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The Mod Two Cohomology of the Moduli
Space of Rank Two Stable Bundles on a
Surface and Skew Schur Polynomials

Christopher W. Scaduto andMatthew Stoòregen

Abstract. We compute cup-product pairings in the integral cohomology ring of the moduli space
of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier.
_e resulting formula is related to a generating function for certain skew Schur polynomials. As an
application, we compute the nilpotency degree of a distinguished degree two generator in themod
two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus,
and describe the subrings invariant under themapping-class group action.

1 Introduction

Let Σg be a closed, oriented surface of genus g, and let Ng be themoduli space of �at
SU(2) connections on Σg having holonomy −1 around a single puncture. _e space
Ng is a smooth symplectic manifold of dimension 6g − 6, and twice the class of its
symplectic form, denoted α, is a generator of H2(Ng ;Z). If Σg is given a complex
structure, then Ng can be identiûed with the moduli space of stable holomorphic
bundles of rank two with ûxed odd determinant.

_e betti numbers of Ng were ûrst computed by Newstead [New67]; Atiyah and
Bott [AB83] later showed that H∗(Ng ;Z) is torsion free. Newstead [New72] also
showed that the cohomology ring is generated by integral classes α, β,ψ1 , . . . ,ψ2g over
the rationals. Here β is degree 4, and each ψ i is degree 3. Newstead conjectured the
relation βg = 0, which _addeus [_a92] and Kirwan [Kir92] proved . A beautiful
presentation for the rational cohomology ring of Ng was established by several au-
thors [Bar94,KN98,ST95,Zag95] following the work of_addeus [_a92].

_e nilpotency degree of an element x in a ring is the smallest n ⩾ 1 such that xn = 0.
In the integral cohomology ring, the nilpotency degree of β is equal to g, while that
of α is equal to 3g − 4 = 1

2 dimNg + 1, since α is proportional to the symplectic form
class. _e situation is quite diòerent with Z2-coeõcients. First, themod 2 reduction
of α can be realized as w2(E) of an SO(3)-bundle E over Ng for which β = p1(E).
By the general relation w2(E)2 ≡ p1(E) mod 2, α2 ≡ β mod 2. In particular, β is a
redundant generator overZ2. Indeed, Atiyah and Bott [AB83] told us that to generate
the cohomology ring over the integers, we need the classes α, 1

4 (α
2 − β),ψ1 , . . . ,ψ2g

and additional classes δ1 , . . . , δ2g−1. Here δ i has degree 2i. We will see that we only
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need the mod 2 reductions of α,ψ1 , . . . ,ψ2g and δ2i for 2 ⩽ 2i ⩽ 2g − 1 in order to
generate H∗(Ng ;Z2).

_e moduli space Ng embeds into the moduli space Mg of projectively �at U(2)
connections on Σg of ûxed odd degree without ûxed determinant. _is is again a
smooth symplecticmanifold, now of dimension 8g−6. It has a corresponding degree
two class a1 ∈ H2(Mg ;Z) that restricts to α. _e nilpotency degrees of α and a1 with
Z2-coeõcients are as follows.

_eorem 1.1 _e nilpotency degree of α as viewed in H2(Ng ;Z2) is equal to g:

α g ≡ 0 (mod 2), α g−1 /≡ 0 (mod 2).

On the other hand, the nilpotency degree of a1 as viewed in H2(Mg ;Z2) is equal to 2g:

a2g
1 ≡ 0 (mod 2), a2g−1

1 /≡ 0 (mod 2).

To establish that α g is zeromod 2,we consider its cup product pairingswithmono-
mials in the generators listed above. _e pairing formula will be expressed as the ex-
traction of a coeõcient from a formal power series whose coeõcients are symmetric
functions. To state the result, it is convenient to introduce the rational cohomology
classes ξ i on Ng that satisfy

(1.1) ξ i =
i

∑
j=0

(
2g − 1 − j

i − j
)(−

α
2
)

i− j
δ j , δ i =

i

∑
j=0

(
2g − 1 − j

i − j
)(
α
2
)

i− j
ξ j .

More precisely, the le�-hand formula in (1.1) may be taken as the deûnition of ξ i , and
the right-hand formula is the induced inverse relation between the δ i and ξ i genera-
tors. Note that 2i ξ i is an integral cohomology class for Ng of degree 2i. Next, we let
e i denote the i-th elementary symmetric function, andmλ themonomial symmetric
function associated with a partition λ. Deûne U(T) = ∑n⩾0 m(2n 1)(−T)n as a power
series with coeõcients in the ring of symmetric functions. Here, the notation (2n1)
stands for the partition with 1 one and n two’s. Also deûne

Q(T) = e1 + e3T + e5T2 + e7T3 + ⋅ ⋅ ⋅ = ∑
n⩾0
e2n+1Tn .

Wewrite x[Ng] for the evaluation of a top-degree integral cohomology class x against
the fundamental class of Ng . _e following, along with (1.1), computes the pairings
δλ1δλ2 ⋅ ⋅ ⋅ δλk [Ng], and is themain technical result of the paper.

_eorem 1.2 Suppose λ = (λ1 , λ2 , . . . , λn) is a partition of 3g − 3. _en we have

ξλ1 ξλ2 ⋅ ⋅ ⋅ ξλn [Ng] =
1

2g−1 ⋅ Coeò
mλT g−1

[U(T)g/Q(T)].

We obtain a similar formula for pairings on Mg . Since δ1 is a non-zero multiple
of α, _eorem 1.2 can be used to compute pairings involving both powers of α and
δ i classes. In the sequel, we will also write down pairing formulas involving the ψ i
classes. _e proofs of these pairing formulas follow the computational framework
of Zagier [Zag95], whose starting point was _addeus’s formula for the intersection
pairings involving the Newstead classes α, β,ψ1 , . . . ,ψ2g .
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λ(n, 3)/λ(n, 0) λ(n, 2)/λ(n, 0)

Figure 1: _e skew tableaux deûning the skew Schur functions in 1/Q(T) and 1/E(T),
where n = 6.

As pointed out to the authors by IraGessel, up to some renormalizing, the recipro-
cal power series 1/Q(T) is a generating function for the skew Schur functions associ-
ated with a particular family of skew partitions. We brie�y explain this. Let λ(n,m)
be the partition (n, . . . , n, n − 1, n − 2, . . . , 2, 1), where n appears m times. Note that
λ(n, 0) = (n− 1, n−2, . . . , 2, 1). In general, if λ and µ are paritions, the skew partition
λ/µ is pictorially the result of drawing the Young tableau for λ and deleting the part
of the tableau given by µ. See Figure 1. To any skew tableau λ/µ there is deûned a
skew Schur-symmetric function sλ/µ . In Section 4.3 we will explain the identity

(1.2) 1/Q(T) = ∑
n⩾0
e−n−1
1 sλ(n ,3)/λ(n ,0)(−T)n .

As the power series U(T) is comparatively simple, we see that the complexity of
the cup-product pairings among the δ i classes comes from the skew Schur functions
sλ(n ,3)/λ(n ,0).

_eorem1.2 allows us to explicitly describe the ringH∗(Ng ;Z2) for low genus, and
we do this in Section 6. Ideally,wewould like to ûnd presentations for these rings that
are as nice as the recursive presentations for H∗(Ng ;Q) as found by [Bar94,KN98,
ST95,Zag95]. However, as our computations suggest, the situation for non-rational
coeõcients seems more complicated.

_emanifold Ng may be given a complex structure, and is in fact an example of a
smooth Fano variety. In particular, in place of the δ i above,we can consider the prod-
ucts of itsChern classes. Here another power series E(T)with coeõcients symmetric
functions appears:

E(T) = 1 + e2T + e4T2 + e6T3 + ⋅ ⋅ ⋅ = ∑
n⩾0
e2nTn .

_e analogue of (1.2) is the relation 1/E(T) = ∑n⩾0 sλ(n ,2)/λ(n ,0)(−T)n . We then have
the following, whose proof is very similar to the proof of_eorem 1.2.
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_eorem 1.3 Suppose λ = (λ1 , λ2 , . . . , λn) is a partition of 3g − 3. Set c i = c i(TNg).
_en

cλ1 cλ2 ⋅ ⋅ ⋅ cλn [Ng] = (−2)3g−3 ⋅ Coeò
mλT g−1

[U(T)g/Q(T)E(T)].

_is theorem has the following application. From [New72, §4], we know that the
total Pontryagin class of Ng is equal to (1 + β)2g−2. _e relation βg = 0 mentioned
above then implies that all Pontryagin numbers of Ng vanish. It is easy to see from
_eorem 1.3 that the Chern numbers ofNg are all even, and hence all Stiefel–Whitney
numbers of Ng vanish. A theorem of Wall [Wal60] says that two closed, oriented
manifolds are oriented-cobordant if and only if they have the same Pontryagin and
Stiefel–Whitney numbers. We then deduce the following, which we suspect was al-
ready known, but for which we could not ûnd a reference.

Corollary 1.4 _emanifold Ng is oriented null-cobordant.

Wemake a few historical remarks. _e classes δ i are Chern classes of the direct im-
age of a universal rank-two complex bundle over themoduli spaceNg . _eRiemann–
Roch formula gives expressions for itsChern classes in terms of themore basic classes
α, β,ψ j . _e direct image bundle has rank 2g − 1, and so the expressions one obtains
for Chern classes in degrees higher than 2g − 1 are relations in the cohomology ring.
Mumford is usually credited with conjecturing that these expressions, at least in the
case ofMg , form a complete set of relations [AB83, p. 582]. _iswas proved byKirwan
[Kir92]. _e beautiful recursive presentation for the rational cohomology ring found
later by [Bar94,KN98, ST95,Zag95] uses relations that are most naturally viewed as
Chern classes of a bundle over Ng induced by an embedding into a Grassmannian
[ST95, §1]. However, Zagier showed [Zag95, §6] that they can also be recovered from
the Chern classes of the direct image bundle. We mention that the relation α g ≡ 0
(mod 2) of _eorem 1.1 can actually be recovered from this recursive presentation,
but the authors did not see how α g−1 /≡ 0 (mod 2) and the other results presented here
follow from it.

_e work presented here is motivated by a problem in instanton homology with
mod two coeõcients, and in particular, the analogue of Muñoz’s work [Muñ99] in
characteristic two. _emod 2 instantonhomology of a surface times a circlewithnon-
trivial SO(3)-bundle should be a deformation of the ring H∗(Ng ;Z2), and should
agree with a version of the quantum cohomology of the symplecticmanifold Ng with
mod 2 coeõcients. We expect the nilpotency degree of α as viewed in this deforma-
tion, perhaps in the ring modulo the ψ i classes, to be related to homology cobordism
invariants deûned in unpublished work by Frøyshov using mod 2 instanton homol-
ogy. _e analogue in rational coeõcients is the nilpotency degree ⌈g/2⌉ of β mod γ
that appears in Frøyshov’s inequality [Fy04, _eorem 1] for his h-invariant. See also
the related paper [CS]. _e authors plan to return to thesemotivations in forthcoming
work.

In a spin-oò article, we will use the computations here to study themod two betti
numbers of the framedmoduli space, which is an SO(3) bundle over Ng . _ese betti
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numbers are determined by the ranks of themaps on H i(Ng ;Z2) given by cup-pro-
duct with the degree two class α.

1.1 Outline

Background is provided in Section 2, aswell as several useful results regarding gener-
ators for the cohomology rings ofNg andMg for diòerent coeõcient rings. In Section
3 we review_addeus’s pairing formula for theNewstead generators. In Section 4 we
prove _eorems 1.2 and 1.3 and discuss some of their implications, as well as the re-
lationship with skew Schur functions. In Section 5 we prove _eorem 1.1. Finally, in
Section 6we present computations obtained using_eorem 1.2, and describe themod
two cohomology rings of Ng for low genus.

2 Background and Generators

In this section we describe sets of generators for the cohomology rings of Ng andMg
for diòerent coeõcient rings. We also write down generators for the subring of the
cohomology of Ng invariant under the mapping class group action. As we proceed,
we will introduce some necessary background, but see [_a97] for a more proper
introduction. We take a moment to emphasize here an important point about our
notation regarding the generators δ i and d i introduced below. Singling out a handle
of the surface Σg induces embeddings ofNg−1 andMg−1 into Ng andMg , respectively.

