset{T^{-1}}{\operatorname{Coeff}}\left[U(T)^{g} / Q(T)\right] & =\sum_{i=0}^{g-1} \operatorname{Coeff}\left[U(T)^{g}\right] e_{1}^{i-g} r_{g^{-i-1}} \tag{5.5}\\
& \equiv \sum_{i=0}^{g-1}\binom{g}{i} m_{(2,1)}^{i} r_{g-i-1}(\bmod I) .
\end{align*}
$$

A quick check shows that $m_{(2,1)}^{i} \equiv 0(\bmod I)$ for $i \geqslant 2$, so the only terms contributing are at $i=0,1$. Thus, the sum is congruent to $r_{g-1}+g \cdot m_{(2,1)} r_{g-2}$, which with (5.4) computes (5.2).

Corollary 5.3 The pairing $\alpha^{g-1} \delta_{2 g-2}\left[N_{g}\right]$ is odd.
Proof Using formula (1.1) and $\alpha=-2 \xi_{1}$, we extract the relation

$$
\alpha^{g-1} \delta_{2 g-2}=\sum_{i=1}^{2 g-1}(-1)^{i+g} i \cdot 2^{g-1} \xi_{1}^{g-2+i} \xi_{2 g-1-i}
$$

Noting the coefficient i, we see that exactly one of the terms from Lemma 5.2 contributes an odd number once we pair with $\left[N_{g}\right]$.

This corollary, together with Proposition 5.1, proves that the nilpotency degree of α, as viewed in $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, is equal to g. For the second part of Theorem 1.1, regarding the nilpotency degree of a_{1} in the ring $H^{*}\left(M_{g} ; \mathbb{Z}_{2}\right)$, we establish an analogue of Corollary 5.3.

Lemma 5.4 The integer $2^{2 g-1} z_{1}^{j} z_{4 g-3-j}\left[M_{g}\right]$ is odd if and only if $j \in\{2 g-1,2 g-2\}$.
Proof We sketch the proof, which is similar to that of Lemma 5.2. By (4.1) of Theorem 4.1, this integer is the coefficient of $m_{\lambda} T^{g-1}$ within $P(T)^{g} / Q(T)$ where $\lambda=$ $\left(4 g-3-j, 1^{j}\right)$. Since $P(T)$ is congruent modulo J to $e_{1}^{2}-2 m_{(2,1,1)} T$, the only term in $P(T)^{g}$ relevant to Λ / I is the constant term $e_{1}^{2 g}$. Then the coefficient of T^{g-1} within $P(T)^{g} / Q(T)$, computed just as in (5.5), is congruent $\bmod I$ to $e_{1}^{g} r_{g-1}$. From (5.4) this is then $m_{\left(2 g-1,1^{2 g-2}\right)}+m_{\left(2 g-2,1^{2 g-1}\right)} \bmod I$, proving the claim.

The same argument as in the proof of Corollary 5.3 then yields the following.
Corollary 5.5 The pairing $a_{1}^{2 g-1} d_{2 g-2}\left[M_{g}\right]$ is odd.

To complete the proof of Theorem 1.1, it remains to show that $a_{1}^{2 g}$ is zero mod 2. For this we will prove an analogue of Proposition 5.1. To this end, we first establish a few lemmas which take the content of Section 3 a bit further.

We begin by sketching the geometric meaning of Thaddeus's genus recursive formula (3.2). Recall that N_{g} can be viewed as the space of conjugacy classes of $2 g$-tuples $\left(A_{i}\right)_{i=1}^{2 g}$ in the $2 g$-fold product of $\mathrm{SU}(2)$ such that the product of the commutators [A_{i}, A_{i+g}] for $1 \leqslant i \leqslant g$ is equal to -1 . For $I \subset\{1, \ldots, 2 g\}$, let the submanifold $N_{I} \subset N_{g}$ consist of conjugacy classes such that $A_{i}=1$ if $i \in I$. If $I=I+g$, then N_{I} can be identified with $N_{g^{-}}$in which $k=|I| / 2$. Then Thaddeus showed

$$
\pm \prod_{j \in I} \psi_{j}=\mathrm{PD}\left[N_{I}\right] \in H^{6 g-6-3|I|}\left(N_{g} ; \mathbb{Z}\right)
$$

where PD is the Poincaré dual. This immediately establishes (3.2), up to signs. We now turn back to the moduli space M_{g}, which has the same description as does N_{g}, but with $U(2)$ replacing $\operatorname{SU}(2)$. For $I, K \subset\{1, \ldots, 2 g\}$, embedded in $N_{g} \times J_{g}$ is the submanifold $N_{I} \times J_{K}$, where N_{I} is as before, and J_{K} consists of $2 g$-tuples $\left(z_{1}, \ldots, z_{2 g}\right)$ in the $2 g$-fold product of $U(1)$ such that $z_{k}=1$ if $k \in K$. We write $M_{I K}$ for the submanifold of M_{g} given by the projection of $N_{I} \times J_{K}$ under the covering map p. It is clear that the homology class of $N_{I} \times J_{K}$ inside $N_{g} \times J_{g}$ is Poincaré dual to $\pm \prod_{i \in I} \psi_{i} \otimes$ $\prod_{k \in K} \theta_{k}$.

