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Nonself-adjoint Semicrossed Products by
Abelian Semigroups
Adam Hanley Fuller

Abstract. Let S be the semigroup S =
∑⊕k

i=1 Si , where for each i ∈ I, Si is a countable subsemigroup
of the additive semigroup R+ containing 0. We consider representations of S as contractions {Ts}s∈S
on a Hilbert space with the Nica-covariance property: T∗s Tt = Tt T∗s whenever t ∧ s = 0. We show
that all such representations have a unique minimal isometric Nica-covariant dilation.

This result is used to help analyse the nonself-adjoint semicrossed product algebras formed from
Nica-covariant representations of the action of S on an operator algebra A by completely contrac-
tive endomorphisms. We conclude by calculating the C∗-envelope of the isometric nonself-adjoint
semicrossed product algebra (in the sense of Kakariadis and Katsoulis).

1 Introduction

The study of nonself-adjoint semicrossed products began with Arveson [1]. They
were further studied by McAsey, Muhly, and Saito [19]. In both cases the alge-
bras were described concretely. Peters [26] described the nonself-adjoint semicrossed
products as universal algebras for covariant representations. In recent years, David-
son and Katsoulis have shown that nonself-adjoint semicrossed products are a par-
ticularly interesting and tractable class of operator algebras [4–8]. In particular,
nonself-adjoint semicrossed product algebras have been shown to be a class where
the C∗-envelope is often calculable.

The C∗-envelope of an operator algebra A was introduced by Arveson [2, 3] as a
non-commutative analogue of Shilov boundaries. The existence of the C∗-envelope
was first discovered by Hamana [13]. Dritschel and McCullough [9] have since pro-
vided an alternative proof of the existence of the C∗-envelope. The viewpoint of
Dritschel and McCullough has allowed for the explicit calculation of the C∗-envelope
of many operator algebras. In particular, for nonself-adjoint semicrossed products
the C∗-envelopes have been studied in [5, 10, 11, 14, 15].

In this paper we study the nonself-adjoint semicrossed product algebras by semi-

groups of the form S =
∑⊕k

i=1 Si , where for each i ∈ I we have Si is a countable
subsemigroup of the additive semigroup R+ containing 0. Our algebras will be uni-
versal for Nica-covariant representations. The term Nica-covariant representation
is used for isometric representations of quasi-lattice ordered semigroups that satisfy
TsT∗s Tt T∗t = Tt∨sT∗t∨s; see [23]. In the case of abelian lattice-ordered semigroups
these are precisely the isometric representations satisfying {Ts}s∈S satisfying T∗s Tt =
Tt T∗s when s ∧ t = 0. This property, particularly for the case S = Zk

+, is also known
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as doubly commuting. Crossed product algebras associated with Nica-covariant rep-
resentations have been widely studied in the C∗-algebra literature [12, 17, 23].

The paper is divided into three sections. In Section 2 Nica-covariant represen-
tations are studied independently from dynamical systems. The results of this sec-
tion may be of interest even to those not concerned with nonself-adjoint semicrossed
products. We show that contractive Nica-covariant representations can be dilated to
isometric Nica-covariant representations. This result is well known for the case of
the semigroup Zk

+; see e.g., [32]. The proof of the existence of an isometric dilation
presented here relies on the use of a generalisation of the Schur Product Theorem,
and so it provides an alternative proof to what is usually presented for Zk

+.
In Section 3 nonself-adjoint semicrossed product algebras are introduced. In sec-

tion 3.1 we extend our dilation result from Section 2 to representations of semi-
crossed products of C∗-algebras. This result allows us to conclude strong results
comparing the different types of semicrossed product algebras. For example, Corol-
lary 3.7, tells us that, in the case of a semicrossed product of a C∗-algebra, the uni-
versal algebra for completely isometric Nica-covariant representations is the same as
the universal algebra for completely contractive Nica-covariant representations. If we
were to work with completely isometric and completely contractive semicrossed al-
gebras without imposing the condition of Nica-covariance on our semigroup repre-
sentations, then an example due to Varopoulos [33] would show that the analogy of
Corollary 3.7 would fail in this setting.

In the Section 3.2 we consider the C∗-envelope of the isometric semicrossed prod-
uct algebras. In Theorem 3.15 we calculate the C∗-envelope of the isometric semi-
crossed product as

C∗env(A N×iso
α S) ∼= C∗env(A)×α G,

where G is the group generated by S. This result generalises a recent result of Kakari-
adis and Katsoulis [15], where they worked with the semigroup S = Z+.

When A is a C∗-algebra the Nica-covariance requirement on our representations
allows us to view the semicrossed product algebra A N×α S as a tensor algebra for a
product system of C∗-correspondences over S. Thus, from this viewpoint we unite
a recent result of Duncan and Peters [11] on the C∗-envelope of a tensor algebra
associated with a dynamical system and the results of Kakariadis and Katsoulis on
the C∗-envelope of the isometric semicrossed product for a dynamical system.

2 Nica-covariant Representations

Let S be the semigroup S =
∑⊕

i∈I Si , where for each i ∈ I we have Si is a subsemi-
group in the additive semigroup R+ containing 0. We further assume throughout
that S is the positive cone of the group G it generates. Denote by ∧ and ∨ the join
and meet operations on the lattice group G. In Section 3 we will be looking at the
case when S is countable. However, we will not need to assume that S is countable in
this section.