Caution. _e restriction of δ i ∈ H2i(Ng ;Z) is not equal to δ i ∈ H2i(Ng−1;Z). Simi-
larly, the restriction of d i ∈ H2i(Mg ;Z) is not equal to d i ∈ H2i(Mg−1;Z).
For this reason, in the sequel we sometimes write δg , i and dg , i for δ i and d i , re-

spectively. Finally, we mention that the contents of this section are derived mostly
from Atiyah and Bott [AB83], with the help of some additional observations.

2.1 Integral Generators for the Cohomology of Mg

We begin by deûning the Atiyah–Bott generators for the ring H∗(Mg ;Z). Central to
the discussion is a universal rank-two holomorphic bundle Ug → Mg × Σg . _ere is
an ambiguity in the choice of this bundle: tensoring by any holomorphic line bundle
over Mg × Σg produces another, possibly non-isomorphic, universal bundle. Atiyah
and Bott ûxed their choice of universal bundle by starting with any universal Ug and
deûning the following normalized bundle:

Vg ∶= Ug ⊗ f ∗(det(Ug ∣Mg)
⊗g ⊗ det( f!Ug)).

Here and throughout, f denotes the projection from Mg × Σg onto Mg . _e notation
f!Ug denotes the direct image of Ug , which in our situation is a genuine holomor-
phic bundle of rank 2g − 1, with its ûber over y ∈ Mg equal to H0(Σg ;Ug ∣y). We re-
mind the reader of theGrothendieck–Riemann–Roch theorem in this setting: writing
ω ∈ H2(Σg ;Z) for the orientation class of the surface Σg , for any holomorphic vector
bundleW lying over Mg × Σg , we have

(2.1) ch( f!W) = f∗(ch(W)(1 − (g − 1)ω)).
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From this one can obtain expressions for the Chern classes c i( f!Vg) in terms of ex-
pressions for the Chern classes c i(Vg). Since Vg itself is rank two, the only non-zero
Chern classes are c1(Vg) and c2(Vg). _e ûrst of these can be written as

(2.2) c1(Vg) = a1 ⊗ 1 +
2g

∑
j=1
b j
1 ⊗ f j + (4g − 3)⊗ ω.

Here we are using the Künneth decomposition of H∗(Mg × Σg), and we have ûxed a
symplectic basis f1 , . . . , f2g of H1(Σg ;Z), such that, for 1 ⩽ i ⩽ g, we have f i f i+g = ω
and f i f j = 0 for j /= i + g. Next, the second Chern class can be written as

(2.3) c2(Vg) = a2 ⊗ 1 +
2g

∑
j=1
b j
2 ⊗ f j + ((2g − 1)a1 −

g

∑
j=1
b j
1b

j+g
1 ) ⊗ ω.

_e terms appearing in front of ω were computed in [AB83]. Other than these tail
terms, the expressions (2.2) and (2.3) implicitly deûne the elements

a1 ∈ H2(Mg ;Z), a2 ∈ H4(Mg ;Z), b j
1 ∈ H1(Mg ;Z), b j

2 ∈ H3(Mg ;Z),

in which 1 ⩽ j ⩽ 2g. Next, we use the direct image bundle to deûne the classes d i =
dg , i ∶= c i( f!Vg) ∈ H2i(Mg ;Z), for 1 ⩽ i ⩽ 2g − 1. We remark that the Riemann–Roch
formula (2.1) implies d1 = (g−1)a1,which can bewrittenmore explicitly as c1( f!Vg) =
(g − 1)c1(Vg ∣Mg). _is is brie�y explained below. As warned in the introduction to
this section, in contrast to the classes a1 , a2 , b j

1 , b
j
2, the restriction of dg , i to Mg−1 is

not equal to dg−1, i . _is is evident for d1, as just seen, andwill be clear more generally
from the formulas below. We now state the fundamental result due toAtiyah and Bott.

_eorem 2.1 ([AB83,_eorem9.11]) _e elements a1, a2, b j
1 , b

j
2 , d i generate the ring

H∗(Mg ;Z), where the indices run over 1 ⩽ j ⩽ 2g and 2 ⩽ i ⩽ 2g − 1.

Since d1 is an integral multiple of a1, it is in fact redundant. We can also show that
the generator a2 is redundant for certain coeõcient rings, as follows.

In principle, all the classes d i can be computed from the Riemann–Roch formula
(2.1) as rational expressions in the generators a1 , a2 , b j

1 , b
j
2. We will, essentially, ac-

complish this later using a computational framework set up by Zagier. As a basic
example, however, we consider the computation of d2. First, we remind the reader of
the ûrst few terms of the Chern character:

ch = rk+c1 + (
1
2
c21 − c2) + (

1
6
c31 −

1
2
c1c2 +

1
2
c3) + ⋅ ⋅ ⋅

688

https://doi.org/10.4153/CJM-2017-050-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-050-7


Mod Two Cohomology of theModuli Space of Rank Two Stable Bundles

Here ch is the Chern character of any complex vector bundle, rk is the rank, and c i
stands for the i-th Chern class. To begin using Riemann–Roch on our universal bun-
dleVg ,we ûrst note that the powers of c1(Vg) and c2(Vg) are straightforward to com-
pute:

c1(Vg)
n = an

1 ⊗ 1 + n
2g

∑
j=1
an−1
1 b j

1 ⊗ f j + (n(4g − 3)an−1
1 − n(n − 1)an−2

1 B1) ⊗ ω

c2(Vg)
n = an

2 ⊗ 1 + n
2g

∑
j=1
an−1
2 b j

2 ⊗ f j

+ (n(2g − 1)a1an−1
2 − nB1an−1

2 + n(n − 1)an−2
2 B2) ⊗ ω

Here we have set B i = ∑
g
j=1 b

j
ib

j+g
i for i = 1, 2. As the bundle Vg has rank two, we

know that all Chern classes c i(Vg) for i ⩾ 3 are zero. It is then a routine matter to
write out the ûrst few terms of ch(Vg) − (g − 1) ch(Vg) ⋅ 1 ⊗ ω, and then apply f∗,
which simply picks out the terms in this expression that factor out an ω. Setting this
equal to ch( f!Vg) = rk( f!Vg)+d1+

1
2d

2
1 −d2+⋅ ⋅ ⋅ , as (2.1) dictates, yields the equalities

rk( f!Vg) = 2g − 1 and d1 = (g − 1)a1, which werementioned above, and also

(2.4) d2 =
1
2
((g − 1)(g − 2)a2

1 + (2g − 1)a2 + a1B1 − B12) ,

where B12 = ∑
g
j=1 b

j
1b

j+g
2 − b j+g

1 b j
2. From this equation we see that a2, multiplied by

the number 2g−1 is equal to an integral expression in the generators a1, b j
1 , b

j
2, and d2.

Corollary 2.2 If m and 2g − 1 are coprime, then the residue classes of the elements
a1, b j

1 , b
j
2, d i generate the ring H∗(Mg ;Zm), where the indices run over 1 ⩽ j ⩽ 2g and

2 ⩽ i ⩽ 2g − 1.

Finally, we take amoment to mention an elementary, but important, point. Recall
that the cohomology ring of any space is a graded commutative ring. _is means that
ab = (−1)∣a∣∣b∣ba for any two homogeneously graded elements a, b in the ring, where
∣a∣ denotes the grading of a. When we take the tensor product of two such rings, the
product is the graded commutative product, given by

(a ⊗ b) ⋅ (c ⊗ d) = (−1)∣b∣∣c∣ac ⊗ bd .

_is is relevant in the above computations, all done in the context of a Künneth de-
composition, and the reader should be aware of this for the computations below.
When all elements involved areof even gradings, as iso�en the case, there is, of course,
no diòerence between this product and the ordinary product induced by tensor prod-
uct.

2.2 The Redundancy of Some Generators Over Zp

Here we explain why some of the d i are redundant generators when working over
the ûeld Zp for p prime. We begin by recalling where the Atiyah–Bott generators for
H∗(Mg ;Z) come from.
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Recall that Mg can be identiûed with themoduli space of projectively �at connec-
tions on a U(2)- bundle P over Σg with odd ûrst Chern class. Let G be the gauge
group consisting of bundle automorphisms of P, andwrite G for the quotient of G by
its constant central U(1)-subgroup. Further, write C for the aõne space of connec-
tions on P, andCss for stratumof projectively �at connections. From the holomorphic
viewpoint, this is the semi-stable stratum. Atiyah and Bott showed that there is an in-
duced surjection in equivariant cohomology H∗

G
(C ;Z)→ H∗

G
(Css;Z). Indeed, they

showed that theYang–Mills functional on C is equivariantly perfectMorse–Bott, and
Css is themanifold of absoluteminima. _e domain of thismap can be identiûedwith
the ordinary cohomology of the classifying space BG and the codomain with that of
Mg . _ey then obtain the generators for the cohomology of Mg from generators for
that of BG . _e generators for the cohomology of BG are obtained via the homolog-
ical triviality of the following three ûbrations:

ΩU(2) // BG #

��

BG # // BG

��

BU(1) // BG

��
U(2)2g BU(2) BG

We havewrittenG # for the based gauge group andΩU(2) for the identity component
of the based loop space of U(2). _e classes a1 and a2 come from generators for the
cohomology of BU(2), while b j

1 and b
j
2 correspond to generators of the j-th factor

of U(2) inside the product U(2)2g . _e generators d i are replaceable by generators
e i that can be traced back to generators for the cohomology of ΩU(2). See [AB83,
Proposition 2.20] for more details.

Recalling that the loop space of a circle is homotopy equivalent to a countable set
of points, and that U(2) is topologically a circle times a 3-sphere, we conclude that
the based loop space of U(2) is homotopy equivalent to Z × ΩS3, and in particular
ΩU(2) can be identiûed with the loop space of the 3-sphere. Now, the cohomology
ring of ΩS3 is well known to be isomorphic to a divided polynomial algebra. Recall
[Hat02] that the divided polynomial algebra ΓZ[x] at level n, for some even integer n =

deg(x1), is a ring with generators x i , for i ⩾ 1 with deg(x i) = ni, such that xk
1 = k!xk .

Consequently, x ix j = (i+ j
i )x i+ j . Note that as a rational algebra, ΓZ[x]⊗Q is generated

by x1. _e cohomology ring of ΩS3 is isomorphic to ΓZ[x] with deg(x1) = 2.
For a prime number p, the divided polynomial algebra ΓZp[x] over the ûeld Zp

does not need nearly as many generators. In fact, see for example [AB83, Proposi-
tion 2.20], we have an isomorphism ΓZp[x] ≅ ⊗i⩾0 Zp[xp i ]/(x p

p i ). Since the li�s of
the generators d i in the cohomology of BG as in [AB83] come from generators for
the cohomology of ΩU(2) via the homological triviality of the above ûbrations, over
Zp one only needs themod p residue classes of the generators dp i .

Corollary 2.3 If p is prime, then the residue classes of the elements a1, a2, b j
1 , b

j
2, dp i

generate the ring H∗(Mg ;Zp),where the indices run over 1 ⩽ j ⩽ 2g and 2 ⩽ pi ⩽ 2g−1.
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2.3 Integral Generators for the Cohomology of Ng

We now proceed to the generators of the ûxed determinant moduli space Ng . Using
the Künneth decomposition of H∗(Ng × Σg), we implicitly deûne

α ∈ H2(Ng ;Z), ψ j ∈ H3(Ng ;Z), β ∈ H4(Ng ;Z),

in which 1 ⩽ j ⩽ 2g, by the following Chern class expression, with constants arranged
to follow the standard conventions in the literature:

(2.5) c2(End(Vg)∣Ng×Σg) = −β ⊗ 1 + 4
2g

∑
j=1

ψ j ⊗ f j + 2α ⊗ ω.

We will shortly relate these classes to the generators of Mg mentioned thus far. For
thiswewill use the embedding ι∶Ng → Mg . Itwill be useful for the sequel to consider
how the intersection pairings for Ng and Mg are related, and for this wemake use of
a 4g-fold covering map

(2.6) p∶Ng × Jg
4g ∶1
ÐÐ→ Mg ,

in which Jg is the Jacobian torus of Σg . More precisely, Mg is the quotient of Ng × Jg
by a free Z2g

2 -action. _e Jacobian is themoduli space of the �at U(1) connection on
Σg , and this covering is deûned by tensoring the connection classes in Ng and Jg .

_emap p induces an isomorphism in rational cohomology [AB83, §9]. _is can
be deduced from the fact that the relevantZ2g

2 -action on H∗(Ng× Jg ;Q) is trivial. We
now write down the eòect of p∗ on some of the generators that we have introduced
thus far. Let θ j ∈ H1(Jg ;Z) be the generator corresponding to f j ∈ H1(Σg ;Z).

