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Abstract We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with
the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator
on Lip(X,E), where E is a complex Banach space, is a generalized composition operator. Secondly, we
give a complete description of unital surjective complex linear isometries on Lip(X,A), where A is a
unital factor C∗-algebra. These results improve previous results stated by the author.

1. Introduction and Main results

Given a compact metric space X and a complex Banach space (E,‖·‖E), a map F :X →E

is said to be Lipschitz if

L(F ) := sup
x �=y∈X

{
‖F (x)−F (y)‖E

d(x,y)

}
<∞.

We denote a space of all E-valued Lipschitz maps on X by Lip(X,E). In the case E =C,
we simply write Lip(X). The Lipschitz space Lip(X,E) is a Banach space with the sum

norm

‖F‖L = sup
x∈X

‖F (x)‖E +L(F ), F ∈ Lip(X,E).

In particular, Lip(X,E) endowed with ‖·‖L is a Banach algebra if E is a Banach algebra.
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1.1. Surjective linear isometries

Let A be a unital C∗-algebra. We study unital surjective linear isometries on Lip(X,A)

with ‖·‖L. We explain the motivation for our study. Kadison in [10] obtained the following

characterization of surjective complex linear isometries between unital C∗-algebras. Let
Ai be unital C∗-algebras for i = 1,2. Let U : A1 → A2 be a surjective linear isometry.
Then there are a unitary element u ∈ A2 and a Jordan ∗-isomorphism ψ : A1 → A2

such that U(a) = uψ(a) for any a ∈ A. This has a remarkable and beautiful consequence

such that the unital surjective linear isometries between unital C∗-algebras are Jordan
∗-isomorphisms. Many researchers have been interested in considering whether every

surjective linear isometry on algebras is closely related to an isomorphism on the algebras.

We deal with surjective linear isometries on Banach algebras of continuous maps taking
values in a unital C∗-algebra. For any unital C∗-algebra A, we denote by C(K,A) the

Banach algebra, with the supremum norm, of all continuous maps on a compact Hausdorff

space K taking values in A. Let us consider surjective linear isometries between C(K,A)-

spaces. Since C(K,A) is a unital C∗-algebra, the celebrated theorem due to Kadison tells
that every unital surjective linear isometry is a Jordan ∗-isomorphism. In particular, if

Ai are unital factor C∗-algebras for i = 1,2, in [8, Corollary 5] they showed that every

surjective linear isometry U : C(K1,A1)→ C(K2,A2) is a weighted composition operator
of the form

U(F )(y) = uψy(F (ϕ(y))), (1)

where ϕ : K2 → K1 is a homeomorphism, {ψy}y∈K2
is a strongly continuous family of

Jordan ∗-isomorphisms from A1 onto A2, and u ∈ C(K2,A2) is a unitary element. One

may wonder whether any surjective linear isometries from Lip(X1,A1) onto Lip(X2,A2)

are also a weighted composition operator similar to (1). First, we introduce the results
by the author in [14]. We showed every hermitian operator on Lip(X,E) is a generalized

composition operator under the more restrictive condition that E is of finite dimension.

Furthermore, we obtained the following theorem by using the notion of hermitian
operators. We denote the Banach algebra of complex matrices of order n by Mn(C).

Theorem 1.1 (Theorem 3.3 in [14]). Let Xi be compact metric spaces for i = 1,2. The
map U : (Lip(X1,Mn(C)),‖ · ‖L)→ (Lip(X2,Mn(C)),‖ · ‖L) is a linear surjective isometry

such that U(1) = 1 if and only if there exist a unitary matrix V ∈Mn(C) and a surjective

isometry ϕ :X2 →X1 such that

U(F )(x) = V F (ϕ(x))V −1, F ∈ Lip(X1,Mn(C)),x ∈X2

or

U(F )(x) = V F t(ϕ(x))V −1, F ∈ Lip(X1,Mn(C)),x ∈X2,

where F t(y) denotes transpose of F (y) for y ∈X1.

Although the arguments of the proof have remained limited to the case that E is finite

dimensional, this is the first result on surjective linear isometries on Lip(X,E), where

E is a non-commutative Banach algebra. In this framework, it seems natural to ask
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questions about further developments. The aim of this paper is to develop our knowledge
on hermitian operators and isometries on Lip(X,E) and establish an infinite dimensional

version of [14]. More precisely, we prove the next theorem.

Theorem 1.2. Let Xi be compact metric spaces and Ai unital factor C∗-algebras for

i = 1,2. The map U : (Lip(X1,A1),‖ · ‖L) → (Lip(X2,A2),‖ · ‖L) is a surjective complex

linear isometry such that U(1) = 1 if and only if there exist a unital surjective complex

linear isometry ψ :A1 →A2 and a surjective isometry ϕ :X2 →X1 such that

U(F )(y) = ψ(F (ϕ(y))), F ∈ Lip(X1,A1),y ∈X2.

Indeed, Theorem 1.2 also gives an answer to the above question (that is, whether

any surjective linear isometry from Lip(X1,A1) onto Lip(X2,A2) is also a weighted
composition operator similar to (1)).

In case that E is a finite dimensional Banach space, it follows from [14, Lemma 2.1]

that Lip(X)⊗E = Lip(X,E). If E is of infinite dimension, Lip(X)⊗E does not coincide
with Lip(X,E). Moreover, it is not known whether Lip(X)⊗E is dense in Lip(X,E)

with ‖ · ‖L or not. When E is of infinite dimension, the representation of Lip(X,E) is

more complicated. Thus, to describe isometries and hermitian operators on Lip(X,E),

where E is of infinite dimension, is much more difficult than the case where E is of finite
dimension. In order to achieve any further progress, we need to make several improvements

and extensions compared to the paper [14].

The paper is organized as follows. In the rest of the introduction, we provide basic
background on the study of hermitian operators. In section 2, we study hermitian

operators on Lip(X,E). The main theorem of section 2 is Theorem 2.3. For any a

complex Banach space E, we prove that every hermitian operator on Lip(X,E) is a
generalized composition operator. This is a generalization of the characterization of

hermitian operators on Lip(X,E) for finite dimensional Banach spaces E in [14]. In

section 3, we introduce the concept of T-sets due to Myers. By the notion of T-sets,

we present properties of the unit ball of the dual space of Lip(X,E). Indeed, the extreme
points of the unit ball of the dual space of Lip(X,E) are quite complicated. Thus, we

study T-sets instead of extreme points. The main statement in section 3 is Proposition

3.6. We show that if a surjective linear isometry between Lip(X,E)-spaces is a weighted
composition operator when restricted to Lip(X)⊗E, then it is a weighted composition

operator. Since the representation of Lip(X)⊗E is much easier than that of Lip(X,E),

Proposition 3.6 is successful in describing the surjective linear isometries on Lip(X,E).
In section 4, we present the proof of Theorem 1.2.