Lemma 5.6 The class $b_{2}^{i}-a_{1} b_{1}^{i} / 2$ is integral, and thus so too is $a_{1} b_{1}^{i} / 2$. More specifically, $\pm \mathrm{PD}\left(\prod_{i \in I}\left(b_{2}^{i}-a_{1} b_{1}^{i} / 2\right) \prod_{k \in K} b_{1}^{k}\right)=\left[M_{I K}\right] \in H_{8 g-6-3|I|-|K|}\left(M_{g} ; \mathbb{Z}\right)$.

Proof As the statement suggests, we will ignore signs throughout. Set

$$
x=\prod_{i \in I}\left(b_{2}^{j}-a_{1} b_{1}^{j} / 2\right) \prod_{k \in K} b_{1}^{k}
$$

so that the above discussion implies P.D. $\left(p^{*}(x)\right)=2^{|K|} \cdot\left[N_{I} \times J_{K}\right]$. Recall that the Poincare dual of a cohomology class is equal to the cap product with the fundamental homology class. Also recall that the cap product satisfies the functoriality property $x \cap p_{*}(y)=p_{*}\left(p^{*}(x) \cap y\right)$, for a homology class y and a cohomology class x. Then we compute that P.D. (x) is equal to
$x \cap\left[M_{g}\right]=x \cap 2^{-2 g} p_{*}\left[N_{g} \times J_{g}\right]=2^{-2 g} p_{*}\left(p^{*}(x) \cap\left[N_{g} \times J_{g}\right]\right)=2^{|K|-2 g} p_{*}\left[N_{I} \times J_{K}\right]$.
The final expression obtained on the right-hand side is equal to [$M_{I K}$], because $N_{I} \times J_{K}$ is clearly a $2^{2 g-|K|}$ sheeted covering of $M_{I K}$.

Note that the submanifold $M_{I K}$ can be described as the subspace of M_{g} consisting of conjugacy classes of tuples $\left(A_{i}\right)_{i=1}^{2 g}$ of matrices in $\mathrm{U}(2)$ whose product of commutators is -1 , and such that $A_{i} \in \mathrm{SU}(2)$ if $i \in K$, while A_{i} is in the center of $\mathrm{U}(2)$ if $i \in I$.

Lemma 5.7 If $a_{1}^{m} \in H^{*}\left(M_{g-1} ; \mathbb{Z}\right)$ is divisible by $d \in \mathbb{Z}$, so too is

$$
\left(b_{2}^{g}-a_{1} b_{1}^{g} / 2\right) b_{1}^{2 g} a_{1}^{m} \in H^{*}\left(M_{g} ; \mathbb{Z}\right)
$$

Proof From above, we know that $\left(b_{2}^{g}-a_{1} b_{1}^{g} / 2\right) b_{1}^{2 g}$ is Poincaré dual to [$M_{I K}$], where $I=\{g\}$ and $K=\{2 g\}$. In this subspace, $\left[A_{g}, A_{2 g}\right]=1$, so that always

$$
\prod_{i=1}^{g-1}\left[A_{i}, A_{i+g}\right]=-1 .
$$

Thus, there is a well-defined map from $M_{I K}$ to M_{g-1} that forgets A_{g} and $A_{2 g}$. This is a fibration with fiber $\mathrm{SU}(2) \times S^{1}$, where S^{1} is identified with the center of $\mathrm{U}(2)$. Because conjugation does not interact with the center of $U(2)$, we can write $M_{I K}=$ $P \times S^{1}$, where P is an $\operatorname{SU}(2)$-fibration over M_{g-1}. The fibration P has a section given by $A_{2 g}=1 \in \mathrm{SU}(2)=S^{3}$. Thus, just as in [Tha97], the euler class of P vanishes, and the Gysin exact sequence for a 3-sphere fibration implies the right-hand isomorphism

$$
H^{*}\left(M_{I K} ; \mathbb{Z}\right) \cong H^{*}(P ; \mathbb{Z}) \otimes H^{*}\left(S^{1} ; \mathbb{Z}\right), \quad H^{*}(P ; \mathbb{Z}) \cong H^{*}\left(M_{g-1} ; \mathbb{Z}\right) \otimes H^{*}\left(S^{3} ; \mathbb{Z}\right)
$$

While the left-hand isomorphism above is an isomorphism of graded-commutative rings, we do not know the same for the right-hand isomorphism. However, the LerayHirsch Theorem tells us that this latter isomorphism respects the $H^{*}\left(M_{g-1} ; \mathbb{Z}\right)$-module structures. It is a straightforward matter to verify that $a_{1} \in H^{2}\left(M_{g} ; \mathbb{Z}\right)$ goes to $a_{1} \otimes 1 \in H^{2}\left(M_{g-1} ; \mathbb{Z}\right) \otimes H^{0}\left(S^{3} ; \mathbb{Z}\right)$ under this isomorphism. The lemma then follows using the $H^{*}\left(M_{g-1} ; \mathbb{Z}\right)$-module structure.

Proposition 5.8 For $n \geqslant 2 g-1$, the element $a_{1}^{n} \in H^{2 n}\left(M_{g} ; \mathbb{Z}\right)$ is divisible by $2^{n-2 g+1}$.
Proof The proof is by induction. We assume the result holds for $a_{1} \in H^{2}\left(M_{k} ; \mathbb{Z}\right)$ for $k \leqslant g-1$. Further, we add the induction hypothesis that $a_{1}^{q} \equiv 0\left(\bmod 2^{q-2 g+1}\right)$, for $q>n$. Note that this is automatically true for q large enough, since a_{1} is nilpotent.