Proposition 2.4 _e homomorphism p∗∶H∗(Mg ;Z) → H∗(Ng ;Z) ⊗ H∗(Jg ;Z) is
given by

p∗(a1) = α ⊗ 1 + 1⊗ 4Θ, p∗(a2) =
1
4
(p∗(a1)2 − β ⊗ 1),

p∗(b j
1) = 1⊗ 2θ j , p∗(b j

2) = ψ j ⊗ 1 + p∗(a1) ⋅ (1⊗ θ j),

in which Θ = ∑
g
j=1 θ jθ j+g .

Proof _e proof of this proposition ismore or less implicit [AB83, p. 585];we brie�y
sketch the argument. We ûrst recall the identity c2(End(W)) = 4c2(W) − c1(W)2

for any rank two bundleW . Letting ι∶Ng → Mg denote the inclusion map, we then
equate the terms of (2.5) with ι∗ applied to the expression 4c2(Vg) − c1(Vg)

2 formed
by (2.2) and (2.3) to obtain

(2.7) ι∗(a1 − B1) = α, ι∗(b j
2 − a1b

j
1/2) = ψ j , ι∗(a2

1 − 4a2) = β.
Next, observe that the endomorphism bundle of Vg is acted on trivially by Jg , and
that the restriction of p to Ng is equal to ι. _ese observations imply the equations
obtained from (2.7) by replacing each ι∗ with p∗, and replacing α with α ⊗ 1, and
similarly for ψ j and β. Otherwise stated, the pullback of Vg via the map p factors
through ι. _e relations of the resulting equations determine the proposition, except
for the fact that p∗(b j

1) = 1⊗2θ j . _is last point has only to dowith how the 1-skeleton
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of Ng × Jg is mapped to Mg under p,which, at least up to sign, is transparent from the
covering structure: each loop upstairs double covers a loop downstairs. To be more
precise,wenote thatVg pullsback and restrictsover Jg×Σg to the bundleU⊗2

J inwhich
UJ is a universal bundle over Jg ×Σg . One can then compute that c1(UJ) = ∑ θ j ⊗ f j ,
see for example [FL01, Lemma 2.23], which in turn implies p∗(b j

1) = 1⊗ 2θ j .

Observe that this proposition completely determines themap p∗, since the gener-
ators under consideration rationally generate the cohomology ring of Mg . From the
above computation, we gather that the homomorphism ι∗∶H∗(Mg ;Z)→ H∗(Ng ;Z)
is determined as follows:

ι∗(a1) = α, ι∗(a2) = (α2 − β)/4, ι∗(b j
1) = 0, ι∗(b j

2) = ψ j .

Now, with an eye towards producing generators for the integral cohomology ring of
Ng ,we deûne the δ i from the introduction to be the restrictions of the classes d i from
Mg so that δ i = δg , i ∶= ι∗(d i) = c i( f!Vg ∣Ng).

Proposition 2.5 _e elements α, 1
4 (α

2−β),ψ j , δ i generate the ring H∗(Ng ;Z),where
the indices run over 1 ⩽ j ⩽ 2g and 2 ⩽ i ⩽ 2g − 1.

Proof Since these classes are the images of the generators for Mg under ι∗, it suõces
to show that ι∗ is onto. For thiswe consider themap Mg → Jg that sends a connection
class to its determinant connection class. _is is a ûbrationwith ûbers homeomorphic
to Ng . _e Leray–Serre spectral sequence for this ûbration collapses at the E2-page,
since any non-trivial diòerentials, or non-trivial local-coeõcient systems, are ruled
out by the fact that the cohomologies of Mg and Ng × Jg are torsion-free and of the
same rank. _e collapsing at E2 then implies that the restriction map from the coho-
mology of Mg to that of Ng is surjective.

Corollary 2.6 If p is prime, then the residue classes of the elements α, 1
4 (α

2 − β),
ψ j , and δp i generate the ring H∗(Ng ;Zp), where 1 ⩽ j ⩽ 2g and 2 ⩽ pi ⩽ 2g − 1. If
p ∤ 2g − 1, then 1

4 (α
2 − β) is redundant.

2.4 Twisting by a Line Bundle to Define z i and ξ i

We now describe how the generators d i and δ i can be replaced with generators ob-
tained from twisting by a line bundle, and then we deûne the classes z i and ξ i .

_e elements d i were deûned as the Chern classes c i( f!Vg) in which the universal
bundle Vg is normalized such that c1( f!Vg) = (g − 1)c1(Vg ∣Mg), i.e., d1 = (g − 1)a1.
However,_eorem 2.1 as stated byAtiyah and Bott holds for any normalization of Vg .
In particular, if we consider the universal bundle, which is Vg twisted by a power of
the pull-back of det(Vg ∣Mg), i.e., the bundle

(2.8) Vg ⊗ f ∗ det(Vg ∣Mg)
⊗n ,

then the Chern classes of its direct image will, along with a1, a2, b j
1 , b

j
2, still generate

the integral cohomology ring ofMg . When we consider the direct image of (2.8) un-
der the projection f , it is useful tomention that in general f!(W⊗ f ∗L) is isomorphic
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to f!W ⊗ L. Here we recall the Chern class formula for tensoring a vector bundleW
of rank r by a line bundle L:

(2.9) c i(W ⊗ L) =
i

∑
j=0

(
r − j
i − j

)c1(L)i− jc j(W).

_is tells us how the generators d i transform a�er twisting by a line bundle: upon
setting W = f!Vg and L = det(Vg ∣Mg), the above formula has r = 2g − 1, c j(W) = d j ,
and c1(L) = (2n − 1)a1. Although setting n = −1/2 does not transform the d i to
integral generators, it is a case of particular computational interest to us, and so we
deûne the transformed generators

z i ∶= c i( f!Vg ⊗ det(Vg ∣Mg)
−1/2), ξ i ∶= c i( f!Vg ⊗ det(Vg ∣Mg)

−1/2).

Of course, the bundles here are not actual vector bundles, but z i and ξ i can be deûned
in terms of d i and δ i using (2.9). Alternatively, one can think of the bundles that
appear in the setting of rational K-theory. _e class 2iz i (resp. 2i ξ i) is in the integral
cohomology of Mg (resp. Ng). _e formula (2.9) relating δ i with ξ i is what appears
in the introduction as (1.1), and a similar formula holds replacing ξ i with z i , δ i with
d i , and α with a1. Note ξ1 = −α/2 and z1 = −a1/2. For the same reason as for d i and
δ i , the classes z i and ξ i may sometimes be written zg , i and ξg , i .
Finally,wemention that ifwe areworking over the coeõcient ringZm withm odd,

then ξ i can be deûned as an honest class in H2i(Ng ;Zm) by interpreting 1/2 in the
above formulas as themod m inverse of 2. A similar remark holds for the classes z i .

Proposition 2.7 If m is odd, to generate the ring H∗(Ng ;Zm), we can replace the δ i
generators by the ξ i classes as interpreted above. Similarly, to generate H∗(Mg ;Zm),
we can replace d i by z i .

2.5 Generators for the Invariant Subring of Ng

_emapping class group of Σg acts on themoduli space Ng in a naturalway. _e sub-
group of themapping class group that acts trivially on the homology of Σg , called the
Torelli group, acts trivially on H∗(Ng ;Z). _us the action of themapping class group
on H∗(Ng ;Z) descends to an action of the quotient group, which is Sp(H1(Σg ;Z)).
Having previously chosen a symplectic basis for the ûrst cohomology group of Σg ,we
can identify this as an action of Sp(2g ,Z).

_e classes α and β are invariant under this action,while the classes ψ j behave un-
der the action as does a standard symplectic basis. It is conventional to deûne the de-
gree 6 element γ ∶= −2∑g

j=1 γ j ∈ H6(Ng ;Z), where γ j ∶= ψ jψ j+g , for then α, β, γ gen-
erate the invariant ring over the rationals. _is is a basic exercise in Sp(2g ,Z)-repre-
sentation theory: the free graded-commutative algebra generated by the ψ j has its
invariant ring over the rationals generated by γ. Over the integers, however, the in-
variant ring is a divided polynomial algebra ΓZ[υ], in which we deûne υk for k ⩾ 1
as

υk ∶= ∑
i1<⋅⋅⋅<ik

γ i1 ⋅ ⋅ ⋅ γ ik =
γk

2kk!
.
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We learned earlier that when working over the ûeld Zp for p prime, one only needs
the generators υp i . Note that υk = 0 for k ⩾ g for degree reasons. _e classes δ i aswell
as ξ i are invariant under the action for the same reasons as are α and β; alternatively,
wewill later see explicit expressions for these classes as rational polynomials in α, β, γ.

Proposition 2.8 (i) _e Sp(2g ,Z)-invariant subring ofH∗(Ng ;Z) is generated by
α, 1

4 (α
2 − β), δ i , υk , where the indices run over 2 ⩽ i ⩽ 2g − 1 and 1 ⩽ k < g.

(ii) For p prime, the Sp(2g ,Z)-invariant subring of H∗(Ng ;Zp) is generated by α,
1
4 (α

2 − β), δp i , υpk , where the indices run over 2 ⩽ pi ⩽ 2g − 1 and 1 ⩽ pk < g.

As seen earlier, if in (ii) we have p ∤ 2g − 1, then (α2 − β)/4 is redundant. Fur-
thermore, if p is odd, then the δ i generators can be replaced by the ξ i just as in the
previous subsection. A similar proposition may be cra�ed for the invariant subring
of Mg , for which one has the classes b j

1 and b
j
2 instead of just the ψ j , but we will not

pursue this.

3 The Intersection Pairings for Newstead Classes

_e computational framework of Zagier [Zag95] that we use to prove _eorem 1.2
is derived from intersection pairing formulas of_addeus [_a92] for monomials in
α, β,ψ j . We will not work directly with these formulas, but will need some of their
properties for later.

Recall that dimNg = 6g − 6 and deg(α) = 2 and deg(β) = 4. _addeus computed

(3.1) α iβ j[Ng] = (−1)g i!
(i − g + 1)!

22g−2(2i−g+1 − 2)B i−g+1

whenever i + 2 j = 3g − 3, where Bn is the n-th Bernoulli number, and should not be
confused with the elements B1 and B2 deûned earlier. _is formula is the most fun-
damental; the inclusion of the ψ j terms is handled with the following genus recursive
property. For any subset K ⊂ {1, . . . , g} with cardinality ∣K∣ = k, and any j ⩾ 0 such
that i + 3k + 2 j = 3g − 3, we have

(3.2) α iβ j
∏
ℓ∈K

ψℓψℓ+g[Ng] = ±α iβ j[Ng−k].

_e sign, which is (−1)∣K∣, is not important for us. To prove (3.2), _addeus showed
thatψ jψ j+g isPoincaré-dual to thehomology classof an appropriately embeddedNg−1
inside Ng . _addeus further showed that if a subset K ⊂ {1, . . . , 2g} is such that
K /= K + g, then any pairing α iβ j∏ℓ∈K ψℓ[Ng] vanishes. Here K + g is the set of
elements k + g, where k ∈ K in which addition is understoodmod 2g.

We now derive some similar properties for the intersection pairings of the larger
moduli spaceMg . _e pairings in H∗(Mg ;Z) can be understood in terms of those in
Ng using the covering (2.6) from Ng × Jg down to Mg : if x ∈ H8g−6(Mg ;Z) is a top
degree element, then

(3.3) x[Mg] =
1
4g (p

∗(x)/Ωg)[Ng],
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where we have taken the slant-product with Ωg ∈ H2g(Jg ;Z), the orientation class
of the Jacobian Jg . _e factor of 1

4g appears because p is a 4g-fold covering. From
Proposition 2.4 and (3.1) we compute

(3.4) a4g−3
1 [Mg] =

(4g − 3)!
(2g − 2)!

22g−2(22g−2 − 2)∣B2g−2∣.

Indeed, this is the result of expanding (α⊗ 1+4⊗Θ)4g−3/4g , taking the slant product
withΩg ,which picks out the term in front ofΘg/g!, and evaluating against [Ng]. One
can similarly use Proposition 2.4 and (3.1) to compute intersection pairings in Mg for
monomials in a1 , a2. Next, we have the following analogue for Mg of the vanishing
property for the ψ j classes.