1.2. Hermitian operators

A bounded operator T on a complex normed space (V ,‖ ·‖V ) is hermitian if [Tv,v]V ∈R

for any v ∈ V , where [·,·]V is a semi-inner product on V that is compatible with the

norm ‖·‖V . The definition does not depend on the choice of semi-inner products (see [1]).
A complete description of hermitian operators on Banach spaces has been studied for a

long period of time. We refer the reader to [6, 7] for further information about hermitian

operators.
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Fleming and Jamison in [4] turned their attention to the vector-valued case. Let E be a

complex Banach space. They obtained the first characterization for hermitian operators

between Banach spaces of E -valued continuous functions as follows:
Let T be a hermitian operator on C(K,E), where K is a compact Hausdorff space.

Then for each t ∈K, there is a hermitian operator φ(t) on E such that

T (F )(t) = φ(t)(F (t)), t ∈K.

What is the general form of hermitian operators between Banach spaces of E -valued

Lipschitz maps? Botelho, Jamison, Jiménez-Vargas and Villegas-Vallecillos in [2] obtained

a characterization for hermitian operators on Lip(X,E) with the max norm.
Let X be a compact and 2-connected metric space and E a complex Banach space.

Then T : (Lip(X,E),‖ · ‖M ), → (Lip(X,E),‖ · ‖M ) is a hermitian operator if and only if

there exists a hermitian operator φ : E → E such that

T (F )(x) = φ(F (x)), F ∈ Lip(X,E), x ∈X.

How about the case Lip(X,E) with ‖ · ‖L? One may think that each feature of the two

norms does not make a big difference, but this is not the case. The studies of the classes
of operators on Lip(X,E) depend heavily on the properties of the norm. The standard

approach to the studies of isometries or related operators on Banach spaces relies on a

characterization of the extreme points of the closed unit ball of the corresponding dual

spaces. But the extreme points of the closed unit ball of the dual space of (Lip(X,E),‖·‖L)
are completely different from those of (Lip(X,E),‖·‖M ). The former is much complicated.

For operators on (Lip(X,E),‖ · ‖L), it is nontrivial to derive a representation from the

action of their adjoints, so we have to work quite hard to give a representation. Actually, in
the case of hermitian operators on (Lip(X,E),‖ · ‖L), difficulties to give a representation

remain even if we have a representation of hermitian operators on (Lip(X,E),‖ · ‖M ).

Indeed, Botelho, Jamison, Jiménez-Vargas and Villegas-Vallecillos proved that hermitian
operators between Lip(X)-spaces with ‖·‖L in [3] are composition operators. Recently, the

author of this paper generalized to Lip(X,E), where E is a finite dimensional complex

Banach space in [14]. But it has not been solved in general. In this paper, we give a

complete representation for any complex Banach space E.

1.3. Notations and Remarks

Throughout this paper, X, X1 and X2 are compact metric spaces, and E, E1 and E2 are

complex Banach spaces. In addition, A, A1 and A2 are unital C∗-algebras. For a unital

C∗-algebra A, if its center is trivial (i.e., {b ∈ A : ab= ba for all a ∈ A}= C1), we call it
a unital factor C∗-algebra. For Banach space E, we denote the closed unit ball of E by

B(E), and the closed unit ball of the dual space E∗ by B(E∗). We also denote the unit

sphere of E by S(E). For any f ∈ Lip(X) and e ∈ E, we define f ⊗ e :X → E by

(f ⊗ e)(x) = f(x)e.
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We have f ⊗ e ∈ Lip(X,E) such that ‖f ⊗ e‖∞ = ‖f‖∞‖e‖E and L(f ⊗ e) = L(f)‖e‖E .
This implies that ‖f ⊗ e‖L = ‖f‖L‖e‖E . We see that f ⊗ e is an element of the algebraic

tensor product space Lip(X)⊗E with the crossnorm ‖ · ‖L.
Recall that the purpose of this paper is to generalize the theorems in [14]. Although we

need new approaches and additional arguments, some arguments remain valid. Similar

arguments may be found in [14], but we adapt these to our setting and give proofs as
accurately as possible.

2. A characterization of hermitian operators on Lip(X,E)

Firstly, we would like to consider hermitian operators on (Lip(X,E),‖ · ‖L). We write

X̃ = {(x,y) ∈X2 | x �= y}. Let β(X̃×B(E∗)) be the Stone–Čech compactification of X̃×
B(E∗). For any F ∈ Lip(X,E), we denote by F̃ : β(X̃×B(E∗))→C the unique continuous
extension of the bounded continuous function

((x,y),e∗) 	→ e∗
(
F (x)−F (y)

d(x,y)

)

on X̃×B(E∗). Since we have ‖F̃‖∞ = L(F ) for any F ∈ Lip(X,E), we can define a linear

isometric embedding Γ : (Lip(X,E),‖ · ‖L)→ (C(X×β(X̃×B(E∗))×B(E),E),‖ · ‖∞) by
Γ(F )(x,ξ,e) = F (x)+ F̃ (ξ)e. Moreover, for any G ∈ Lip(X,E), we define the set PG by

PG = {t ∈X×β(X̃×B(E∗))×B(E) : ‖Γ(G)(t)‖E = ‖Γ(G)‖∞ = ‖G‖L}.

Lemma 2.1. For any G ∈ Lip(X,E), we have PG �= ∅.

Proof. If G=0, we have (x0,ξ,e)∈PG for any (x0,ξ,e)∈X×β(X̃×B(E∗))×B(E). Thus,
let G ∈ Lip(X,E) with G �= 0. Since β(X̃ ×B(E∗)) is compact, there exists ξ ∈ β(X̃ ×
B(E∗)) such that |G̃(ξ)|= ‖G̃‖∞ = L(G). There are x0 ∈X such that ‖G(x0)‖E = ‖G‖∞
and α ∈ C with |α|= 1 such that αG̃(ξ) = ‖G̃‖∞ = L(G). We get

‖Γ(G)(x0,ξ,
α

‖G(x0)‖E
G(x0))‖E = ‖G(x0)+ G̃(ξ)

α

‖G(x0)‖E
G(x0)‖E

= (1+L(G)
1

‖G‖∞
)‖G‖∞ = ‖G‖∞+L(G) = ‖G‖L.

This implies that (x0,ξ,
α

‖G(x0)‖E
G(x0)) ∈ PG.