From Section 2.1, we gather that the residue classes of $a_{1}, d_{i}, b_{1}^{j}, b_{2}^{j}$, for $2 \leqslant i \leqslant 2 g-1$ and $1 \leqslant j \leqslant 2 g$, generate the $\bmod 2^{m}$ cohomology ring of M_{g} for any $m \geqslant 1$, and in particular $m=n-2 g+1$. It suffices then to show that for every partition λ, subsets $J_{1}, J_{2} \subset\{1, \ldots, 2 g\}$, and $\ell \geqslant 0$, we have

$$
\begin{equation*}
a_{1}^{n+\ell} d_{\lambda_{1}} \cdots d_{\lambda_{k}} \prod_{j \in J_{1}} b_{1}^{j} \prod_{j \in J_{2}} b_{2}^{j}\left[M_{g}\right] \equiv 0 \quad \bmod 2^{n-2 g+1} \tag{5.6}
\end{equation*}
$$

The case in which J_{2} is empty follows the argument of Proposition 5.1, but this time using Proposition 4.3. We do not use any induction hypothesis here.

By Proposition 3.1, if J_{2} is not empty, then either the left side of (5.6) vanishes, or at least one of two kinds of terms appears: $b_{2}^{j} b_{2}^{j+g}$ or $b_{1}^{j} b_{2}^{j+g}$. Without loss of generality we will suppose $j=g$.

First suppose $b_{1}^{g} b_{2}^{2 g}$ appears in (5.6). Let x denote the monomial in (5.6) omitting this term and a_{1}^{n}. We must show $2^{n-2 g+1}$ divides $a_{1}^{n} b_{1}^{g} b_{2}^{2 g} x\left[M_{g}\right]$. First note that we can replace $b_{2}^{2 g}$ by $b_{2}^{2 g}-a_{1} b_{1}^{2 g} / 2$. Indeed, $a_{1}^{n+1} b_{1}^{g} b_{1}^{2 g} x\left[M_{g}\right] / 2$ is divisible by $2^{(n+1)-2 g+1} / 2$ using the induction hypothesis on n. Finally,

$$
a_{1}^{n}\left(b_{2}^{2 g}-a_{1} b_{1}^{2 g} / 2\right) x\left[M_{g}\right] \equiv 0 \quad \bmod 2^{n-2 g+1},
$$

using Lemma 5.7 and the induction hypothesis on g. Thus, the case in which $b_{1}^{g} b_{2}^{2 g}$ appears is done.

Now suppose that $b_{2}^{g} b_{2}^{2 g}$ appears in (5.6). Just as was done in the previous case, we can replace each b_{2}^{j} here with $b_{2}^{j}-a_{1} b_{1}^{j} / 2$, and upon pulling back via the covering p, we get $\psi_{g} \psi_{2 g}$, and the result follows from induction on g, using (3.3) and Thaddeus's genus recursive formula (3.2). This exhausts all cases and completes the proof of the proposition, as well as the proof of Theorem 1.1.

6 Computations

In this section we give some examples of the pairings on N_{g} calculated by Theorem 4.1 and describe the ring structure $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$ for low values of g. Much of this discussion can be carried out for the moduli space M_{g}, but we will not pursue this.

First, recall that Theorem 4.1 computes the pairings involving the classes $\xi_{g, i}$. The pairings are encoded in the Chern number polynomial $\mathrm{CN}\left(\left.Z_{g}\right|_{N_{k}}\right)$, which is equal to (4.3). Formula (4.2) easily computes this polynomial using a program such as Sage, which has symmetric function methods available. For example, we have $\operatorname{CN}\left(\left.Z_{1}\right|_{N_{1}}\right)=1,2 \operatorname{CN}\left(\left.Z_{2}\right|_{N_{2}}\right)=-m_{\left(1^{3}\right)}-2 m_{(21)}$, and

$$
\begin{aligned}
& 2^{2} \mathrm{CN}\left(\left.Z_{3}\right|_{N_{3}}\right)=14 m_{\left(1^{6}\right)}+17 m_{\left(21^{4}\right)}+26 m_{\left(2^{2} 1^{2}\right)}+28 m_{\left(2^{3}\right)} \\
&+ 9 m_{\left(31^{3}\right)}+12 m_{(321)}+6 m_{\left(3^{2}\right)}+6 m_{\left(41^{2}\right)}+3 m_{(42)}
\end{aligned}
$$

These polynomials quickly become quite lengthy. For example, if we compute the genus 4 polynomial in terms of elementary symmetric functions e_{λ}, we find

$$
\begin{aligned}
& 2^{3} \mathrm{CN}\left(\left.Z_{4}\right|_{N_{4}}\right)=-4 e_{\left(2^{3} 1^{3}\right)}+18 e_{\left(32^{2} 1^{2}\right)}-44 e_{\left(3^{2} 21\right)}+65 e_{\left(3^{3}\right)}+36 e_{\left(421^{3}\right)} \\
&-100 e_{\left(431^{2}\right)}-44 e_{\left(521^{2}\right)}+150 e_{(531)}-20 e_{\left(61^{3}\right)}+27 e_{\left(71^{2}\right)}
\end{aligned}
$$

If instead we write this same polynomial in terms of monomial symmetric functions m_{λ}, then it has 26 non-zero terms. Similarly, the corresponding genus 5 polynomial has 20 non-zero terms when written using the e_{λ}, and 70 non-zero terms when using the m_{λ}.