Proposition 3.1 Suppose J1 and J2 are subsets of {1, . . . , 2g}, and that x ∈ H∗(Mg ;Z)
is an element invariant under the Sp(2g ,Z)-action. _en with I i = J i ∩ (J i + g) for
i = 1, 2 we have

J1 ∖ I1 /= (J2 ∖ I2) + g Ô⇒ x ∏
j∈J1
b j
1 ∏

j∈J2
b j
2[Mg] = 0.

Proof We adapt _addeus’s argument [_a92], and use that Sp(2g ,Z) acts in the
same standard way on {b j

1} and {b j
2}. First, suppose k ∈ J1 ∖ I1 and either k, k + g are

both in J2 or both are not contained in J2. Take an orientation-preserving diòeomor-
phism f of Σg such that the induced action f ∗ onH∗(Mg ;Z) ûxes b j

i for j ∉ {k, k+g}
while f ∗bk

i = −bk
i and f ∗b

k+g
i = −bk+g

i . _en

x ∏
j∈J1
b j
1 ∏

j∈J2
b j
2[Mg] = x ∏

j∈J1
f ∗b j

1 ∏
j∈J2

f ∗b j
2[Mg],

where we have used invariance of the pairing. _e right side, by our choice of f ∗ and
our hypothesis on k ∈ J1, is equal to minus the le� side, forcing the pairing to be zero.
_e remaining case is when k ∈ (J1 ∖ I1) ∩ (J2 ∖ I2). Note p∗(bk

1 bk
2) = 2ψk ⊗ θk .

_e vanishing then follows via (3.3) from the vanishing condition for the ψk , since
the only way to produce ψk+g via p∗ is to include bk+g

2 .

We can also derive an analogue of (3.2) for Mg using Proposition 2.4 and formula
(3.3):

(3.5) x b j
1b

j+g
1 b j

2b
j+g
2 [Mg] = ±i∗x[Mg−1]

Here x is any element of H∗(Mg ;Z), and i is the embedding of Mg−1 into Mg corre-
sponding to collapsing the j-th handle of Σg .

4 The Computation of Integral Intersection Pairings

Here we present the main computation of the paper: we prove a generalization of
_eorem 1.2 and its analogue for Mg . _e proofs rely on the work of Zagier [Zag95].
Wewill use very basic symmetric function theory, background forwhich can be found
in Appendix A.
First, some convenient notation. Let E be a complex vector bundle over an ori-

ented, closed manifold M with dimM even. For later use, we deûne the Chern class
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polynomial c(E)x to be c(E)x = ∑i⩾0 c i(E)x i ∈ H∗(M;Z)[x]. For a partition λ =
(λ1 , . . . , λk), we write cλ(E) for the product cλ1(E) ⋅ ⋅ ⋅ cλk(E). We deûne the Chern
number polynomial of the vector bundle E, written CN(E), by the formula CN(E) =
∑λ cλ(E)[M] ⋅mλ inwhich the sum is over all partitions λ. Heremλ is themonomial
symmetric function associated with λ. _e only partitions λ contributing nonzero
terms are those with ∣λ∣ = dim(M)/2. _us the Chern number polynomial is a sym-
metric function in the variables x1 , x2 , . . . that is homogeneous of degree dim(M)/2.
It records all of the Chern numbers of the bundle E over M.

In addition to Q(T) and U(T) from the introduction, deûne the following for-
mal power series in the variable T whose coeõcients are in the ring Λ of symmetric
functions with integer coeõcients:

R(T) =∑
i⩾0

(−1)im(2i)T i , P(T) =∑
i⩾0

(−1)i (2m(2i 12) + (i + 1)
2 m(2i+1))T i .

Now, recall that for k ⩽ g, we have an embedding of the lower genus moduli space
Mk into Mg , and similarly of Nk into Ng . _e particular choice of embedding is not
important.

_eorem 4.1 Let Zg = f!Vg⊗det(Vg ∣Mg)
−1/2 be the virtual bundlewith c i(Zg) = z i .

For g ⩾ k ⩾ 1,

CN(Zg ∣Mk) =
(−1)k

22k−1 ⋅Coeò
T k−1

[P(T)kR(T)g−kQ(T)−1],(4.1)

CN(Zg ∣Nk) =
1

2k−1 ⋅Coeò
T k−1

[U(T)kR(T)g−kQ(T)−1].(4.2)

Recall from the introduction that 1/Q(T) does not quite have coeõcients in the
ring Λ of symmetric functions: its coeõcient in front of T i has a factor of 1/e i+1

1 .
However, since the constant coeõcients of R(T) and P(T) are, respectively, 1 and e21 ,
the formal power series inside the brackets of (4.1) has Λ coeõcients in front of T i

for 0 ⩽ i ⩽ k − 1. A similar remark holds for (4.2).
Before proceeding to the proof, we explain how this theorem completely deter-

mines all of the integral intersection pairings in the cohomology ring of Ng , andmost
of the pairings for that of Mg . First of all, from the deûnitions, the le�-hand side of
(4.2) is equal to

(4.3) ∑
λ
ξg ,λ1 ξg ,λ2 ⋅ ⋅ ⋅ ξg ,λn [Nk] ⋅mλ ,

and so when g = k, we obtain _eorem 1.2. In this expression, we con�ate ξg , i
with its restriction to Nk . On the other hand, as explained in Section 3, the pair-
ing ξg ,λ1 ⋅ ⋅ ⋅ ξg ,λn [Nk] is equal to ξg ,λ1 ⋅ ⋅ ⋅ ξg ,λn ∏ j∈J ψ jψ j+g[Ng] for any subset J ⊂

{1, . . . , g}with ∣J∣ = g−k. With (1.1), this determines all pairings onNg formonomials
involving the classes δ i and ψ j . Since α = δ1/(g − 1) and (α2 − β)/4 can be written in
terms of α and δ2 by restricting (2.4) to Ng ,we get all pairings inmonomials involving
all the integral generators for the cohomology of Ng in Proposition 2.5.

_e situation for Mg is quite similar, except certain pairings, such as

b j
1b

j+g
2 zλ1 ⋅ ⋅ ⋅ zλn [Mg],
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are not covered by (3.5) in conjunction with (4.1), and are not shown to vanish by
(3.1). For the proof of_eorem 1.1 later, we will handle these pairings in a less direct
way.

Proof of_eorem 4.1 We ûrst prove (4.1). We will perform the computation by
passing from Mk to the covering space Nk × Jk via (2.6). Deûne the product of Chern
polynomials F(x1 , x2 , . . .) ∶= ∏ℓ⩾1 p∗c(Zg)−2xℓ , where p∗Zg is the pulled back bun-
dle over Nk × Jk . From the pairing formula (3.3), and keeping note of the factors of
−2 in the variables of the Chern polynomials, we have

(F(x1 , x2 , . . .)/Ωk)[Nk] = (−2)4k−3 ⋅ CN(p∗(Zg ∣Mk)) = (−2)4k−34k ⋅ CN(Zg ∣Mk).

As usual, the factor 4k accounts for the number of sheets of the covering p. On the
other hand, we can give an explicit formula for the product of Chern polynomials.
Henceforth, we will write β instead of β ⊗ 1, and so on, omitting the tensor nota-
tion from elements in the Künneth decomposed cohomology H∗(Nk × Jk ;Q). _en,
according to Zagier [Zag95, Equation 29],
(4.4)

p∗c(Zg)−2x = (1 − βx2)g−1/2(
1 +

√
βx

1 −
√
βx

)

γ∗/2β
√
β

exp(
4Θx + 4Ξx2 − 2γx/β

1 − βx2 ) ,

inwhich Ξ = ∑
i
j=0 ψ j⊗ θ j+g −ψ j+g ⊗ θ j and γ∗ = 2γ+αβ. Zagier actually considered

the direct image of a universal bundle over Nk× Jk , rather than taking the direct image
on Mk and then pulling back. _is is why (4.4) has 4 in front of Θ and Ξ. We then
compute the product to be

(4.5) F(x1 , x2 , . . .) = ug−1/2
0 exp((u3 − u1)γ∗/β + u1α + 4u1Θ + 4u2Ξ) ,

with the terms um = um(β) for 0 ⩽ m ⩽ 3, which are formal power series in β with
coeõcients that are symmetric polynomials in the variables xℓ , deûned as follows:

u0 ∶=∏
ℓ⩾1

(1 − βx2
ℓ), u1 ∶=∑

ℓ⩾1

xℓ
1 − βx2

ℓ
,

u2 ∶=∑
ℓ⩾1

x2
ℓ

1 − βx2
ℓ
, u3 ∶=∑

ℓ⩾1
tanh−1(xℓ

√
β)/

√
β

To take the slant product of F(x1 , x2 , . . .)with Ωg , we use the following fact, which is
provided by a slight restatement of [Zag95, Corollary to Lemma 3]:

exp(Θκ + Ξν)/Ωk = κk exp(ν2γ/2κ).

Applying this to the expression 4.5, we obtain the expression
(4.6)
F(x1 , x2 , . . .)/Ωk = 4kuk

1 u
g−1/2
0 exp(((u3 − u1)/β + u2

2/u1)γ∗ + (u1 − βu2
2/u1)α) .

We are now in a position to use the following result of Zagier.
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Lemma 4.2 ([Zag95, Proposition 3]) Let f , h, u,w be power series in one variable,
h(0)u(0) /= 0. _en

(4.7) ∑
i⩾1

( f (β)h(β)i ew(β)γ
∗+u(β)α)[N i](−

1
4T)

i−1

=

√
β f (β)M′(T)

sinh(
√
β(u(β) + βw(β)))

∣
β=M(T)

,

whereM(T) is the power series deûned by M−1(β) = β/u(β)h(β).

We apply this in such a way as to avoid taking any functional inverses, i.e., such
that M(T) = T . _is is equivalent to choosing h = 1/u. With this in mind, apply the
lemma to (4.6) with

w = (u3 − u1)/β + u2
2/u1 , u = u1 − βu2

2/u1 , f = 4kuk
1 u

g−1/2
0 uk , h = 1/u.

Now note that u+βw = u3. Henceforth β = T . _us the denominator in (4.7) is equal
to

(4.8) sinh(∑
ℓ⩾1

tanh−1(xℓ
√

T)) =
1
2
∏
ℓ⩾1

(
1 + xℓ

√
T

1 − xℓ
√

T
)

1/2

−
1
2
∏
ℓ⩾1

(
1 − xℓ

√
T

1 + xℓ
√

T
)

1/2

.

A�er taking common denominators, with a bit of manipulation we see that (4.8) is
equal to

u0(T)−1/2 ⋅ ∑
J⊂{1,2, . . .}
∣J∣ odd

√
T
∣J∣
∏
ℓ∈J

xℓ = R(T)−1/2√T ⋅ Q(T),

where Q(T) is deûned above, and we have observed that R(T) = u0(T). _us the
right-hand side of (4.7) can be identiûed as the power series in T with coeõcients in
Λ given by 4kRg(u2

1 − Tu2
2)

k/Q, where R = R(T), and so forth. _e remaining step
is to show that R(u2

1 − Tu2
2) = P. Indeed, this implies that the above expression is

equal to 4kPkRg−k/Q, from which the proposition is proved by taking the coeõcient
of T k−1 on both sides of (4.7). To show R(u2

1 − Tu2
2) = P, we ûrst observe that

u1 ±
√

Tu2 =∑
ℓ⩾1

xℓ ±
√

Tx2
ℓ

1 − Tx2
ℓ

=∑
ℓ⩾1

xℓ
1 ∓

√
Txℓ

.

Now, set u±0 =∏ℓ⩾1(1±
√

Txℓ), so that u0 = u+0u−0 . _en u0(u2
1 −Tu2

2) is the prod-
uct of u+0 (u1 −

√
Tu2) and u−0 (u1 +

√
Tu2), and treating these two factors separately

leads to the expression

u0(u2
1 − Tu2

2) = (∑
ℓ⩾1

xℓ ∏
ℓ/=k⩾1

(1 +
√

Txk))(∑
m⩾1

xm ∏
m/=n⩾1

(1 −
√

Txn)) .