By Lemma 2.1 and the axiom of choice, there exists a choice function

Ψ : Lip(X,E)→X×β(X̃×B(E∗))×B(E)

such that Ψ(G) ∈ PG for every G ∈ Lip(X,E). Let [·,·]E on E be a semi-inner product

which is compatible with the norm of E. Define a map [·,·]ΨL : Lip(X,E)×Lip(X,E)→C

given by

[F,G]ΨL = [Γ(F )(Ψ(G)),Γ(G)(Ψ(G))]E, F,G ∈ Lip(X,E). (2)

It is easy to check that [·,·]ΨL is a semi-inner product on Lip(X,E) compatible with the

norm ‖ · ‖L. Now we get the following lemma. The basic idea of the proof is the same as

[14, Lemma 2.3].
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Lemma 2.2. Let T be a hermitian operator on (Lip(X,E),‖ · ‖L). Then

T (1⊗ e) ∈ 1⊗E

for any e ∈ E.

Proof. Let e ∈ E. If e = 0, then T (1⊗ e) = T (0) = 0 = 1⊗ 0 ∈ 1⊗E. Thus, we assume

that 0 �= e ∈ B(E). Fix x′ ∈X, (x,y) ∈ X̃ and e∗ ∈ B(E∗). Let θ ∈ [0,2π). We obtain

Γ(1⊗ e)(x′,((x,y),eiθe∗),e)

= (1⊗ e)(x′)+ eiθe∗
(
(1⊗ e)(x)− (1⊗ e)(y)

d(x,y)

)
e= e+0e= e. (3)

This implies that

‖Γ(1⊗ e)(x′,((x,y),eiθe∗),e)‖E = ‖1⊗ e‖L.

Thus, we get (x′,((x,y),eiθe∗),e) ∈ P1⊗e. Choose a choice function Ψθ : Lip(X,E)→X×
β(X̃×B(E∗))×B(E) such that

Ψθ(1⊗ e) = (x′,((x,y),eiθe∗),e)

and define a semi-inner product [·,·]ΨθL on Lip(X,E) in the manner as in (2). Since T is

a hermitian operator, we have [T (1⊗ e),1⊗ e]ΨθL ∈ R. By (3), it follows that

R � [T (1⊗ e),1⊗ e]ΨθL

= [Γ(T (1⊗ e))(Ψθ(1⊗ e)),Γ(1⊗ e)(Ψθ(1⊗ e))]E

= [T (1⊗ e)(x′)+ eiθe∗
(
T (1⊗ e)(x)−T (1⊗ e)(y)

d(x,y)

)
e,e]E

= [T (1⊗ e)(x′),e]E + eiθe∗
(
T (1⊗ e)(x)−T (1⊗ e)(y)

d(x,y)

)
‖e‖2E . (4)

As e �= 0, we see that ‖e‖2E > 0. Since θ ∈ [0,2π) is arbitrary, it must be

e∗
(
T (1⊗ e)(x)−T (1⊗ e)(y)

d(x,y)

)
= 0 (5)

for any e∗ ∈ B(E∗). This implies

T (1⊗ e)(x)−T (1⊗ e)(y)

d(x,y)
= 0

for any (x,y) ∈ X̃. Thus, we deduce L(T (1⊗ e)) = 0. Therefore, there exists e0 ∈ E such

that T (1⊗ e) = 1⊗ e0.

Applying Lemma 2.2, we define a map φ : E → E by

T (1⊗ e) = 1⊗φ(e) (6)

for each e ∈ E. By (4) and (5), we have R � [T (1⊗ e),1⊗ e]ΨθL = [T (1⊗ e)(x′),e]E . This
implies that [φ(e),e]E ∈ R for any e ∈ E. Since T is a bounded linear operator, we get φ

is a hermitian operator on E.
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We give a complete description of hermitian operators on Lip(X,E) with ‖ · ‖L, where
E is any complex Banach space (without assuming that E is of a finite dimension).

Theorem 2.3. Let X be a compact metric space and E a complex Banach space. Then

T : (Lip(X,E),‖ · ‖L), → (Lip(X,E),‖ · ‖L) is a hermitian operator if and only if there
exists a hermitian operator φ : E → E such that

T (F )(x) = φ(F (x)), F ∈ Lip(X,E), x ∈X. (7)

Proof of Theorem 2.3. Suppose that T is of the form described as (7) in the statement

of Theorem 2.3. To prove that T is a hermitian operator, we apply the fact that T is
a hermitian if and only if eitT is a surjective isometry for every t ∈ R; see [6, Theorem

5.2.6]. Let t ∈ R. By the definition of T, we have

eitT (F )(x) = eitφ(F (x))

for any F ∈ Lip(X,E) and x ∈ X. Since φ is a hermitian on E, eitφ is a surjective

isometry. This implies that ‖eitT (F )‖∞ = ‖F‖∞ and L(eitT (F )) =L(F ). Thus, we deduce
‖eitT (F )‖L = ‖F‖L for any F ∈ Lip(X,E). Since eitT is a surjective isometry for every

t ∈ R, we conclude T is a hermitian operator. We prove the converse. Suppose that

T : Lip(X,E)→Lip(X,E) is a hermitian operator. Let φ be the operator defined by (6). A
similar argument as above yields an operator from Lip(X,E) into itself given by F 	→ φ◦F
is a hermitian operator. Hence, we define a hermitian operator T0 : Lip(X,E)→ Lip(X,E)

by

T0(F )(x) = T (F )(x)−φ(F (x))

for all F ∈ Lip(X,E) and x ∈X. We shall prove that T0 = 0 on Lip(X,E) in two steps.

Step 1. For any f ∈ Lip(X) and e ∈ E, we have T0(f ⊗ e) = 0.

Note that the same idea with [14, Theorem 2.2] is valid even if we replace a finite
dimensional Banach space E with a Banach space E.

By [6, p. 10], there is a semi-inner product [·,·]E on E compatible with the norm such

that [e1,λe2]E = λ̄[e1,e2]E for any ei ∈ E and λ ∈ C. Let e ∈ S(E). We define a map
Se : Lip(X)→ Lip(X) by

Se(f)(x) = [T0(f ⊗ e)(x),e]E, f ∈ Lip(X), x ∈X.