Of course, $\mathrm{CN}\left(\left.Z_{g}\right|_{N_{k}}\right)$ is of intermediary interest to us: our goal was to compute $\mathrm{CN}\left(\left.f_{!} V_{g}\right|_{N_{k}}\right)$, the polynomial encoding the pairings involving the $\delta_{g, i}$ classes. We can compute these using the Chern number polynomial for $\left.Z_{g}\right|_{N_{k}}$ via the transformations (1.1). These are typically more complicated, however. For example, we have $\operatorname{CN}\left(\left.f_{!} V_{1}\right|_{N_{1}}\right)=1$,

$$
\begin{aligned}
\mathrm{CN}\left(\left.f_{!} V_{2}\right|_{N_{2}}\right) & =4 m_{\left(1^{3}\right)}+3 m_{(21)}+m_{(3)} \\
\mathrm{CN}\left(\left.f_{!} V_{3}\right|_{N_{3}}\right) & =14336 m_{\left(1^{6}\right)}+6464 m_{\left(21^{4}\right)}+2936 m_{\left(2^{2} 1^{2}\right)}+1339 m_{\left(2^{3}\right)} \\
& +1568 m_{\left(31^{3}\right)}+722 m_{(321)}+182 m_{\left(3^{2}\right)}+212 m_{\left(41^{2}\right)}+98 m_{(42)}+14 m_{(51)}
\end{aligned}
$$

For genus 4 , there are 28 non-zero coefficients whether we use the basis e_{λ} or m_{λ}, while for genus 5, there are 73 non-zero coefficients in either basis. In each case, respectively, 28 and 73 is the number of monomials in the δ_{i} classes of top degree, so every possible pairing is non-zero. We have focused on the cases $g=k$ for simplicity; when $k<g$ the computations are somewhat similar.

When we consider the pairings only modulo 2 , which are relevant for $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, the situation is considerably more manageable. First, we recall from Corollary 2.6 that the residue classes of $\alpha, \delta_{2^{i}}, \psi_{j}$ generate the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, where $2 \leqslant 2^{i} \leqslant 2 g-1$
and $1 \leqslant j \leqslant 2 g$. We can obtain pairing formulas for these classes from the above data as follows. Let $\mathscr{P}(2)$ be the set of partitions each of whose parts is a power of 2 . Thus $(4,2,2,1) \in \mathscr{P}(2)$, but $(6,4,2,1) \notin \mathscr{P}(2)$. For $\lambda \in \mathscr{P}(2)$, let m_{1} denote the number of 1's in λ, and let $\lambda^{\#}$ denote the partition obtained from λ by removing all of its 1's, so in particular $m_{1}=|\lambda|-\left|\lambda^{\#}\right|$. Set $\delta_{g, \lambda}:=\delta_{g, \lambda_{1}} \cdots \delta_{g, \lambda_{n}}$. Now we define

$$
P_{g, k}:=\sum_{\lambda \in \mathscr{P}(2)} \alpha^{m_{1}} \delta_{g, \lambda^{*}}\left[N_{k}\right] \cdot m_{\lambda} \quad \bmod 2 .
$$

Then the collection of $P_{g, k}$ with $1 \leqslant k \leqslant g$ determines the ring structure of $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$. Indeed, it is evident that $P_{g, g}$ encodes all mod 2 pairings involving the generators $\delta_{g, 2^{i}}$ and α, while, for example, the pairing $\alpha^{m_{1}} \delta_{g, \lambda^{\#}} \psi_{1} \psi_{1+g} \cdots \psi_{g-k} \psi_{2 g-k}\left[N_{g}\right]$ is equal to the coefficient of m_{λ} in $P_{g, k}$. Recalling that $\delta_{g, 1}=(g-1) \alpha$, we have the following, which tells us how to compute $P_{g, k}$ from the $\delta_{g, i}$ pairings:

$$
\underset{m_{\lambda}}{\operatorname{Coeff}}\left[P_{g, k}\right] \equiv \underset{m_{\lambda}}{\operatorname{Coeff}}\left[\mathrm{CN}\left(\left.f_{!} V_{g}\right|_{N_{k}}\right) /(g-1)^{m_{1}}\right] \bmod 2
$$