We can thenmultiply the two terms on the right to get the following, noting along the
way that the coeõcients in front of odd powers of

√
T are zero, as expected:

(4.9) u0(u2
1 −Tu2

2) =∑
ℓ⩾1

x2
ℓ ∏
ℓ/=k⩾1

(1−Tx2
k)+2 ∑

ℓ>m⩾1
xℓxm(1−Txℓxm) ∏

j⩾1
j/=m ,ℓ

(1−Tx2
j ).
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Now we identify the monomials in the variables xℓ that appear in (4.9), in order the
rewrite it in terms ofmonomial symmetric functions. In the ûrst sumon the right side
of (4.9), the only monomials are of the form x2

r1x
2
r2 ⋅ ⋅ ⋅ x

2
r i . _ese are the monomials

that appear inmλ forwhich λ = (2i) is thepartitionwith i parts all equal to 2. For each
set of distinct indices r1 , . . . , r i , there are i instances of themonomial x2

r1x
2
r2 ⋅ ⋅ ⋅ x

2
r i in

the sum under consideration, one for each time ℓ = r j , where j = 1, . . . , i. In other
words, taking into account the signs, and keeping track of powers of T , we deduce
that

∑
ℓ⩾1

x2
ℓ ∏
ℓ/=k⩾1

(1 − Tx2
k) =∑

i⩾0
(−1)i(i + 1)m(2i+1)T i .

Nowwe consider the second sumon the right side of (4.9), inwhichwe can count two
kinds of monomials: those of the form xℓxmx2

r1 ⋅ ⋅ ⋅ x
2
r i , which belong to the partition

(2i12), and those of the form x2
r1x

2
r2 ⋅ ⋅ ⋅ x

2
r i , which belong, as before, to the partition

(2i). _e ûrst kind are easy to count; apart from signs, there is exactly one. For
the second kind, ignoring signs and powers of T , note that, a�er expanding for any
distinct indices r1 , . . . , r i , we get ( i

2)many instances of themonomial x2
r1x

2
r2 ⋅ ⋅ ⋅ x

2
r i for

the diòerent possibilities of choosing which indices among the r j are ℓ and m. _us

2 ∑
ℓ>m⩾1

xℓxm(1 − Txℓxm) ∏
j⩾1

j/=m ,ℓ

(1 − Tx2
j ) = 2∑

i⩾0
(−1)i(m(2i 12) + (

i + 1
2

)m(2i+1))T i ,

inwhichwe interpret (1
2) = 0. Now, adding these two expressions involvingmonomial

symmetric functions as in the right side of (4.9) easily leads to the expression that
deûnes P(T). _is completes the proof of (4.1).

_e computation of (4.2) is quite similar. First,CN(Zg ∣Ng) is the restriction of (4.5)
from Nk × Jk to the factor Nk , which simply sets Θ and ξ to zero, evaluated against
[Nk]. We then apply (4.7) to compute this evaluation by setting w = (u3 − u1)/β,
u = u1, f = ug−1/2

0 uk , and h = 1/u. _e computation proceeds just as above, but
is simpler. We obtain that CN(Zg ∣Ng) is 1/2g−1 times the coeõcient of T k−1 of the
expression ug

0uk
1 /Q, and it is straightforward to identify u0u1 = U .

We showed in the proof that in expression (4.1), PkRg−k/Q = 4kug
0(u2

1 −Tu2
2)

k/Q,
and similarly, in expression (4.2), U kRg−k/Q = ug

0uk
1 /Q. Note from the deûnitions

that u1(T) = ∑i⩾0 p2i+1T i , and u2(T) = ∑i⩾0 p2i+2T i in which pn is the n-th power
sum symmetric function. We also mention that an expression for P(T) in terms of
elementary symmetric polynomial is

P(T) = ∑
n⩾0

(−1)n( ê2n+1 − 2
n−1

∑
i=0

(−1)i ên−i ên+2+i)Tn ,

where we have deûned êk = kek . We will not use this, and we leave its veriûcation to
the reader.

We also mention a generalization of (4.1) that incorporates the classes b j
1 into the

pairings. _e proof is a modiûcation of the proof for _eorem 4.1, and so we only
brie�y sketch it. _e goal is to ûnd a formula for a power series in T whose coef-
ûcients are in Λ[t], and such that the coeõcient of mλ t jT k−1 is the pairing of the
monomial zg ,λ1 ⋅ ⋅ ⋅ zg ,λnB

j
1 against [Mk]. To achieve this, since p∗(B1) = 4Θ, within
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the exponential of (4.5) we add the term 4Θt. We then proceed with the compu-
tation as before, and at the end, the extraction of the coeõcient in front of t jT k−1

suitably normalized gives the pairings we want. Next, we observe that B j
1 is the sum

of∏i∈J b i
1b

i+g
1 with ∣J∣ = j. _e pairing for each term in this productwith zg ,λ1 ⋅ ⋅ ⋅ zg ,λn

against [Mk] is the same, by Sp(2g ,Z)-invariance. _is allows us to write the result
in terms of the classes b j

1 .

Proposition 4.3 For g ⩾ k ⩾ 1, J ⊂ {1, . . . , g}, j = ∣J∣, and λ a partition with
∣λ∣ = 4k − 3 + j, we have

zg ,λ1 ⋅ ⋅ ⋅ zg ,λm ∏
i∈J
b i
1b

i+g
1 [Mk]

=
(−1)k

22k−1 (
j
k
) ⋅ Coeò

mλT k−1
[R(T)g+k−2 jU(T) jP(T) j−kQ(T)−1].

We can go further and try to incorporate the classes b j
2. For this we can use the

samemethod sketched above, but instead of only adding one formal variable t to keep
track of thepowers of B1 in thepairings,we add three variables to record separately the
powers of B1, B2, and B12. However, it is not clear that pairings between zg ,λ1 ⋅ ⋅ ⋅ zg ,λn

and a general monomial in the classes b j
1 and b

j
2 can be extracted from this data.

4.1 Extracting Pairings via Specializations

Before proving _eorem 1.3, we digress and show how to recover formula (3.4) from
_eorem 4.1. We then compute some other pairings in a similar way.

We use thewell-knownmethod of specializations in the theory of symmetric func-
tions. _ere is a ring homomorphism, ex∶Λ → Q from the ring of symmetric func-
tions to the rationals, characterized, for example, by its evaluation on the monomial
symmetric functions: ex(m(1n)) = 1/n! and ex(mλ) = 0 if λ /= (1n) for some n. In
particular, if f ∈ Λ is a homogeneous symmetric function of degree n, then we have
ex( f ) = 1

n! ⋅Coeò x1x2 ⋅⋅⋅xn [ f ]. _is homomorphism is a version of what is o�en called
the exponential specialization for symmetric functions. In general, a specialization is
just a homomorphism from Λ to another ring. _e homomorphism ex just deûned
extends in the obvious way to a homomorphism ex∶Λ[[T]] → Q[[T]]. We can then
directly apply this homomorphism to our previously deûned power series:

ex(R(T)) = 1, ex(P(T)) = 1, ex(Q(T)) = sinh
√

T/
√

T .

We can now see that applying ex to the computation (4.1) of_eorem 4.1 with g = k
yields

z4g−3
1 [Mg] = (4g − 3)! ⋅ ex(CN(Zg)) = (4g − 3)! ⋅

(−1)g

22g−1 Coeò
T g−1

[

√
T

sinh
√

T
] .

At this pointwe recall an identity for the Bernoulli numbers, which may aswell be
taken as a convenient deûnition of Bn for our purposes, which holds for even indices
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n:

Coeò
T g−1

[

√
T

sinh
√

T
] = −

(22g−2 − 2)B2g−2

(2g − 2)!
.

Finally, the identity a1 = −2z1 recovers formula (3.4), the expression for the pairing of
the top degree power of the class a1. We can similarly recover the formula (3.1) with
i = 3g − 3 for the pairing α3g−3[Ng] upon observing ex(U(T)) = 1.

We can generalize the discussion and perform a similar extraction to obtain a for-
mula for pairings of the form a4g−3−k

1 zk[Mg]. For this,we consider the specialization
ex∶Λ → Q[x] characterized by sending a homogeneous symmetric function f of de-
gree n to the following:

ex( f ) = ∑
k⩾0

xk

(n − k)!
⋅ Coeò
x k
1 x2x3 ⋅⋅⋅xn−k+1

[ f ].

_is extends in the obvious way to a homomorphism ex∶Λ[[T]] → Q[x][[T]], and is
equal to the above ex if we set x = 0. From the deûnition note that for n > 0 we have

ex(m(1n)) = x/(n − 1)! + 1/n!, ex(m(1n−k k)) = xk/(n − k)! for k > 1.

We can apply this homomorphism to our power series just as before, and we get

ex(R(T)) = 1, ex(P(T)) = (1 + x)2 − x2T ,

ex(Q(T)) = x cosh
√

T + sinh
√

T/
√

T .

_en applying the homomorphism ex to the formula in (4.1) with g = k yields

z4g−3−i
1 z i[Mg] = (4g − 3 − i)! ⋅ (−1)

g

22g−1 ⋅Coeò
x iT g−1

[
(1 + 2x + x2 − x2T)g

x cosh
√

T + sinh
√

T/
√

T
] .

We also see in this situation that a recursion property holds for lower genus moduli
spaces: for 1 ⩽ k ⩽ g, we have z4k−3−i

g ,1 zg , i[Mk] = z4k−3−i
1 z i[Mk]. Such a recursion

always holds for any pairings obtained from a specialization that sends R(T) to 1.
Similarly, noting that ex applied to U(T) yields 1 + x − x2T , we obtain the following
formula for Ng by applying ex to (4.2) with g = k:

ξ3g−3−i
1 ξ i[Ng] = (3g − 3 − i)! ⋅ 1

2g−1 ⋅Coeò
x iT g−1

[
(1 + x − x2T)g

x cosh
√

T + sinh
√

T/
√

T
] .

Again, using ξ1 = −α/2 and relation (1.1), this determines the pairings α3g−3−kδk[Ng].
A recursive property similar to that mentioned above also holds for these pairings.

In a diòerent direction, we can deûne specializations by setting some of the vari-
ables x1 , x2 , . . . in the deûnition of the symmetric functions equal to zero. For ex-
ample, setting x1 = x, x2 = y, and xℓ = 0 for ℓ ⩾ 3, we obtain a specialization
ev2∶Λ[[T]]→ Z[x , y][[T]] which acts as follows:

ev2(U(T)) = x(1 − y2T) + y(1 − x2T), ev2(Q(T)) = x + y.

We then obtain a formula for the pairings ξ i ξ j[Ng]with i+ j = 3g −3 by applying the
specialization ev2 to equation (4.2) with g = k, a�er some elementarymanipulations.
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(4.10) ∑
i+ j=3g−3

ξ i ξ j[Ng] ⋅ x i y i = g ⋅ (−1)
g−1

2g−1 ⋅ (xy2 + yx2)g−1

Recall from Proposition 2.7 that we can view ξ i as generators of the cohomology of
Ng with Zp coeõcients when p is odd. Suppose p = g − 1 is an odd prime. In (4.10),
the constants in front of the right-hand expression are invertiblemod p (interpreting
1/2g−1 as the inverse of 2g−1 mod p), andwe conclude that the only pairing of the form
ξ i ξ j[Ng] that is nonzero mod p is given by ξg−1ξ2g−2[Ng].

4.2 Chern Numbers for the Tangent Bundle

In this subsectionwe prove_eorem1.3. _e proof is similar to that of_eorem4.1, so
we only indicate where it diòers. We write TNg for the tangent bundle of Ng , viewed
as complex vector bundle.

Proof of_eorem 1.3 According to Zagier [Zag95, eq. (27)], the Chern class poly-
nomial of Ng is

c(TNg)x = (1 − βx2)g−1 exp(
2αx

1 − βx2 + 2(
tanh−1 x

√
β

β
√
β

−
x

β(1 − βx2)
)γ∗) ,

where as before γ∗ = 2γ + αβ. Note the relation c(TNg)x = (1 − βx2)−gc(Zg ∣Ng)
2
−2x .

Proceeding as in the proof of_eorem 4.1, the Chern number polynomial CN(TNg)
is given by F0(x1 , x2 , ⋅ ⋅ ⋅)[Ng],where F0 is the product of the Chern class polynomials
c(TNg)xℓ for ℓ ⩾ 0, F0(x1 , x2 , ⋅ ⋅ ⋅) = ug−1

0 exp(2(u3 − u1)γ∗/β + 2u1α). Here the
expressions for u0, u1, u3 are deûned as before. Nowwe apply Lemma 4.2 aswas done
previously, but with w = 2(u3 − u1)/β, u = 2u1, f = ug−1

0 ug , and h = 1/u. From this
we obtain

(4.11) CN(TNg) = 2g(−4)g−1
√

T ⋅ u0(T)g−1u1(T)g

sinh(2∑ℓ⩾1 tanh
−1(xℓ

√
T))

.