By simple calculations, we have that Se is a bounded linear operator with ‖Se‖ ≤ ‖T0‖.
Moreover, we shall prove that Se is a hermitian operator. Let t ∈ R. By the definition of
Se, we get (I+ itSe)(1)(x) = 1 for any x ∈X. This implies that

1≤ ‖I+ itSe‖. (8)

However, let f ∈ Lip(X). We obtain for any x,y ∈X,

|(I+ itSe)(f)(x)| ≤ ‖(I+ itT0)(f ⊗ e)‖∞
and

|(I+ itSe)(f)(x)− (I+ itSe)(f)(y)| ≤ L((I+ itT0)(f ⊗ e))d(x,y).
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Therefore, we get

‖(I+ itSe)(f)‖L ≤ ‖(I+ itT0)(f ⊗ e)‖∞+L((I+ itT0)(f ⊗ e))

≤ ‖I+ itT0‖‖f ⊗ e‖L = ‖I+ itT0‖‖f‖L

for any f ∈ Lip(X). We conclude that

‖I+ itSe‖ ≤ ‖I+ itT0‖. (9)

Since T0 is a hermitian operator on Lip(X,E), we have ‖I+itT0‖=1+o(t) by [6, Theorem
5.2.6]. By (8) and (9), we see that

1≤ ‖I+ itSe‖ ≤ ‖I+ itT0‖= 1+o(t).

This implies that Se : Lip(X) → Lip(X) is a hermitian operator. By [3, Theorem 3.1.],

we have that Se is a real multiple of the identity. Since Se(1)(x) = [T0(1⊗ e)(x),e] =

0, we deduce Se(f)(x) = 0f(x) = 0 for any f ∈ Lip(X) and x ∈ X. This implies that

[T0(f ⊗ e)(x),e]E = 0 for all f ∈ Lip(X) and x ∈X. As e ∈ S(E) is arbitrary, we obtain

[T0(f ⊗ e)(x),e]E = 0, e ∈ E, f ∈ Lip(X), x ∈X. (10)

Let f ∈ Lip(X) and x ∈X. Then we define a map Sfx : E → E by Sfx(e) = T0(f ⊗ e)(x)
for any e∈E. Since T0 is a bounded linear operator, Sfx is also a bounded linear operator

with ‖Sfx‖≤ ‖T0‖‖f‖L. By (10), we have [Sfx(e),e]E = [T0(f⊗e)(x),e]E =0 for all e∈E.

Applying [11, Theorem 5], we have T0(f⊗e)(x) = Sfx(e) = 0 for any e∈E. As f ∈Lip(X)
and x ∈X are arbitrary, we conclude step 1.

Step 2. For any F ∈ Lip(X,E), we have T0(F ) = 0.

If F ∈ Lip(X)⊗E, step 1 yields that T0(F ) = 0 by the linearity of T0. Thus, it suffices to

show T0(F ) = 0 holds for any F ∈ Lip(X,E)\Lip(X)⊗E. Let F ∈ Lip(X,E)\Lip(X)⊗E

with F (x0) = 0. For any e ∈ S(E), put

Ge = (‖F‖∞−|F |)⊗ e+F,

where |F |(x) := ‖F (x)‖E and |F | ∈ Lip(X). Then we have

Ge(x0) = ‖F‖∞e

and

‖Ge(x)‖E = ‖(‖F‖∞−‖F (x)‖E)⊗ e+F (x)‖E
≤ ‖F‖∞−‖F (x)‖E +‖F (x)‖E = ‖F‖∞

for any x ∈ X. Thus, we obtain ‖Ge(x0)‖E = ‖F‖∞ = ‖Ge‖∞. As β(X̃ × B(E∗)) is

compact, there are ξ ∈ β(X̃×B(E∗)) and α ∈ C with |α|= 1 such that αG̃e(ξ) = L(Ge).
This implies that (x0,ξ,αe) ∈ PGe

. We choose a choice function Ψe : Lip(X,E) → X ×
β(X̃ ×B(E∗))×B(E) such that Ψe(Ge) = (x0,ξ,αe) and define a semi-inner product

[·,·]ΨeL in the manner as in (2). Since T0 : Lip(X,E)→ Lip(X,E) is a hermitian operator,
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we get

R � [T0(Ge),Ge]ΨeL = [T0(F ),Ge]ΨeL

= [T0(F )(x0)+αT̃0(F )(ξ)e,‖F‖∞e+L(Ge)e]E

= (e∗(T0(F )(x0))+αT̃0(F )(ξ))‖Ge‖L,

where e∗ ∈ B(E∗) with e∗(e) = 1 for any e ∈ S(E). We have

e∗(T0(F )(x0))+αT̃0(F )(ξ) ∈ R. (11)

However, there exists y0 ∈ X such that ‖F (y0)‖E = ‖F‖∞ �= 0, and there is fy0
∈ S(E)

such that F (y0) = ‖F‖∞fy0
. We get

Ge(y0) = F (y0) = ‖F‖∞fy0
.

This implies that ‖Ge(y0)‖E = ‖F (y0)‖E = ‖F‖∞ = ‖Ge‖∞. We have

‖Γ(Ge)(y0,ξ,αfy0
)‖E = ‖Ge(y0)+αG̃e(ξ)fy0

‖E
= ‖‖F‖∞fy0

+L(Ge)fy0
‖E = ‖F‖∞+L(Ge) = ‖Ge‖L.

Thus, we get (y0,ξ,αfy0
) ∈ PGe

. In the same manner, there is a choice function Ψfy0
:

Lip(X,E) → X × β(X̃ ×B(E∗))×B(E) such that Ψfy0
(Ge) = (y0,ξ,αfy0

), and we can
define a semi-inner product [·,·]Ψfy0

L on Lip(X,E). It follows that

R � [T0(Ge),Ge]Ψfy0
L = [T0(F ),Ge]Ψfy0

L

= [T0(F )(y0)+αT̃0(F )(ξ)fy0
,‖Ge‖Lfy0

]E

= (fy0

∗(T0(F )(y0))+αT̃0(F )(ξ))‖Ge‖L,

where fy0

∗ ∈ B(E∗) with fy0

∗(fy0
) = 1. We obtain

fy0

∗(T0(F )(y0))+αT̃0(F )(ξ) ∈ R. (12)

By (11) and (12), we get e∗(T0(F )(x0))−fy0

∗(T0(F )(y0))∈R. Since e∈ S(E) is arbitrary,

it follows that T0(F )(x0) = 0. Let F ∈ Lip(X,E) \ Lip(X)⊗E and x ∈ X. We define

Fx = F −1⊗F (x). Since Fx(x) = 0, we get

0 = T0(Fx)(x) = T0(F )(x)−T0(1⊗F (x))(x) = T0(F )(x).

Thus, we have T0(F ) = 0 for any F ∈ Lip(X,E) and conclude step 2.

Therefore, we obtain T (F )(x) = φ(F (x)) for any F ∈ Lip(X,E). This completes the

proof.

3. An extension of isometries on Lip(X)⊗E

We define the notation of T-sets which is introduced by Myers in [13].