Here $\lambda \in \mathscr{P}(2)$. The polynomials $P_{g, k}$ are presented up to genus 8 in Table 1 .
We remark that the computations of Chern numbers and hence that of Table 1 could have also been done without using Theorem 4.1. Indeed, one can write out the $\delta_{g, i}$ classes as rational functions of α, β, γ using (4.4) and (1.1), and then apply Thaddeus's intersection pairing formula for $\alpha^{i} \beta^{j} \gamma^{k}$ from Section 3 term-wise. As an illustration of this, we can write $\delta_{8}=\delta_{6,8} \in H^{16}\left(N_{6} ; \mathbb{Z}\right)$ as follows:

$$
\begin{aligned}
\delta_{6,8}= & \left(\frac{3184129}{10321920}\right) \alpha^{8}-\left(\frac{351163}{368640}\right) \alpha^{6} \beta+\left(\frac{747229}{737280}\right) \alpha^{4} \beta^{2}+\left(\frac{3539}{23040}\right) \alpha^{5} \gamma-\left(\frac{1044149}{2580480}\right) \alpha^{2} \beta^{3} \\
& -\left(\frac{1061}{3840}\right) \alpha^{3} \beta \gamma+\left(\frac{1155}{32768}\right) \beta^{4}+\left(\frac{18829}{161280}\right) \alpha \beta^{2} \gamma+\left(\frac{13}{576}\right) \alpha^{2} \gamma^{2}-\left(\frac{31}{2880}\right) \beta \gamma^{2} .
\end{aligned}
$$

We also compute $\delta_{6,2}=\frac{91}{8} \alpha^{2}-\frac{11}{8} \beta$. Then we can apply Thaddeus's intersection pairing formula to the terms of $\alpha^{5} \delta_{6,2} \delta_{6,8}$ and sum to obtain 117071517415. This number is odd, and accounts for the partition ($8,2,1,1,1,1,1$) appearing in the first column of row $g=6$ in Table 1 .

From Table 1 we can read off the ring structure of $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$ for $1 \leqslant g \leqslant 8$, and we will spell this out for $1 \leqslant g \leqslant 4$. We make a few preliminary remarks. We know from Corollary 2.6 that $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$ is generated by $\alpha, \delta_{2^{i}}, \psi_{j}$ for $2 \leqslant 2^{i} \leqslant 2 g-1$ and $1 \leqslant j \leqslant 2 g$. We write $I\left(N_{g} ; R\right) \subset H^{*}\left(N_{g} ; R\right)$ for the subring invariant under the $\operatorname{Sp}(2 g, \mathbb{Z})$-action, where R is any ring. It is well known that $I\left(N_{g} ; \mathbb{Q}\right)$ is generated by α, β, γ and that a monomial basis for the vector space $I\left(N_{g} ; \mathbb{Q}\right)$ is given by

$$
\left\{\alpha^{i} \beta^{j} \gamma^{k}: i, j, k \geqslant 0, i+j+k<g\right\}
$$

see [ST95, §5]. In particular, $\operatorname{dim} I\left(N_{g} ; \mathbb{Q}\right)=g(g+1)(g+2) / 6=T_{g}$, the g-th tetrahedral number. This in fact holds for any field, and in particular \mathbb{Z}_{2}. From Proposition 2.8 we know that $I\left(N_{g} ; \mathbb{Z}_{2}\right)$ is generated by $\alpha, \delta_{2^{i}}, v_{2^{j}}$ for $2 \leqslant 2^{i} \leqslant 2 g-1$ and $1 \leqslant 2^{j}<g$. We now proceed to describe the rings $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$ and their invariant subrings for $1 \leqslant g \leqslant 4$.

Genus 1: In this case, N_{1} is a point, so $H^{*}\left(N_{1} ; \mathbb{Z}\right) \cong \mathbb{Z}$.
Genus 2: Even over \mathbb{Z} this ring is simple to describe [New67, §10]. As remarked there, the only interesting cup product in $H^{*}\left(N_{2} ; \mathbb{Z}\right)$ is α^{2}, which is 4 times an integral generator, equal to $\alpha^{2}-\delta_{2}$. Thus the ring $H^{*}\left(N_{2} ; \mathbb{Z}_{2}\right)$, which has betti numbers
$1,0,1,4,1,0,1$, has the residue classes of α in degree 2 and δ_{2} in degree 4 , and $\alpha^{2}=0$ $(\bmod 2)$. The classes $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$ generate the four-dimensional middle cohomology group, and $\alpha \delta_{2}, \psi_{1} \psi_{3}, \psi_{2} \psi_{4}$ are all equal to the non-zero top degree element in $H^{6}\left(N_{2} ; \mathbb{Z}_{2}\right)$, while all other pairings are zero. The invariant subring $I\left(N_{2} ; \mathbb{Z}_{2}\right)$ is generated by α and δ_{2} and has betti numbers $1,0,1,0,1,0,1$.

Genus 3: The ring $H^{*}\left(N_{3} ; \mathbb{Z}_{2}\right)$ has betti numbers $1,0,1,6,2,6,16,6,2,6,1,0,1$. It is generated by $\alpha, \delta_{2}, \delta_{4}$, and ψ_{j} for $1 \leqslant j \leqslant 6$. The nontrivial pairings in top degree, as can be read from Table 1, are

$$
\alpha^{2} \delta_{4}, \quad \delta_{2}^{3}, \quad \psi_{j} \psi_{j+g} \alpha \delta_{2}(1 \leqslant j \leqslant 3), \quad \psi_{j} \psi_{j+g} \psi_{k} \psi_{k+g}(1 \leqslant j \neq k \leqslant 3)
$$