_e denominator here is computed as in (4.8), but now the right side of (4.8) loses the
fractional 1/2 exponents due to the presence of the 2 in (4.11). A�er a short manipu-
lation we instead ûnd

sinh(2∑
ℓ⩾1

tanh−1(xℓ
√

T)) =
1
2
∏
ℓ⩾1

(
1 + xℓ

√
T

1 − xℓ
√

T
) −

1
2
∏
ℓ⩾1

(
1 − xℓ

√
T

1 + xℓ
√

T
)

=
2 ⋅ Q(T)E(T)

√
T

u0(T)
,

where E(T) is deûned in the introduction, and is readily identiûed with

∑T ∣J∣/2∏
ℓ∈J

xℓ ,

the sum being over ûnite subsets J ⊂ {1, 2, . . .} of even cardinality. Finally, recalling
that u0u1 = U , we obtain from (4.11) the formula given in _eorem 1.3.
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_e specializations of Section 4.1 can, of course, also be applied to this situation.
As an example, since ex(E(T)) = cosh

√
T , applying the specialization ex to_eorem

1.3 yields

c1(TNg)
3g−3[Ng] = (3g − 3)!(−2)3g−3 Coeò

T g−1
[

√
T

sinh
√

T cosh
√

T
] .

_en, using that c1(TNg) = 2α, and the hyperbolic-trig identity

sinh(2x) = 2 sinh(x) cosh(x),
we once again recover the formula for α3g−3[Ng] given in (3.1).

4.3 Skew Schur Functions

_is section ismostly expositional, and serves to explain how the power series 1/Q(T)
and 1/E(T) are generating functions for certain skew Schur symmetric functions as
mentioned in the introduction. In particular, we explain (1.2). _is interpretation
was pointed out to the authors by Ira Gessel, and appears as a particular example in
[GV89, §11]. _e readermay consult [Mac15, I.5] formore background on skew Schur
functions.

We begin by deûning skew Schur functions. To begin, for any partition λ, the Schur
symmetric function sλ associated with λ is deûned as the determinant

det(hλ i+ j−i)1⩽i , j⩽k

in which hλ is the completemonomial symmetric function (see Appendix A), and k
is the length of the partition λ. One of the Jacobi–Trudi identities says that sλ is also
equal to det(eλ′i+ j−i)1⩽i , j⩽k , where λ′ is the partition conjugate to λ. More generally,
the skew Schur symmetric function sλ/µ is equal to det(hλ i−µ i+ j−i)1⩽i , j⩽k . By a Jacobi–
Trudi identity, we have the following identity.

(4.12) sλ/µ = det(eλ′i−µ′j+ j−i)1⩽i , j⩽k .

In this situation, µ is always a subpartition of λ, and the pair of data (λ, µ) is o�en
called a skew partition, and written λ/µ.

We turn to some general remarks on generating functions and determinants that
are standard in enumerative combinatorics, see e.g. [Sta11]. Suppose that a i with i ⩾ 0
are a list of elements in some commutative ring. _en the reciprocal of the generating
function ∑i⩾0 a iT i has coeõcients in terms of some determinants formed from the
a i up to some powers of a0:

∑
n⩾0

1
an+1
0

det((−1) j−i+1a j−i+1)1⩽i , j⩽nTn =
1

∑i⩾0 a iT i .

As written, we are assuming the element a0 is invertible. More generally, as long as
a0 is not a zero-divisor, then the coeõcient of Tn on the le�-hand side, a�er mul-
tiplying by an+1

0 , is a well-deûned element of the ring with which we started. Now
we set a i = e2i+1 so that the right-hand side is equal to 1/Q(T). In this applica-
tion, the commutative ring is the ring of symmetric polynomials, and a0 = e1. _en,
deûning rn to be en+1

1 times the coeõcient of Tn in 1/Q(T), we obtain that rn =
det((−1) j−i+1e2 j−2i+3)1⩽i , j⩽n . Upon observing that rn is a homogeneous symmetric
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Figure 2: Here we list the SSYT of shape λ2/µ2 with type ν for each partition ν. Using equation
(4.14) we conclude sλ2/µ2 = m(2,2,2) + 2m(2,2,1,1) + 5m(2,1,1,1,1) + 14m(1,1,1,1,1,1).

polynomial of degree 3n, expanding the determinant allows us to factor out the sign,
and we obtain

(4.13) rn = (−1)n det(e2 j−2i+3)1⩽i , j⩽n .

Now, λ(n, 3)′ = (n + 2, n + 1, . . . , 4, 3) and λ(n, 0)′ = (n − 1, n − 2, . . . , 2, 1), where
λ(n,m) is deûned in the introduction. It follows from (4.12) and (4.13) that rn is equal
to (−1)nsλ(n ,3)/λ(n ,0). _is establishes formula (1.2) for 1/Q(T), and

1/E(T) =∑ sλ(n ,2)/λ(n ,0)(−T)n

is similarly obtained.
_e skew Schur function sλ/µ admits the following combinatorial interpretation.

Let λ/µ be any skew partition. Deûne a semi-standard (skew) Young tableau (SSYT) of
shape λ/µ to be a ûlling of λ/µ with positive integers that are non-decreasing from le�
to right in each row and strictly increasing from top to bottom in each column. If a
SSYT of shape λ/µ has α i instances of i for each positive integer i,we say that the type
of the SSYT is the composition α = (ν1 , ν2 , . . .). _en we have the following identity,
inwhich the sum is over all partitions ν, thought of in this context as compositions of
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non-increasing non-negative integers:

(4.14) sλ/µ =∑
ν

Kλ/µ ,νmν , Kλ/µ ,ν = #{SSYT of shape λ/µ and type ν}.

_e numbers Kλ/µ ,ν are called the (skew) Kostka numbers. _e example for sλ2/µ2 is
spelled out in Figure 4.3. _ese numbers can become large quite fast: the coeõcient
in front of m(19) within sλ3/µ3 is equal to 744, and in front of m(172) is equal to 323.

_e relationship we have established between the integral pairings on themoduli
spaces and these skew Schur functions will not be exploited in this paper, although
some of the arguments below may have combinatorial interpretations.

5 Mod Two Nilpotency

In this section we prove _eorem 1.1. We ûrst consider the degree 2 class α in the
cohomology of Ng , and later handle the corresponding class a1 in the cohomology of
Mg . We begin by showing that α g is zero mod 2. In fact, we havemore generally the
following.

Proposition 5.1 For n ⩾ g − 1, the element αn is divisible by 2n−g+1.

Proof From Section 2.3, we gather that the residue classes of α, δ i ,ψ j for 2 ⩽ i ⩽
2g − 1 and 1 ⩽ j ⩽ 2g generate themod 2m cohomology ring of Ng for any m ⩾ 1, and
in particular m = n − g + 1. It suõces then to show that for every partition λ, subset
J ⊂ {1, . . . , 2g}, and ℓ ⩾ 0 we have

αn+ℓδλ1 ⋅ ⋅ ⋅ δλk ∏
j∈J

ψ j[Ng] ≡ 0 mod 2n−g+1 .

Now recall that α = −2ξ1, and from (1.1) that each δ i is an integral combination of
terms ξb1 ξ j . _e above pairing is then an integral combination of pairings of the form

(5.1) 2n+ℓ ξν1 ⋅ ⋅ ⋅ ξνr ∏
j∈J

ψJ[Ng].

Now either J is not invariant under the involution j ↦ j + g (mod 2g), in which
case (5.1) is zero, or else (5.1) is the coeõcient of mν within 2n+ℓCN(Zg ∣Nk), where
k = g − ∣J∣/2. It is apparent from _eorem 4.1 that 2nCN(Zg ∣Nk) has coeõcients
divisible by 2n−g+1, since the power series inside the brackets of (4.2) has coeõcients
that are symmetric functions with integer coeõcients.

_e nilpotency degree of αmod 2 is then computed by the following lemma,which
implies that α g−1 is nonzero in the cohomology ring H∗(Ng ;Z2).

Lemma 5.2 _e parity of the integer 2g−1ξ3g−3− j
1 ξ j[Ng] is determined as follows:

2g−1ξ3g−3− j
1 ξ j[Ng] ≡ 1 (mod 2) ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

j ∈ {g − 1, g − 2} g even,
j ∈ {g , g − 1} g odd.

Proof By _eorem 1.2, the term 2g−1ξ3g−3− j
1 ξ j[Ng] is equal to the coeõcient of

mλT g−1 within U(T)g/Q(T), where λ = ( j, 13g−3− j). We use this to reformulate
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the claim of the lemma as follows. Let I ⊂ Λ be the ideal generated by 2 ∈ Z and
themonomial symmetric functions mλ with λ having at least two parts greater than
1, i.e., λ1 , λ2 > 1. Here, as before, Λ is the ring of symmetric functions with integer
coeõcients. _en the lemma is equivalent to the congruence

(5.2) Coeò T g−1[U(T)g/Q(T)]

≡ g ⋅m(g ,12g−3) +m(g−1,12g−2) + (g − 1) ⋅m(g−2,12g−1) (mod I).
Let J ⊂ I be the ideal generated only by mλ with λ having at least two parts greater
than 1, omitting 2 ∈ Z. _e following relations are easily veriûed in the quotient ring
Λ/J, in which r, s > 1:

m(1p)m(1q) ≡ (
p + q
p

)m(1p+q) + (
p + q − 2

p − 1
)m(2,1p+q−2) (mod J),

m(r , 1p)m(1q) ≡ (
p + q
p

)m(r ,1p+q) + (
p + q − 1

p
)m(r+1,1p+q−1) (mod J),

m(r ,1p)m(s ,1q) ≡ (
p + q
p

)m(r+s ,1p+q) (mod J).

_ese follow by simply expanding the monomial symmetric functions as the sums
of monomials that deûne them, and multiplying. Along the same lines, we leave the
following to the reader:

(5.3) mn
(1p) ≡

n

∑
k=1

(
n
k
)(pn − k)!pk p!−nm(k , 1pn−k) (mod J).

We list some cases for which (5.3) vanishes modulo I. First, a special case of an
elementary result, o�en called Lucas’s _eorem, says that a multinomial coeõcient
(α1 + ⋅ ⋅ ⋅ + αk)!/α1! ⋅ ⋅ ⋅ αn! is even if and only if, in the binary expansions of the
α i , there is some position, i.e., digit location, for which two distinct α i have digit
equal to 1. Next, (pn − k)!pk p!−n is equal to the multinomial coeõcient in which
α1 = ⋅ ⋅ ⋅ = αk = p − 1 and αk+1 = ⋅ ⋅ ⋅ = αn = p. If n ⩾ 3, then either p or p − 1 appears
at least twice, so by Lucas’s _eorem this number is even. _us mn

(1p) ≡ 0 (mod I)
if n ⩾ 3. If n = 2, the k = 1 term in (5.3) drops out because of (n

k), so we need only
consider n = 2 = k. _is case has the term (2p−2

p−1 ), which is even, unless p ≤ 2. _us
mn
(1p) ≡ 0 (mod I) if p ⩾ 3 and n = 2.
As in Section 4.3, deûne rn ∈ Λ to be en+1

1 times the coeõcient of Tn of 1/Q(T).
_e general formula for the reciprocal of a power series applied to 1/Q(T) yields

rn = ∑
α1 , . . . ,αk⩾0,k⩾1
α1+2α2+⋅⋅⋅+kαk=n

(−1)α1+⋅⋅⋅+αkα1 + ⋅ ⋅ ⋅ + αkα1 , . . . , αk en−∑ α i
1 eα1

3 ⋅ ⋅ ⋅ eαk
2k+1 .

Now, recalling that ep = m(1p) and taking our above remarks regarding enp into con-
sideration, we see that only terms with all α i ⩽ 2 can contribute odd coeõcients.
Further, by Lucas’s _eorem, if all α i ⩽ 2, then themultinomial coeõcient appearing
is even unless {α1 , . . . , αk} has one of
● some i such that α i = 1 and α j = 0, for j /= i,
● some i such that α i = 2 and α j = 0, for j /= i,
● some i , j such that α i = 2, α j = 1, and αℓ = 0, for ℓ /= i , j.
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Only the ûrst case actually contributes something nonzero mod 2, sincewe remarked
above that m2

(1p) is even when p ⩾ 3. We conclude that rn ≡ en−1
1 e2n+1(modI). From

the relations above we easily compute en−1
1 modulo I. It is congruent to

m(n−2, 1) +m(n−1)

if n is even, and simply m(n−1) if n is odd. From this we obtain

(5.4) rn ≡ m(n ,12n) + n ⋅m(n−1,12n+1) (mod I).
Note that rn can be replaced here with the skew Schur function sλn/µn , and for n = 2
the congruence (5.4) is apparent from Figure 4.3. Next, since U(T) ≡ m(1) −m(2,1)T
(mod J), the coeõcient of T i withinU(T)g is congruent to (−1)i(g

i)e
g−i
1 m i

(2,1) mod-
ulo J. We then gather the following:

(5.5) Coeò
T g−1

[U(T)g/Q(T)] =
g−1

∑
i=0
Coeò

T i
[U(T)g]e i−g

1 rg−i−1

≡
g−1

∑
i=0

(
g
i
)m i
(2,1)rg−i−1 (mod I).