Definition 3.1. Let (A,‖ · ‖A) be a semi-normed space. For a subset U of A, we call U

a T-set of A with respect to ‖ ·‖A if U satisfies the property that for any finite collection
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a1, · · · ,an ∈U, ‖Σn
i=1ai‖A =Σn

i=1‖ai‖A and such that U is a maximal with respect to the

property. If no confusion is possible, we will refer to T-set of A with respect to ‖ · ‖A as

T-set of A.

Lemma 3.2. Let (A,‖ · ‖A) be a Banach space and U a T-set of A with respect to ‖ · ‖A.
If a ∈ U, then λa ∈ U for any λ≥ 0.

Proof. We conclude this Lemma by the Hahn−Banach theorem immediately.

Lemma 3.3. Let Ni be normed spaces for i=1,2. Suppose that U :N1 →N2 is a surjective

isometry with U(0) = 0. Then U maps T-sets of N1 to T-sets of N2.

Proof. It follows from the Mazur−Ulam theorem that every surjective isometry U
between two normed spaces with U(0) = 0 is a real linear isometry. By the maximality of

T-sets and surjectivity of U, we conclude that U preserves T-sets.

Let (E,‖ · ‖E) be a Banach space. Let x ∈X, U be a T-set of E with respect to ‖ · ‖E
and T be a T-set of Lip(X,E) with respect to L(·). We write

S(x,U,T) = {F ∈ Lip(X,E) : F (x) ∈ U,‖F (x)‖E = ‖F‖∞,F ∈ T}.

Lemma 3.4. Let x ∈X, U be a T-set of E and T be a T-set of Lip(X,E) with respect
to L(·). Then for any finite collection F1, · · · ,Fn ∈ S(x,U,T), we have ‖Σn

i=1Fi‖L =

Σn
i=1‖Fi‖L.

Proof. For any F1, · · · ,Fn ∈ S(x,U,T), we have Fi(x) ∈U and ‖Fi(x)‖E = ‖Fi‖∞ for any

i= 1, · · · ,n. We get

‖Σn
i=1Fi‖∞ ≤ Σn

i=1‖Fi‖∞ =Σn
i=1‖Fi(x)‖E = ‖Σn

i=1Fi(x)‖E ≤ ‖Σn
i=1Fi‖∞.

This implies that ‖Σn
i=1Fi‖∞ =Σn

i=1‖Fi‖∞. Since Fi ∈ T for any i= 1, · · · ,n, we also get

L(Σn
i=1Fi) = Σn

i=1L(Fi). This implies that ‖Σn
i=1Fi‖L =Σn

i=1‖Fi‖L.

Proposition 3.5. Let S be a T-set of Lip(X,E) with respect to ‖ · ‖L. Then there is

x ∈X and there are U and T, where U is a T-set of E and T is a T-set of Lip(X,E) with
respect to L(·), such that S = S(x,U,T).

Proof. For any F ∈ S, we write P (F ) := {x ∈X : ‖F (x)‖E = ‖F‖∞}. We shall show that⋂
F∈S P (F ) �= ∅. For any finite collection F1, · · · ,Fn ∈ S, we get ‖Σn

i=1Fi‖L =Σn
i=1‖Fi‖L.

As ‖Σn
i=1Fi‖∞ ≤ Σn

i=1‖Fi‖∞ and L(Σn
i=1Fi) ≤ Σn

i=1L(Fi), we have ‖Σn
i=1Fi‖∞ =

Σn
i=1‖Fi‖∞. Since Σn

i=1Fi ∈ Lip(X,E), there is x ∈ X such that ‖(Σn
i=1Fi)(x)‖E =

‖Σn
i=1Fi‖∞. Thus, we get

Σn
i=1‖Fi‖∞ = ‖Σn

i=1Fi‖∞ = ‖(Σn
i=1Fi)(x)‖E ≤ Σn

i=1‖Fi(x)‖E ≤ Σn
i=1‖Fi‖∞.

This implies that ‖Fi‖∞ = ‖Fi(x)‖E for any i = 1, · · · ,n and x ∈
⋂n

i=1P (Fi). Since X is

compact and P (F ) is a closed set for each F ∈ S, we have
⋂

F∈S P (F ) �= ∅ by the finite
intersection property.

Let x ∈
⋂

F∈S P (F ). We consider the set

Rx(S) := {F (x) ∈ E : F ∈ S}.
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Choose any finite collection F1(x), · · · ,Fn(x) ∈ Rx(S). Since Σn
i=1Fi ∈ S, we have x ∈

P (Σn
i=1Fi). This implies

Σn
i=1‖Fi‖∞ = ‖Σn

i=1Fi‖∞ = ‖Σn
i=1Fi(x)‖E ≤ Σn

i=1‖Fi(x)‖E =Σn
i=1‖Fi‖∞.

Thus, we have ‖Σn
i=1Fi(x)‖E = Σn

i=1‖Fi(x)‖E , which means that there is a T-set U of E
such that Rx(S)⊂U. Therefore, for any F ∈ S, we have F (x) ∈U and ‖F (x)‖E = ‖F‖∞.

Since L(Σn
i=1Fi) =Σn

i=1L(Fi) for any finite collection F1, · · · ,Fn ∈S, there exists a T-set

T of Lip(X,E) with respect to L(·) such that S ⊂ T. This implies that S ⊂ S(x,U,T). By
Lemma 3.4 and maximality of S, we conclude that S = S(x,U,T).

Proposition 3.6. Let Xi be a compact metric space and Ei be a Banach space for i=1,2.
Let U : Lip(X1,E1)→ Lip(X2,E2) be a surjective complex linear isometry. Suppose that

there is a surjective complex linear isometry ψ :E1 →E2 and there is a surjective isometry

ϕ :X2 →X1 such that U(f ⊗ e)(y) = ψ(f(ϕ(y))e) for any f ∈ Lip(X1) and e ∈ E1. Then

U(F )(y) = ψ(F (ϕ(y)))

for any F ∈ Lip(X1,E1) and y ∈X2.

In the rest of this section, we assume that a surjective complex linear isometry

U : Lip(X1,E1) → Lip(X2,E2) satisfies the assumption of Proposition 3.6. To prove

Proposition 3.6 we first show the following lemma.

Lemma 3.7. Let x0 ∈ X1 and F ∈ Lip(X1,E1) with ‖F‖∞ = 1 and F (x0) = 0. Then

U(F )(y0) = 0, where y0 = ϕ−1(x0).