The invariant subring $I\left(N_{3} ; \mathbb{Z}_{2}\right)$, which has betti numbers $1,0,1,0,2,0,2,0,2,0,1,0,1$, is generated by $\alpha, \delta_{2}, \delta_{4}$, and v_{1}, v_{2}. We can compute a presentation for the invariant ring:

$$
\begin{aligned}
I\left(N_{3} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[\alpha, \delta_{2},\right. & \left.\delta_{4}, v_{1}, v_{2}\right] \\
& \quad /\left(v_{1}^{2}, \delta_{4} v_{1}, \delta_{4}^{2}, \delta_{2} \delta_{4}, \delta_{1} \delta_{4}+\delta_{2} v_{1}, \delta_{2}^{2}+\delta_{1} v_{1}, \delta_{1}^{2} v_{1}, \delta_{1}^{2} \delta_{2}, \delta_{1}^{3}\right)
\end{aligned}
$$

We remind the reader that

$$
v_{1}=\psi_{1} \psi_{4}+\psi_{2} \psi_{5}+\psi_{3} \psi_{6}, \quad v_{2}=\psi_{1} \psi_{4} \psi_{2} \psi_{5}+\psi_{1} \psi_{4} \psi_{3} \psi_{6}+\psi_{2} \psi_{5} \psi_{3} \psi_{6}
$$

Note here that δ_{2}^{3} is nonzero. This property seems to persist possibly for all $\delta_{g, 2} \in$ $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, and can perhaps be proven using the same methods used to prove Theorem 1.1.

Genus 4: The ring $H^{*}\left(N_{3} ; \mathbb{Z}_{2}\right)$ has betti numbers $1,0,1,8,2,8,30,16,30,64,30$, $16,30,8,2,8,1,0,1$. It is generated by $\alpha, \delta_{2}, \delta_{4}$, and ψ_{j}, for $1 \leqslant j \leqslant 8$. The only nontrivial pairings in the top degree, as read from Table 1, are the following, in which $1 \leqslant j, k, \ell \leqslant 4$ are distinct:

$$
\begin{gathered}
\alpha \delta_{2}^{2} \delta_{4}, \quad \alpha^{3} \delta_{2} \delta_{4}, \quad \psi_{j} \psi_{j+g} \alpha^{2} \delta_{4}, \quad \psi_{j} \psi_{j+g} \delta_{2} \delta_{4}, \\
\psi_{j} \psi_{j+g} \delta_{2}^{3}, \\
\psi_{j} \psi_{j+g} \psi_{k} \psi_{k+g} \alpha \delta_{2}, \quad \psi_{j} \psi_{j+g} \psi_{k} \psi_{k+g} \psi_{\ell} \psi_{\ell+g}
\end{gathered}
$$

The invariant ring $I\left(N_{4} ; \mathbb{Z}_{2}\right)$ has betti numbers $1,0,1,0,2,0,3,0,3,0,3,0,3,0,2,0$, $1,0,1$. It is generated by $\alpha, \delta_{2}, \delta_{4}, v_{1}, v_{2}$, just like the genus 3 case. The ideal of relations here is generated by

$$
\begin{aligned}
& \alpha^{4}, \alpha^{2} \delta_{2}+\alpha v_{1}+\delta_{2}^{2}, \delta_{2} \alpha^{3}+\alpha \delta_{2}^{2}, \alpha^{2} v_{1}, \alpha^{2} \delta_{2}^{2}, \alpha v_{2} \\
& \quad v_{1}^{2}, v_{2}^{2}, \delta_{2}^{3} v_{1}+\alpha^{2} \delta_{4} v_{1}, \delta_{2}^{3}+v_{2}, v_{1} v_{2}, \delta_{4} v_{1}, \delta_{4}^{2}
\end{aligned}
$$

We will stop here, but the interested reader can proceed to describe the higher genus cases up to $g=8$, using Table 1. Also, one can similarly describe the rings $H^{*}\left(N_{g} ; \mathbb{Z}_{p}\right)$ for other primes p, using our Chern number computations and some additional work.

Table 1: Partitions $\lambda \in \mathscr{P}(2)$ for which $\operatorname{Coeff}_{m_{\lambda}}\left[P_{g, k}\right] \equiv 1(\bmod 2)$. A partition $\left(8^{a} 4^{b} 2^{c} 1^{d}\right)$ appears in row g and column k of this table if and only if the monomial $\mu=\phi \delta_{8}^{a} \delta_{4}^{b} \delta_{2}^{c} \alpha^{d}$ is nonzero in the ring $H^{*}\left(N_{g} ; \mathbb{Z}_{2}\right)$, i.e., $\mu\left[N_{g}\right] \equiv 1(\bmod 2)$, where $\phi=\psi_{1} \psi_{1+g} \ldots \psi_{k} \psi_{k+g}$.