A quick check shows that m i
(2,1) ≡ 0 (mod I) for i ⩾ 2, so the only terms contributing

are at i = 0, 1. _us, the sum is congruent to rg−1 + g ⋅ m(2, 1)rg−2, which with (5.4)
computes (5.2).

Corollary 5.3 _e pairing α g−1δ2g−2[Ng] is odd.

Proof Using formula (1.1) and α = −2ξ1, we extract the relation

α g−1δ2g−2 =
2g−1

∑
i=1

(−1)i+g i ⋅ 2g−1ξg−2+i
1 ξ2g−1−i .

Noting the coeõcient i, we see that exactly one of the terms from Lemma 5.2 con-
tributes an odd number once we pair with [Ng].

_is corollary, togetherwithProposition 5.1, proves that thenilpotencydegree of α,
as viewed in H∗(Ng ;Z2), is equal to g. For the second part of _eorem 1.1, regard-
ing the nilpotency degree of a1 in the ring H∗(Mg ;Z2), we establish an analogue of
Corollary 5.3.

Lemma 5.4 _e integer 22g−1z j
1z4g−3− j[Mg] is odd if and only if j ∈ {2g − 1, 2g − 2}.

Proof We sketch the proof, which is similar to that of Lemma 5.2. By (4.1) of _e-
orem 4.1, this integer is the coeõcient of mλT g−1 within P(T)g/Q(T) where λ =
(4g − 3 − j, 1 j). Since P(T) is congruent modulo J to e21 − 2m(2,1,1)T , the only term
in P(T)g relevant to Λ/I is the constant term e2g1 . _en the coeõcient of T g−1 within
P(T)g/Q(T), computed just as in (5.5), is congruentmod I to e g1 rg−1. From (5.4) this
is then m(2g−1,12g−2) +m(2g−2,12g−1) mod I, proving the claim.

_e same argument as in the proof of Corollary 5.3 then yields the following.

Corollary 5.5 _e pairing a2g−1
1 d2g−2[Mg] is odd.
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To complete the proof of _eorem 1.1, it remains to show that a2g
1 is zero mod 2.

For this we will prove an analogue of Proposition 5.1. To this end, we ûrst establish a
few lemmas which take the content of Section 3 a bit further.

We begin by sketching the geometric meaning of _addeus’s genus recursive for-
mula (3.2). Recall that Ng can be viewed as the space of conjugacy classes of 2g-tuples
(A i)

2g
i=1 in the 2g-fold product of SU(2) such that the product of the commutators

[A i ,A i+g] for 1 ⩽ i ⩽ g is equal to −1. For I ⊂ {1, . . . , 2g}, let the submanifold
NI ⊂ Ng consist of conjugacy classes such that A i = 1 if i ∈ I. If I = I + g, then NI can
be identiûed with Ng−k in which k = ∣I∣/2. _en _addeus showed

±∏
j∈I

ψ j = PD[NI] ∈ H6g−6−3∣I∣(Ng ;Z),

where PD is the Poincaré dual. _is immediately establishes (3.2), up to signs. We
now turn back to the moduli space Mg , which has the same description as does Ng ,
but with U(2) replacing SU(2). For I,K ⊂ {1, . . . , 2g}, embedded in Ng × Jg is the
submanifold NI × JK , where NI is as before, and JK consists of 2g-tuples (z1 , . . . , z2g)
in the 2g-fold product of U(1) such that zk = 1 if k ∈ K. We write MIK for the
submanifold ofMg given by the projection of NI × JK under the covering map p. It is
clear that the homology class of NI × JK inside Ng × Jg is Poincaré dual to ±∏i∈I ψ i ⊗

∏k∈K θk .

Lemma 5.6 _e class b i
2 − a1b i

1/2 is integral, and thus so too is a1b i
1/2. More speciû-

cally, ±PD(∏i∈I(b i
2 − a1b i

1/2)∏k∈K bk
1 ) = [MIK] ∈ H8g−6−3∣I∣−∣K∣(Mg ;Z).

Proof As the statement suggests, we will ignore signs throughout. Set

x = ∏
i∈I

(b j
2 − a1b

j
1/2) ∏

k∈K
bk
1 ,

so that the above discussion implies P.D.(p∗(x)) = 2∣K∣ ⋅ [NI × JK]. Recall that the
Poincaré dual of a cohomology class is equal to the cap productwith the fundamental
homology class. Also recall that the cap product satisûes the functoriality property
x ∩ p∗(y) = p∗(p∗(x) ∩ y), for a homology class y and a cohomology class x. _en
we compute that P.D.(x) is equal to

x ∩ [Mg] = x ∩ 2−2g p∗[Ng × Jg] = 2−2g p∗(p∗(x) ∩ [Ng × Jg]) = 2∣K∣−2g p∗[NI × JK].

_e ûnal expression obtained on the right-hand side is equal to [MIK], becauseNI×JK
is clearly a 22g−∣K∣ sheeted covering of MIK .

Note that the submanifoldMIK can be described as the subspace ofMg consisting
of conjugacy classes of tuples (A i)

2g
i=1 ofmatrices in U(2) whose product of commu-

tators is −1, and such that A i ∈ SU(2) if i ∈ K, while A i is in the center of U(2) if
i ∈ I.

Lemma 5.7 If am
1 ∈ H∗(Mg−1;Z) is divisible by d ∈ Z, so too is

(bg
2 − a1b

g
1 /2)b

2g
1 a

m
1 ∈ H∗(Mg ;Z).
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Proof From above,we know that (bg
2 −a1b

g
1 /2)b

2g
1 is Poincaré dual to [MIK],where

I = {g} and K = {2g}. In this subspace, [Ag ,A2g] = 1, so that always

g−1
∏
i=1

[A i ,A i+g] = −1.

_us, there is a well-deûned map from MIK to Mg−1 that forgets Ag and A2g . _is
is a ûbration with ûber SU(2) × S1, where S1 is identiûed with the center of U(2).
Because conjugation does not interact with the center of U(2), we can write MIK =
P×S1,where P is an SU(2)-ûbration over Mg−1. _e ûbration P has a section given by
A2g = 1 ∈ SU(2) = S3. _us, just as in [_a97], the euler class of P vanishes, and the
Gysin exact sequence for a 3-sphere ûbration implies the right-hand isomorphism

H∗(MIK ;Z) ≅ H∗(P;Z)⊗H∗(S1;Z), H∗(P;Z) ≅ H∗(Mg−1;Z)⊗H∗(S3;Z).

While the le�-hand isomorphism above is an isomorphism of graded-commutative
rings,we do not know the same for the right-hand isomorphism. However, the Leray–
Hirsch _eorem tells us that this latter isomorphism respects theH∗(Mg−1;Z)-mod-
ule structures. It is a straightforward matter to verify that a1 ∈ H2(Mg ;Z) goes to
a1 ⊗ 1 ∈ H2(Mg−1;Z)⊗H0(S3;Z) under this isomorphism. _e lemma then follows
using the H∗(Mg−1;Z)-module structure.

Proposition 5.8 For n ⩾ 2g − 1, the element an
1 ∈ H2n(Mg ;Z) is divisible by 2n−2g+1.

Proof _e proof is by induction. We assume the result holds for a1 ∈ H2(Mk ;Z)
for k ⩽ g − 1. Further, we add the induction hypothesis that aq

1 ≡ 0 (mod 2q−2g+1), for
q > n. Note that this is automatically true for q large enough, since a1 is nilpotent.
From Section 2.1,we gather that the residue classes of a1 , d i , b j

1 , b
j
2, for 2 ⩽ i ⩽ 2g−1

and 1 ⩽ j ⩽ 2g, generate the mod 2m cohomology ring of Mg for any m ⩾ 1, and in
particular m = n − 2g + 1. It suõces then to show that for every partition λ, subsets
J1 , J2 ⊂ {1, . . . , 2g}, and ℓ ⩾ 0, we have

(5.6) an+ℓ
1 dλ1 ⋅ ⋅ ⋅ dλk ∏

j∈J1
b j
1∏

j∈J2
b j
2[Mg] ≡ 0 mod 2n−2g+1 .

_e case in which J2 is empty follows the argument of Proposition 5.1, but this time
using Proposition 4.3. We do not use any induction hypothesis here.
By Proposition 3.1, if J2 is not empty, then either the le� side of (5.6) vanishes, or at

least one of two kinds of terms appears: b j
2b

j+g
2 or b j

1b
j+g
2 . Without loss of generality

we will suppose j = g.
First suppose bg

1 b
2g
2 appears in (5.6). Let x denote themonomial in (5.6) omitting

this term and an
1 . Wemust show 2n−2g+1 divides an

1 b
g
1 b

2g
2 x[Mg]. Firstnote thatwe can

replace b2g
2 by b2g

2 − a1b2g
1 /2. Indeed, an+1

1 bg
1 b

2g
1 x[Mg]/2 is divisible by 2(n+1)−2g+1/2

using the induction hypothesis on n. Finally,

an
1 (b

2g
2 − a1b2g

1 /2)x[Mg] ≡ 0 mod 2n−2g+1 ,

using Lemma 5.7 and the induction hypothesis on g. _us, the case in which bg
1 b

2g
2

appears is done.
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Now suppose that bg
2b

2g
2 appears in (5.6). Just aswas done in the previous case, we

can replace each b j
2 here with b j

2 − a1b
j
1/2, and upon pulling back via the covering p,

we get ψgψ2g , and the result follows from induction on g, using (3.3) and_addeus’s
genus recursive formula (3.2). _is exhausts all cases and completes the proof of the
proposition, as well as the proof of_eorem 1.1.

6 Computations

In this sectionwe give some examples of the pairings on Ng calculated by_eorem4.1
and describe the ring structure H∗(Ng ;Z2) for low values of g. Much of this discus-
sion can be carried out for themoduli space Mg , but we will not pursue this.
First, recall that _eorem 4.1 computes the pairings involving the classes ξg , i .

_e pairings are encoded in the Chern number polynomial CN(Zg ∣Nk), which is
equal to (4.3). Formula (4.2) easily computes this polynomial using a program such
as Sage, which has symmetric function methods available. For example, we have
CN(Z1∣N1) = 1, 2CN(Z2∣N2) = −m(13) − 2m(21), and

22CN(Z3∣N3) = 14m(16) + 17m(214) + 26m(22 12) + 28m(23)
+ 9m(313) + 12m(321) + 6m(32) + 6m(412) + 3m(42) .

_ese polynomials quickly become quite lengthy. For example, if we compute the
genus 4 polynomial in terms of elementary symmetric functions eλ , we ûnd

23CN(Z4∣N4) = −4e(23 13) + 18e(322 12) − 44e(3221) + 65e(33) + 36e(4213)
− 100e(4312) − 44e(5212) + 150e(531) − 20e(613) + 27e(712) .

If instead we write this same polynomial in terms ofmonomial symmetric functions
mλ , then it has 26 non-zero terms. Similarly, the corresponding genus 5 polynomial
has 20 non-zero terms when written using the eλ , and 70 non-zero terms when using
the mλ .

Of course, CN(Zg ∣Nk) is of intermediary interest to us: our goal was to compute
CN( f!Vg ∣Nk), the polynomial encoding the pairings involving the δg , i classes. We
can compute these using the Chern number polynomial for Zg ∣Nk via the transfor-
mations (1.1). _ese are typically more complicated, however. For example, we have
CN( f!V1∣N1) = 1,

CN( f!V2∣N2) = 4m(13) + 3m(21) +m(3) ,
CN( f!V3∣N3) = 14336m(16) + 6464m(214) + 2936m(22 12) + 1339m(23)

+ 1568m(313) + 722m(321) + 182m(32) + 212m(412) + 98m(42) + 14m(51) .
For genus 4, there are 28 non-zero coeõcients whether we use the basis eλ or mλ ,
while for genus 5, there are 73 non-zero coeõcients in either basis. In each case,
respectively, 28 and 73 is the number ofmonomials in the δ i classes of top degree, so
every possible pairing is non-zero. We have focused on the cases g = k for simplicity;
when k < g the computations are somewhat similar.