Proof. Suppose that U(F )(y0) �= 0. Put a = U(F )(y0)/‖U(F )(y0)‖E2
. The map from

S(E2) to R defined by

e 	→ ‖U(F )(y0)+(‖U(F )‖∞+1)e‖E2

is continuous. Since ‖U(F )(y0)‖E2
�= 0, we have

‖U(F )(y0)+(‖U(F )‖∞+1)a‖E2
=

∥∥∥∥ U(F )(y0)

‖U(F )(y0)‖E2

(‖U(F )(y0)‖E2
+‖U(F )‖∞+1)

∥∥∥∥
E2

= ‖U(F )(y0)‖E2
+‖U(F )‖∞+1> ‖U(F )‖∞+1.

There exists δ > 0 such that if e∈ S(E2) with ‖a−e‖E2
<δ, then ‖U(F )(y0)+(‖U(F )‖∞+

1)e‖E2
> ‖U(F )‖∞ +1. We choose θ ∈ (0,2π) such that |eiθ − 1| < δ. We write eθ :=

ψ−1(eiθa). This implies that

‖U(F )(y0)+(‖U(F )‖∞+1)ψ(eθ)‖E2
> ‖U(F )‖∞+1. (13)

For any n ∈ N, we define gn ∈ Lip(X1) by

gn(x) = (‖U(F )‖∞+1)max{1−nL(F )d(x,x0),0}, x ∈X1.

By Zorn’s lemma, there is Sn which is a T-set of Lip(X1,E1) with respect to ‖ · ‖L such

that F +gn⊗ eθ ∈ Sn. We have

(F +gn⊗ eθ)(x0) = (‖U(F )‖∞+1)eθ.
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When x �= x0 and 1−nL(F )d(x,x0)≥ 0, we have

‖(F +gn⊗ eθ)(x)‖E1
= ‖F (x)−F (x0)+(gn⊗ eθ)(x)‖E1

≤ L(F )d(x,x0)+(‖U(F )‖∞+1)(1−nL(F )d(x,x0))

= (1−n(‖U(F )‖∞+1))L(F )d(x,x0)+‖U(F )‖∞+1< ‖U(F )‖∞+1.

When 1−nL(F )d(x,x0)≤ 0, we have

‖(F +gn⊗ eθ)(x)‖E1
= ‖F (x)‖E1

≤ 1< ‖U(F )‖∞+1.

Thus, we obtain P (F +gn⊗eθ) = {x0}. By Proposition 3.5, there are T-set Un ⊂E1 and

T-set Tn ⊂ Lip(X1,E1) such that F +gn⊗eθ ∈ Sn = S(x0,Un,Tn). In particular, we have

(‖U(F )‖∞+1)eθ = (F +gn⊗ eθ)(x0) ∈ Un.

By Lemma 3.2, eθ ∈Un. Since U is a surjective isometry with U(0) = 0, Lemma 3.3 shows

that there are yn ∈X2, T-set Vn ⊂ E2 and T-set T′
n ⊂ Lip(X2,E2) with respect to L(·)

such that U(S(x0,Un,Tn)) = S(yn,Vn,T
′
n). Since eθ ∈Un, we have 1⊗eθ ∈ S(x0,Un,Tn).

By the assumption, we have U(1⊗eθ) = 1⊗ψ(eθ)∈ S(yn,Vn,T
′
n). It implies that ψ(eθ)∈

Vn for any n ∈ N. For any y ∈X2,

U(F +gn⊗ eθ)(y) = U(F )(y)+ψ(gn(ϕ(y))eθ)

= U(F )(y)+(‖U(F )‖∞+1)max{1−nL(F )d(ϕ(y),x0),0}ψ(eθ).

We shall show that the sequence {yn} converges y0 as n→∞. Suppose that there exists

n ∈N such that 1−nL(F )d(ϕ(yn),x0)< 0. Since U(F +gn⊗eθ) ∈ S(yn,Vn,T
′
n), we have

‖U(F )‖∞ ≥ ‖U(F )(yn)‖E2

= ‖(U(F )+U(gn⊗ eθ))(yn)‖E2
= ‖U(F )+U(gn⊗ eθ)‖∞. (14)

Moreover, we get gn(x0) = (‖U(F )‖∞ + 1)max{1− nL(F )d(x0,x0),0} = ‖U(F )‖∞ + 1.

Since ϕ(y0) = x0, we have U(gn⊗ eθ)(y0) = ψ(gn(ϕ(y0))eθ) = (‖U(F )‖∞+1)ψ(eθ). This
implies that

‖U(F )+U(gn⊗ eθ)‖∞ ≥ ‖U(F )(y0)+(‖U(F )‖∞+1)ψ(eθ)‖E2

> ‖U(F )‖∞+1, (15)

where the last inequality follows by (13). By (14) and (15), we have ‖U(F )‖∞ >

‖U(F )‖∞+1. This is a contradiction. Thus, for every n ∈ N, we have

1−nL(F )d(ϕ(yn),x0)≥ 0.

Thus, we get 1/nL(F )>d(ϕ(yn),x0) = d(ϕ(yn),ϕ(y0)) = d(yn,y0). This implies that yn →
y0 as n→∞. Since U(F ) ∈ Lip(X2,E2), we get U(F )(yn)→ U(F )(y0).

Because we obtain 0≤ 1−nL(F )d(ϕ(yn),x0)≤ 1, the sequence {1−nL(F )d(ϕ(yn),x0)}
has a convergent subsequence. Without loss of generality, we can assume that the sequence
converges to β ∈ [0,1] as n→∞. We write

cn := U(F +gn⊗ eθ)(yn) = U(F )(yn)+(‖U(F )‖∞+1)(1−nL(F )d(ϕ(yn),x0))ψ(eθ)
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and

c0 := U(F )(y0)+(‖U(F )‖∞+1)βψ(eθ). (16)

We obtain that

‖cn− c0‖E2
→ 0 if n→∞. (17)

As U(F + gn ⊗ eθ) ∈ S(yn,Vn,T
′
n), we get cn ∈ Vn. Since ψ(eθ) ∈ Vn, we have ‖cn +

ψ(eθ)‖E2
= ‖cn‖E2

+‖ψ(eθ)‖E2
. By (17), we get ‖c0+ψ(eθ)‖E2

= ‖c0‖E2
+‖ψ(eθ)‖E2

. As

ψ(eθ) = eiθa, we obtain

‖e−iθc0+a‖E2
= ‖e−iθc0‖E2

+‖a‖E2
.

Thus, there is τ ∈ E∗
2 such that ‖τ‖ = 1, τ(e−iθc0) = ‖c0‖E2

and τ(a) = ‖a‖E2
= 1. By

(16) and a= U(F )(y0)/‖U(F )(y0)‖E2
, we have

eiθ‖c0‖E2
= τ(c0) = τ(U(F )(y0))+ τ((‖U(F )‖∞+1)βeiθa)

= ‖U(F )(y0)‖E2
+ eiθ(‖U(F )‖∞+1)β.