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$
$g=1$	0							
$g=2$	$\left(2^{1} 1^{1}\right)$	0						
	$\begin{array}{r} \left(4^{1} 1^{2}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0					
$g=4$	$\begin{aligned} & \left(4^{1} 2^{2} 1^{1}\right) \\ & \left(4^{1} 2^{1} 1^{3}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 1^{2}\right) \\ \left(4^{1} 2^{1}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0				
$g=5$	$\begin{array}{r} \left(8^{1} 2^{1} 1^{2}\right) \\ \left(4^{1} 2^{3} 1^{1}\right) \\ \left(8^{1} 1^{4}\right) \\ \left(4^{3}\right) \end{array}$	$\begin{aligned} & \left(4^{1} 2^{1} 1^{3}\right) \\ & \left(4^{1} 2^{2} 1^{1}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 1^{2}\right) \\ \left(2^{1} 4^{1}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0			
$g=6$	$\begin{aligned} & \left(8^{1} 2^{2} 1^{3}\right) \\ & \left(8^{1} 2^{1} 1^{5}\right) \\ & \left(8^{1} 2^{3} 1^{1}\right) \\ & \left(4^{3} 2^{1} 1^{1}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 2^{3} 1^{2}\right) \\ \left(8^{1} 2^{2}\right) \\ \left(8^{1} 1^{4}\right) \\ \left(4^{3}\right) \end{array}$	$\begin{aligned} & \left(4^{2} 2^{1} 1^{3}\right) \\ & \left(4^{1} 2^{2} 1^{1}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 1^{2}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0		
$g=7$	$\begin{array}{r} \left(8^{1} 4^{1} 2^{2} 1^{2}\right) \\ \left(8^{1} 2^{3} 1^{4}\right) \\ \left(8^{1} 4^{2} 1^{2}\right) \\ \left(8^{1} 4^{1} 1^{6}\right) \\ \left(4^{3} 2^{3}\right) \\ \left(8^{1} 2^{5}\right) \end{array}$	$\begin{gathered} \left(8^{1} 4^{1} 2^{1} 1^{1}\right) \\ \left(8^{1} 2^{2} 1^{3}\right) \\ \left(8^{1} 2^{3} 1^{1}\right) \\ \left(8^{1} 4^{1} 1^{3}\right) \\ \left(4^{3} 2^{1} 1^{1}\right) \\ \left(8^{1} 2^{1} 1^{5}\right) \end{gathered}$	$\begin{array}{r} \left(4^{1} 2^{3} 1^{2}\right) \\ \left(8^{1} 1^{4}\right) \\ \left(4^{3}\right) \end{array}$	$\begin{aligned} & \left(4^{1} 2^{1} 1^{3}\right) \\ & \left(4^{1} 2^{2} 1^{1}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 1^{2}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0	
$g=8$	$\begin{aligned} & \left(8^{1} 4^{1} 2^{3} 1^{3}\right) \\ & \left(8^{1} 4^{1} 2^{2} 1^{5}\right) \\ & \left(8^{1} 4^{2} 2^{1} 1^{3}\right) \\ & \left(8^{1} 4^{2} 2^{2} 1^{1}\right) \\ & \left(8^{1} 4^{1} 2^{4} 1^{1}\right) \\ & \left(8^{1} 4^{1} 2^{1} 1^{7}\right) \end{aligned}$	$\begin{array}{r} \left(8^{1} 4^{1} 2^{1} 1^{4}\right) \\ \left(8^{1} 4^{2} 2^{1}\right) \\ \left(8^{1} 4^{2} 1^{2}\right) \\ \left(8^{1} 4^{1} 2^{3}\right) \\ \left(8^{1} 4^{1} 1^{6}\right) \\ \left(8^{1} 2^{3} 1^{4}\right) \\ \left(8^{1} 2^{5}\right) \\ \left(4^{3} 2^{3}\right) \end{array}$	$\begin{array}{r} \left(8^{1} 4^{1} 2^{1} 1^{1}\right) \\ \left(8^{1} 4^{1} 1^{3}\right) \\ \left(8^{1} 2^{3} 1^{1}\right) \\ \left(8^{1} 2^{2} 1^{3}\right) \\ \left(8^{1} 2^{1} 1^{5}\right) \\ \left(4^{3} 2^{1} 1^{1}\right) \end{array}$	$\left(8^{1} 2^{1} 1^{2}\right)$ $\left(4^{1} 2^{3} 1^{2}\right)$ $\left(8^{1} 4^{1}\right)$ $\left(8^{1} 2^{2}\right)$ $\left(8^{1} 1^{4}\right)$ $\left(4^{3}\right)$	$\begin{aligned} & \left(4^{1} 2^{2} 1^{1}\right) \\ & \left(4^{1} 2^{1} 1^{3}\right) \end{aligned}$	$\begin{array}{r} \left(4^{1} 2^{1}\right) \\ \left(4^{1} 1^{2}\right) \\ \left(2^{3}\right) \end{array}$	$\left(2^{1} 1^{1}\right)$	0

A Background on Symmetric Functions

In this section we provide the reader with the relevant background material on symmetric polynomials. For details and proofs, see [Mac15]. We will typically work with symmetric functions in infinitely many variables $x_{1}, x_{2}, x_{3}, \cdots$ with either integer or rational coefficients.

There are a few standard symmetric functions that will be of use to us. First, for any positive integer n, we have the elementary symmetric function e_{n}, given by

$$
e_{n}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is a partition, i.e., a nonincreasing sequence of nonnegative integers, then we define $e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}$. If in the definition of e_{n} one sums over $i_{1} \geqslant i_{2} \geqslant \cdots \geqslant i_{n}$ instead, the result is the complete symmetric function h_{n}, and we can similarly define h_{λ}. For $n=0$, set $e_{0}=h_{0}=1$.