Whenwe consider the pairings onlymodulo 2,which are relevant for H∗(Ng ;Z2),
the situation is considerablymoremanageable. First,we recall fromCorollary 2.6 that
the residue classes of α, δ2i ,ψ j generate the ring H∗(Ng ;Z2), where 2 ⩽ 2i ⩽ 2g − 1
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and 1 ⩽ j ⩽ 2g. We can obtain pairing formulas for these classes from the above data
as follows. Let P(2) be the set of partitions each of whose parts is a power of 2. _us
(4, 2, 2, 1) ∈ P(2), but (6, 4, 2, 1) ∉ P(2). For λ ∈ P(2), let m1 denote the number
of 1’s in λ, and let λ# denote the partition obtained from λ by removing all of its 1’s, so
in particular m1 = ∣λ∣ − ∣λ#∣. Set δg ,λ ∶= δg ,λ1 ⋅ ⋅ ⋅ δg ,λn . Now we deûne

Pg ,k ∶= ∑
λ∈P(2)

αm1δg ,λ#[Nk] ⋅mλ mod 2.

_en the collection of Pg ,k with 1 ⩽ k ⩽ g determines the ring structureofH∗(Ng ;Z2).
Indeed, it is evident that Pg ,g encodes all mod 2 pairings involving the generators δg ,2i

and α, while, for example, the pairing αm1δg ,λ#ψ1ψ1+g ⋅ ⋅ ⋅ψg−kψ2g−k[Ng] is equal to
the coeõcient of mλ in Pg ,k . Recalling that δg ,1 = (g − 1)α, we have the following,
which tells us how to compute Pg ,k from the δg , i pairings:

Coeò
mλ

[Pg ,k] ≡ Coeò
mλ

[CN( f!Vg ∣Nk)/(g − 1)m1] mod 2.

Here λ ∈ P(2). _e polynomials Pg ,k are presented up to genus 8 in Table 1.
We remark that the computations of Chern numbers and hence that of Table 1

could have also been done without using _eorem 4.1. Indeed, one can write out
the δg , i classes as rational functions of α, β, γ using (4.4) and (1.1), and then apply
_addeus’s intersection pairing formula for α iβ jγk from Section 3 term-wise. As an
illustration of this, we can write δ8 = δ6,8 ∈ H16(N6;Z) as follows:

δ6,8 = ( 3184129
10321920)α

8−( 351163
368640)α

6β+( 747229
737280)α

4β2+( 3539
23040)α

5γ−( 1044149
2580480)α

2β3

− ( 1061
3840)α

3βγ + ( 1155
32768)β

4 + ( 18829
161280)αβ

2γ + ( 13
576)α

2γ2 − ( 31
2880)βγ

2 .

We also compute δ6,2 = 91
8 α

2− 11
8 β. _enwe can apply_addeus’s intersection pairing

formula to the terms of α5δ6,2δ6,8 and sum to obtain 117071517415. _is number is
odd, and accounts for the partition (8, 2, 1, 1, 1, 1, 1) appearing in the ûrst column of
row g = 6 in Table 1.
From Table 1 we can read oò the ring structure of H∗(Ng ;Z2) for 1 ⩽ g ⩽ 8, and

we will spell this out for 1 ⩽ g ⩽ 4. We make a few preliminary remarks. We know
from Corollary 2.6 that H∗(Ng ;Z2) is generated by α, δ2i ,ψ j for 2 ⩽ 2i ⩽ 2g − 1
and 1 ⩽ j ⩽ 2g. We write I(Ng ;R) ⊂ H∗(Ng ;R) for the subring invariant under the
Sp(2g ,Z)-action, where R is any ring. It is well known that I(Ng ;Q) is generated by
α, β, γ and that amonomial basis for the vector space I(Ng ;Q) is given by

{α iβ jγk ∶ i , j, k ⩾ 0, i + j + k < g},
see [ST95, §5]. In particular, dim I(Ng ;Q) = g(g+ 1)(g+2)/6 = Tg , the g-th tetrahe-
dral number. _is in fact holds for any ûeld, and in particular Z2. From Proposition
2.8we know that I(Ng ;Z2) is generated by α, δ2i , υ2 j for 2 ⩽ 2i ⩽ 2g−1 and 1 ⩽ 2 j < g.
We now proceed to describe the rings H∗(Ng ;Z2) and their invariant subrings for
1 ⩽ g ⩽ 4.

Genus 1: In this case, N1 is a point, so H∗(N1;Z) ≅ Z.

Genus 2: Even over Z this ring is simple to describe [New67, §10]. As remarked
there, the only interesting cup product in H∗(N2;Z) is α2, which is 4 times an inte-
gral generator, equal to α2 − δ2. _us the ring H∗(N2;Z2), which has betti numbers
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1, 0, 1, 4, 1, 0, 1, has the residue classes of α in degree 2 and δ2 in degree 4, and α2 = 0
(mod 2). _e classes ψ1 ,ψ2 ,ψ3 ,ψ4 generate the four-dimensional middle cohomol-
ogy group, and αδ2, ψ1ψ3, ψ2ψ4 are all equal to the non-zero top degree element in
H6(N2;Z2), while all other pairings are zero. _e invariant subring I(N2;Z2) is gen-
erated by α and δ2 and has betti numbers 1, 0, 1, 0, 1, 0, 1.

Genus 3: _e ring H∗(N3;Z2) has betti numbers 1, 0, 1, 6, 2, 6, 16, 6, 2, 6, 1, 0, 1. It
is generated by α, δ2 , δ4, and ψ j for 1 ⩽ j ⩽ 6. _e nontrivial pairings in top degree, as
can be read from Table 1, are

α2δ4 , δ3
2 , ψ jψ j+gαδ2 (1 ⩽ j ⩽ 3), ψ jψ j+gψkψk+g (1 ⩽ j /= k ⩽ 3).

_e invariant subring I(N3;Z2),whichhas betti numbers 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1,
is generated by α, δ2 , δ4, and υ1 , υ2. We can compute a presentation for the invariant
ring:

I(N3;Z2) ≅ Z2[α, δ2 , δ4 , υ1 , υ2]

/(υ2
1 , δ4υ1 , δ2

4 , δ2δ4 , δ1δ4 + δ2υ1 , δ2
2 + δ1υ1 , δ2

1 υ1 , δ2
1 δ2 , δ3

1 )

We remind the reader that

υ1 = ψ1ψ4 + ψ2ψ5 + ψ3ψ6 , υ2 = ψ1ψ4ψ2ψ5 + ψ1ψ4ψ3ψ6 + ψ2ψ5ψ3ψ6 .

Note here that δ3
2 is nonzero. _is property seems to persist possibly for all δg ,2 ∈

H∗(Ng ;Z2), and can perhaps be proven using the samemethods used to prove_e-
orem 1.1.

Genus 4: _e ring H∗(N3;Z2) has betti numbers 1, 0, 1, 8, 2, 8, 30, 16, 30, 64, 30,
16, 30, 8, 2, 8, 1, 0, 1. It is generated by α, δ2 , δ4, and ψ j , for 1 ⩽ j ⩽ 8. _e only non-
trivial pairings in the top degree, as read from Table 1, are the following, in which
1 ⩽ j, k, ℓ ⩽ 4 are distinct:

αδ2
2δ4 , α3δ2δ4 , ψ jψ j+gα2δ4 , ψ jψ j+gδ2δ4 ,

ψ jψ j+gδ3
2 , ψ jψ j+gψkψk+gαδ2 , ψ jψ j+gψkψk+gψℓψℓ+g

_e invariant ring I(N4;Z2) has betti numbers 1, 0, 1, 0, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 2, 0,
1, 0, 1. It is generated by α, δ2 , δ4 , υ1 , υ2, just like the genus 3 case. _e ideal of relations
here is generated by

α4 , α2δ2 + αυ1 + δ2
2 , δ2α3 + αδ2

2 , α2υ1 , α2δ2
2 , αυ2 ,

υ2
1 , υ2

2 , δ3
2υ1 + α2δ4υ1 , δ3

2 + υ2 , υ1υ2 , δ4υ1 , δ2
4 .

We will stop here, but the interested reader can proceed to describe the higher genus
cases up to g = 8, usingTable 1. Also, one can similarly describe the rings H∗(Ng ;Zp)
for other primes p, using ourChern number computations and some additionalwork.
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Table 1: Partitions λ ∈ P(2) for which Coeòmλ [Pg ,k] ≡ 1 (mod 2). A partition
(8a4b2c1d) appears in row g and column k of this table if and only if the monomial
µ = ϕδa8 δb4δc2αd is nonzero in the ring H∗(Ng ;Z2), i.e., µ[Ng] ≡ 1 (mod 2), where
ϕ = ψ1ψ1+g . . .ψkψk+g .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
g = 1 0

g = 2 (2111) 0

g = 3 (4112) (2111) 0
(23)

g = 4 (412211) (4112) (2111) 0
(412113) (4121)

(23)

g = 5 (812112) (412113) (4112) (2111) 0
(412311) (412211) (2141)
(8114) (23)
(43)

g = 6 (812213) (412312) (422113) (4112) (2111) 0
(812115) (8122) (412211) (23)
(812311) (8114)
(432111) (43)

g = 7 (81412212) (81412111) (412312) (412113) (4112) (2111) 0
(812314) (812213) (8114) (412211) (23)
(814212) (812311) (43)
(814116) (814113)
(4323) (432111)
(8125) (812115)

g = 8 (81412313) (81412114) (81412111) (812112) (412211) (4121) (2111) 0
(81412215) (814221) (814113) (412312) (412113) (4112)
(81422113) (814212) (812311) (8141) (23)
(81422211) (814123) (812213) (8122)
(81412411) (814116) (812115) (8114)
(81412117) (812314) (432111) (43)

(8125)
(4323)
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A Background on Symmetric Functions

In this section we provide the reader with the relevant backgroundmaterial on sym-
metric polynomials. For details and proofs, see [Mac15]. We will typically work with
symmetric functions in inûnitely many variables x1 , x2 , x3 , ⋅ ⋅ ⋅ with either integer or
rational coeõcients.

_ere are a few standard symmetric functions that will be of use to us. First, for
any positive integer n, we have the elementary symmetric function en , given by

en = ∑
i1<i2<⋅⋅⋅<in

x i1x i2 ⋅ ⋅ ⋅ x in .

If λ = (λ1 , λ2 , . . . , λk) is a partition, i.e., a nonincreasing sequence of nonnegative
integers, then we deûne eλ = eλ1 eλ2 ⋅ ⋅ ⋅ eλk . If in the deûnition of en one sums over
i1 ⩾ i2 ⩾ ⋅ ⋅ ⋅ ⩾ in instead, the result is the complete symmetric function hn , andwe can
similarly deûne hλ . For n = 0, set e0 = h0 = 1.

Next, for any given partition λ, we have the monomial symmetric function mλ ,
which is the sumof alldistinctmonomials of the form xλ1

i1 x
λ2
i2 ⋅ ⋅ ⋅ x

λk
ik inwhich i1 , . . . , ik

are distinct. Although we do not make much use of them, we also deûne the power
sum symmetric function pn by pn = ∑i⩾0 xn

i .
In Section 4.3 we deûned (skew) Schur symmetric functions sλ . It is o�en conve-

nient to write a partition λ = (λ1 , λ2 , . . . , λk) in the alternative format

λ = (1m12m2 ⋅ ⋅ ⋅ kmk)

in which λ has m i number of parts equal to i. For example, the partition (2, 2, 1, 1, 1)
can bewritten instead as (2213). Wewrite ∣λ∣ = ∑k

i=1 λk for the sumof a partition, and
l(λ) = k for its length. Sometimeswe insert commas for clarity; the last partition can
be written as (22 , 13).

Wewrite Λ for the ring of symmetric functionswith integer coeõcients. _e Fun-
damental _eorem of Symmetric Functions says that Λ is isomorphic to the ring
Z[e1 , e2 , . . .] freely generated by the e i . _e statement also holds with the e i replaced
by h i . Also, the sets {eλ}, {hλ}, {mλ}, {sλ}, where λ runs over all partitions, each
separately provides an additive basis for Λ. If we work instead with rational coeõ-
cients, then the ring of symmetric functions Λ ⊗Z Q is isomorphic to the freely gen-
erated algebraQ[p1 , p2 , . . .], and {pλ} provides an additive basis for the vector space
Λ ⊗Z Q.
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