We obtain that ‖U(F )(y0)‖E2
= eiθ(‖c0‖E2

− (‖U(F )‖∞ + 1)β). As θ ∈ (0,2π) and

‖c0‖E2
− (‖U(F )‖∞+1)β ∈ R, we conclude U(F )(y0) = 0.

Proof of Proposition 3.6. By the assumption, it suffices to show that U(F )(y) =

ψ(F (ϕ(y))) holds for any F ∈ Lip(X1,E1) in which F is not a constant map. For any

x ∈X1, we define G := F −1⊗F (x). Then we have G(x) = 0. As G �= 0, without loss of
generality, we assume that ‖G‖∞ = 1. By Lemma 3.7, we obtain U(G)(ϕ−1(x)) = 0. This

implies that U(F )(ϕ−1(x)) = U(1⊗F (x))(ϕ−1(x)) = ψ(1(x)F (x)) = ψ(F (x)).

4. Proof of Theorem 1.2

Let Ai be unital C∗-algebras for i = 1,2. In this section, we consider unital surjective

complex isometries with respect to the norm ‖ · ‖L from Lip(X1,A1) onto Lip(X2,A2).
Although we apply similar arguments as [14], we show a proof without omitting it because

this is a generalization for [14, Theorem 3.3]. We say that a bounded operator D on a

unital C∗-algebra A is a ∗-derivation if

D(ab) =D(a)b+aD(b),

D(a∗) =D(a)∗ (18)

for every pair a,b∈A. By the definition, it is easy to see that D(1) = 0 for any ∗-derivation
on A. For each a ∈ A, a left multiplication operator Ma :A→A is defined by Mab= ab

for every b ∈ A. We denote the set of all hermitian elements of A by H(A).

The following is the characterization of hermitian operators on a unital C∗-algebra.

Theorem 4.1 (Sinclair [15]). Let A be a unital C∗-algebra. A bounded operator T on A
is a hermitian operator if and only if there exist h ∈ H(A) and a ∗-derivation D on A
such that T =Mh+ iD.

We introduce the notation to characterize hermitian operators on Lip(X,A).
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Definition 4.2. For any h ∈ H(A), we define a multiplication operator M1⊗h :

Lip(X,A)→ Lip(X,A) by

M1⊗h(F ) = (1⊗h)F, F ∈ Lip(X,A).

For any ∗-derivation D :A→A, we define a map D̂ : Lip(X,A)→ Lip(X,A) by

D̂(F )(x) =D(F (x)), F ∈ Lip(X,A), x ∈X.

Combining Theorem 4.1 and Theorem 2.3, we obtain the following.

Proposition 4.3. Suppose that T : Lip(X,A) → Lip(X,A) is a map. Then T is a

hermitian operator if and only if there exist h ∈H(A) and a ∗-derivation D on A such

that

T =M1⊗h+ iD̂. (19)

The following proposition is a well-known fact.

Proposition 4.4. Let Bj be Banach algebras for j = 1,2. Suppose that U is a surjective
complex linear isometry from B1 onto B2 and T is a hermitian operator on B1. Then the

map UTU−1 is a hermitian operator on B2.

In the rest of this section, we consider a surjective complex linear isometry U :
(Lip(X1,A1),‖ · ‖L)→ (Lip(X2,A2),‖ · ‖L) with U(1) = 1.

Lemma 4.5. For any h ∈H(A1), there exists h′ ∈H(A2) such that

U(1⊗h) = 1⊗h′.

Proof. Let h∈H(A1). We apply Proposition 4.3 to obtain M1⊗h is a hermitian operator

on Lip(X1,A1). It follows from Proposition 4.4 that UM1⊗hU
−1 is a hermitian operator

on Lip(X2,A2). By applying Proposition 4.3 again, there exists h′ ∈ H(A2) and a ∗-
derivation D on A2 such that

UM1⊗hU
−1 =M1⊗h′ + iD̂. (20)

For any y ∈X2, we have

(UM1⊗hU
−1)(1)(y) = UM1⊗h(1)(y) = U(1⊗h)(y)

and

M1⊗h′(1)(y)+ iD̂(1)(y) = (1⊗h′)(y)+ iD(1(y)) = h′+ i0 = h′.

This implies that U(1⊗h) = 1⊗h′.

By Lemma 4.5, we define a map ψ0 :H(A1)→H(A2) by

U(1⊗h) = 1⊗ψ0(h).

By using ψ0, the equation (20) of the above proof can be written as

UM1⊗hU
−1 =M1⊗ψ0(h)+ iD̂. (21)
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Lemma 4.6. The map ψ0 is a real linear isometry from H(A1) onto H(A2) such that

ψ0(1) = 1.

Proof. For any h2 ∈H(A2), by Proposition 4.4, we have that U−1M1⊗h2
U is a hermitian

operator on Lip(X1,A1). By Proposition 4.3, there are h1 ∈H(A1) and a ∗-derivation D1

on A1 such that

U−1M1⊗h2
U =M1⊗h1

+ iD̂1.

Since we have M1⊗h1
= U−1M1⊗h2

U − iD̂1, we get

UM1⊗h1
U−1(1) = U(U−1M1⊗h2

U − iD̂1)U
−1(1)

=M1⊗h2
(1)−U(iD̂1(1)) = 1⊗h2− iU(0) = 1⊗h2.

We obtain U(1⊗h1) = 1⊗h2 and ψ0(h1) = h2. It follows that ψ0 is surjective. For any
h ∈H(A1), we get ‖ψ0(h)‖A2

= ‖1⊗ψ0(h)‖L = ‖U(1⊗h)‖L = ‖1⊗h‖L = ‖h‖A1
. Thus,

we have ψ0 is an isometry. Since U is a linear map, it is easy to see that ψ0 is real linear.

Moreover, U(1) = 1; we get ψ0(1) = 1.

For any a ∈A1, there are h1,h2 ∈H(A1) such that a= h1+ ih2. Thus, we define a map
ψ :A1 →A2 by

ψ(a) = ψ(h1+ ih2) := ψ0(h1)+ iψ0(h2).

By a simple calculation, we have

U(1⊗a) = 1⊗ψ(a) (22)

for any a ∈ A1.

Lemma 4.7. The map ψ is a surjective complex linear isometry from A1 onto A2 such

that ψ(1) = 1.