Next, for any given partition λ, we have the monomial symmetric function m_{λ}, which is the sum of all distinct monomials of the form $x_{i_{1}}^{\lambda_{1}} x_{i_{2}}^{\lambda_{2}} \cdots x_{i_{k}}^{\lambda_{k}}$ in which i_{1}, \ldots, i_{k} are distinct. Although we do not make much use of them, we also define the power sum symmetric function p_{n} by $p_{n}=\sum_{i \geqslant 0} x_{i}^{n}$.

In Section 4.3 we defined (skew) Schur symmetric functions s_{λ}. It is often convenient to write a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ in the alternative format

$$
\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots k^{m_{k}}\right)
$$

in which λ has m_{i} number of parts equal to i. For example, the partition (2,2,1,1,1) can be written instead as $\left(2^{2} 1^{3}\right)$. We write $|\lambda|=\sum_{i=1}^{k} \lambda_{k}$ for the sum of a partition, and $l(\lambda)=k$ for its length. Sometimes we insert commas for clarity; the last partition can be written as $\left(2^{2}, 1^{3}\right)$.

We write Λ for the ring of symmetric functions with integer coefficients. The Fundamental Theorem of Symmetric Functions says that Λ is isomorphic to the ring $\mathbb{Z}\left[e_{1}, e_{2}, \ldots\right]$ freely generated by the e_{i}. The statement also holds with the e_{i} replaced by h_{i}. Also, the sets $\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\},\left\{m_{\lambda}\right\},\left\{s_{\lambda}\right\}$, where λ runs over all partitions, each separately provides an additive basis for Λ. If we work instead with rational coefficients, then the ring of symmetric functions $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to the freely generated algebra $\mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]$, and $\left\{p_{\lambda}\right\}$ provides an additive basis for the vector space $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$.

Acknowledgments The authors thank Ira Gessel for very helpful email correspondence.

References

[AB83] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1983), no. 1505, 523-615, http://dx.doi.org/10.1098/rsta.1983.0017
[Bar94] V. Yu. Baranovskiĭ, The cohomology ring of the moduli space of stable bundles with odd determinant. Izv. Ross. Akad. Nauk Ser. Mat. 58(1994), no. 4, 204-210.
[CS] B. Chen and C. Scaduto, Nilpotency in instanton homology, and the framed instanton homology of a surface times a circle. 2016. arxiv:1612.08690
[FL01] Paul M. N. Feehan and Thomas G. Leness, PU(2) monopoles and links of top-level Seiberg-Witten moduli spaces. J. Reine Angew. Math. 538(2001), 57-133.
[Fy04] Kim A. Frøyshov, An inequality for the h-invariant in instanton Floer theory. Topology 43(2004), no. 2, 407-432. http://dx.doi.org/10.1016/S0040-9383(03)00049-1
[GV89] Ira M. Gessel and X. G. Viennot, Determinants, paths, and plane partitions, 1989. http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf,
[Hat02] Allen Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.
[Kir92] Frances Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces. J. Amer. Math. Soc. 5(1992), no. 4, 853-906. http://dx.doi.org/10.1090/S0894-0347-1992-1145826-8
[KN98] A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve. Topology 37(1998), no. 2, 407-418. http://dx.doi.org/10.1016/S0040-9383(97)00041-4
[Mac15] I. G. Macdonald, Symmetric functions and Hall polynomials. Second edition. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 2015.
[Muñ99] Vicente Muñoz, Ring structure of the Floer cohomology of $\Sigma \times \mathbf{S}^{1}$. Topology 38(1999), no. 3, 517-528. http://dx.doi.org/10.1016/S0040-9383(98)00028-7
[New67] P. E. Newstead, Topological properties of some spaces of stable bundles. Topology 6(1967), 241-262. http://dx.doi.org/10.1016/0040-9383(67)90037-7
[New72] , Characteristic classes of stable bundles of rank 2 over an algebraic curve. Trans. Amer. Math. Soc. 169(1972), 337-345.
[ST95] Bernd Siebert and Gang Tian, Recursive relations for the cohomology ring of moduli spaces of stable bundles. Turkish J. Math. 19(1995), no. 2, 131-144.
[Stal1] Richard P. Stanley, Two remarks on skew tableaux. Electron. J. Combin. 18(2011), no. 2, Paper $16,8$.
[Tha92] Michael Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles. J. Differential Geom. 35(1992), no. 1, 131-149. http://dx.doi.org/10.4310/jdg/1214447808
[Tha97] , An introduction to the topology of the moduli space of stable bundles on a Riemann surface. In: Geometry and physics. Lecture Notes in Pure and Appl. Math., 184. Dekker, New York, 1997, pp. 71-99.
[Wal60] C. T. C. Wall, Determination of the cobordism ring. Ann. of Math. (2) 72(1960), 292-311. http://dx.doi.org/10.2307/1970136
[Zag95] Don Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves. In: The moduli space of curves. Progr. Math., 129. Birkhäuser Boston, Boston, MA, 1995, pp. 533-563.
Simons Center for Geometry and Physics, SUNY, Stony Brook, NY 11794-3636, USA
e-mail: cscaduto@scgp.stonybrook.edu
Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
e-mail: mstoff@mit.edu

[^0]: Received by the editors August 23, 2017; revised September 29, 2017.
 Published electronically April 17, 2018.
 Author C. S. was supported by NSF grant DMS-1503100.
 AMS subject classification: 14D20, 57R58.
 Keywords: stable bundles, mod two cohomology, skew schur polynomial.