Proof. By (22), we have ψ is a complex linear isometry with ψ(1) = 1. Therefore, it

suffices to show ψ is surjective. For any a ∈ A2, there exists h1, h2 ∈ H(A2) such that

a = h1+ ih2. Since Lemma 4.6 shows that ψ0 : H(A1) → H(A2) is surjective, there are
h

′

1,h
′

2 ∈H(A1) such that ψ0(h
′

1) = h1 and ψ0(h
′

2) = h2. Then we get a′ = h
′

1+ ih
′

2 ∈ A1.

This implies that

ψ(a′) = ψ0(h
′

1)+ iψ0(h
′

2) = h1+ ih2 = a.

This completes the proof.

Lemma 4.8. Suppose that Ai is a unital factor C∗-algebra for i= 1,2. Then there exists
a surjective isometry ϕ :X2 →X1 such that

U(f ⊗1)(y) = f(ϕ(y))⊗1

for all f ∈ Lip(X1) and y ∈X2.
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Proof. For any b ∈ A2 with b∗ =−b, we define a ∗-derivation D on A2 by

D(a) = ba−ab, a ∈ A2.

Note that Proposition 4.3 shows that the map iD̂ : Lip(X2,A2)→ Lip(X2,A2) defined by

(iD̂)(F )(y) = iD(F (y)) F ∈ Lip(X2,A2), y ∈X2

is a hermitian operator on Lip(X2,A2). Since the map U is an isometry, U−1iD̂U is

a hermitian operator on Lip(X1,A1). By Proposition 4.3, there exists h ∈ H(A1) and
∗-derivation D′ on A1 such that

U−1iD̂U =M1⊗h+ iD̂′.

As U(1) = 1, we get

(U−1iD̂U)(1) = i(U−1D̂U)(1) = iU−1D̂(1) = iU−1(0) = 0.

This implies that

0 = (U−1iD̂U)(1) = (M1⊗h+ iD̂′)(1)

= 1⊗h+ iD̂′(1) = 1⊗h+ i0 = 1⊗h.

Thus, we have U−1iD̂U = iD̂′. This implies that for any f ∈ Lip(X1), we have

(U−1iD̂U)(f ⊗ 1)(x) = iD̂′(f ⊗ 1)(x) = 0 for all x ∈ X1. In addition, by the definition

of D, we get

(U−1iD̂U)(f ⊗1) = U−1(iD̂U(f ⊗1))

= iU−1(1⊗ bU(f ⊗1)−U(f ⊗1)1⊗ b). (23)

Therefore, we have

U−1(1⊗ bU(f ⊗1)−U(f ⊗1)1⊗ b) = 0.

Since U is surjective, we have

1⊗ bU(f ⊗1) = U(f ⊗1)1⊗ b. (24)

Note we choose b∈A2 with b∗ =−b arbitrary. For each a∈A2, there exist unique elements

b1,b2 ∈ A2 such that b∗i =−bi for i= 1,2 and a=−ib1+ b2. By applying (24), we have

aU(f ⊗1)(y) = U(f ⊗1)(y)a

for any a ∈ A2 and y ∈X2. We get U(f ⊗1)(y) ∈ {b ∈ A2 | ab = ba for all a ∈ A2} = C1.
Thus, there is g(y) ∈ C such that U(f ⊗1)(y) = g(y)1. Since U(f ⊗1) ∈ Lip(X2,A2), we

get g ∈ Lip(X2) and

U(f ⊗1) = g⊗1.

Thus, we can define a map PU : Lip(X1)→ Lip(X2) by

U(f ⊗1) = PU (f)⊗1, f ∈ Lip(X1).
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It is easy to see that PU is a surjective complex linear isometry. Applying [9, Corollary

15], there is a surjective isometry ϕ :X2 →X1 such that

U(f ⊗1)(y) = PU (f)(y)⊗1 = f(ϕ(y))⊗1, f ∈ Lip(X1), y ∈X2.

Proof of Theorem 1.2. A simple calculation shows that the map U from Lip(X1,A1)

onto Lip(X2,A2), which has the form of the theorem, is a unital surjective linear isometry.

We show the converse. Let us recall (21). Thus, for any h ∈H(A1), there exists ψ0(h) ∈
H(A2) and ∗-derivation D on A2 such that

UM1⊗hU
−1 =M1⊗ψ0(h)+ iD̂.

Let f ∈ Lip(X1). By Lemma 4.8, there is a surjective isometry ϕ : X2 → X1 such that

U(f ⊗1) = (f ◦ϕ)⊗1. Thus, for any y ∈X2, we obtain

U(f ⊗1)(y) = f(ϕ(y))1

and

D̂(U(f ⊗1))(y) =D(U(f ⊗1)(y)) =D(f(ϕ(y))1) = 0.

We have

U(f ⊗h)(y) = U(M1⊗h(f ⊗1))(y) = UM1⊗hU
−1U(f ⊗1)(y)

= (M1⊗ψ0(h)+ iD̂)(U(f ⊗1))(y)

=M1⊗ψ0(h)(U(f ⊗1))(y)+ iD̂(U(f ⊗1))(y)

= ψ0(h)U(f ⊗1)(y)+0 = f(ϕ(y))ψ0(h).

For any a ∈ A1, there exist h1,h2 ∈H(A1) such that a= h1+ ih2. Let us note that we

define ψ :A1 →A2 by ψ(a) = ψ0(h1)+ iψ(h2). We get

U(f ⊗a)(y) = U(f ⊗ (h1+ ih2))(y) = U(f ⊗h1)(y)+ iU(f ⊗h2)(y)

= f(ϕ(y))ψ0(h1)+ if(ϕ(y))ψ0(h2)

= f(ϕ(y))ψ(a) = ψ((f ⊗a)(ϕ(y))) = ψ(f(ϕ(y))a)

for any f ∈ Lip(X1) and a ∈A1. By Lemma 4.7, we recall that ψ :A1 →A2 is a surjective

complex linear isometry. Applying Proposition 3.6, we obtain

U(F )(y) = ψ(F (ϕ(y))), F ∈ Lip(X1,A1),y ∈X2.

5. Concluding comments and remarks

Let us look at further problems related to Theorem 1.2. It is natural to investigate the
following questions: What is the general form of unital surjective linear isometries between

Lip(X,A)-spaces, where A is a unital C∗-algebra? What is a complete description of

surjective linear isometries on Lip(X,A) without the assumption that isometries preserve
the identity? In fact, less is known about surjective linear isometries on Banach spaces

of all vector-valued Lipschitz maps with ‖ · ‖L. The author suspects the reason relies on

a lack of a complete characterization of the extreme points of B((Lip(X,E))∗). Thus, we
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believe Theorem 2.3 is one of crucial tools in investigating our questions. This might be
an interesting direction for further research. These questions are left as research problems

in the future.
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