Definition 2.1 A representation T : S → B(H) of S by contractions {Ts}s∈S on a
Hilbert space H is Nica-covariant when we have the following relation: if s ∈ Si and
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t ∈ S j where i 6= j, then T∗s Tt = Tt T∗s .

2.1 Isometric Dilations

An isometric representation V of a semigroup S on a Hilbert space K is a dilation
of a contractive representation T on H ⊆ K if H is invariant under each V ∗s and
V ∗s |H = T∗s . This is precisely when each Vs is of the form

Vs =

[
Ts 0
∗ ∗

]

with resepect to the decomposition K = H ⊕ H⊥. We say that V is a minimal
isometric dilation of T if K = span{Vsh : h ∈ H}.

We wish to show that every Nica-covariant contractive representation of S can be
dilated to an isometric representation. Further, we will show that there is a unique
minimal isometric dilation which is Nica-covariant. This result is well known in the
discrete S = Zk

+ case. If each Si is commensurable, i.e., if for all s1, . . . , sn ∈ Si there
exists s0 ∈ Si and k1, . . . , kn ∈ N such that si = kis0, then these results have been
described by Shalit [27]. We do not impose the condition of commensurability.

The key method to show the existence of the dilation is to use a generalisation of
the Schur Product Theorem. To show that there is a minimal Nica-covariant isomet-
ric dilation we follow arguments similar to those of Solel [30].

Definition 2.2 Let A = [Ai, j]1≤i, j≤m and B = [Bi, j]1≤i, j≤m be two matrices of
operators where each Ai, j and Bi, j is a bounded operator on a Hilbert space H. The
operator-valued Schur product of A and B is defined by A�B := [Ai, jBi, j]1≤i, j≤m.

In the above definition, if H is 1-dimensional, then the operation � is simply the
classical Schur product (or entry-wise product). In the following theorem we will
generalise the Schur Product Theorem, which says that the Schur product of two
positive matrices is positive. We follow a similar line of proof as in the classical case
presented in [24, Chapter 3].

Theorem 2.3 Let A and B be two C∗-algebras in B(H) such that A ⊆ B ′. Let
A = [Ai, j]1≤i, j≤m and B = [Bi, j]1≤i, j≤m be operator matrices with all Ai, j ∈ A and
Bi, j ∈ B. If A ≥ 0 and B ≥ 0, then A�B ≥ 0.

Proof Let Ã = A⊗ Im and B̃ = [Bi, j ⊗ Im]1≤i, j≤m. Hence Ã and B̃ are of the form

Ã =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A


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and

B̃ =



B1,1 0 . . . 0 . . . B1,m 0 . . . 0
0 B1,1 . . . 0 . . . 0 B1,m . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . B1,1 . . . 0 0 . . . B1,m
...

...
...

...
...

...
...

Bm,1 0 . . . 0 . . . Bm,m 0 . . . 0
0 Bm,1 . . . 0 . . . 0 Bm,m . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . Bm,1 . . . 0 0 . . . Bm,m


It follows that Ã and B̃ are positive commuting operators. Hence ÃB̃ is positive.

For each 1 ≤ k ≤ m, let Pk be the projection onto the (m(k− 1) + k)-th copy of H

in H(m2), and let P =
∑m

k=1 Pk. Define R : H(m) → H(m2) by Rh = P(h⊗m). Hence R
is an isometry and for

h =


h1

h2
...

hm

 ∈ H(m)

we have

Rh =



h1

0
...
0
h2

0
...
0

hm


,

with m zeroes between hi and hi+1, 1 ≤ i < m. It follows that R∗(ÃB̃)R = A�B.
Thus, A�B is positive.

Let T be a Nica-covariant contractive representation of S on H. We extend T to a
map on all of G in the following way. Any element g ∈ G can be written uniquely as
g = g+ − g−, where g−, g+ ∈ S and g− ∧ g+ = 0. Thus we extend T to G by setting
Tg = T∗g−Tg+ = Tg+ T∗g− . A well-known theorem of Sz.-Nagy says that T has an
isometric dilation if and only if for s1, . . . , sn ∈ S the operator matrix [Ts j−si ]1≤i, j≤n

is positive (see e.g., [31, Theorem 7.1]). We will need to look more closely at the proof
of this later.

In the case when S is a subsemigroup of R+ it has been proved by Mlak [20] that a
contractive representation T has an isometric dilation. In the following theorem we
will rely on the fact that the representation T restricted to Si has an isometric dilation
for each i. Then an invocation of Theorem 2.3 will give us our result.
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Theorem 2.4 Let T be a Nica-covariant contractive representation of the semigroup
S =

∑⊕
i∈I Si , where each Si is a subsemigroup of R+ containing 0. Then T has an

isometric dilation.

Proof Take s1, . . . , sn in S. By [31, Theorem 7.1] it suffices to show that the operator
matrix [Ts j−si ]1≤i, j≤n is positive. Each s j is of the form s j =

∑
i∈I s(i)

j , where s(i)
j is

in Si . We can choose a finite subset F ⊆ I such that s j =
∑

i∈F s(i)
j for j = 1, . . . , n.

Since F is finite, we can and will relabel F by {1, . . . , k} for some k. Denote by T( j)

the restriction of T to S j .
By the Nica-covariance property

Ts j−si = T(1)

s(1)
j −s(1)

i

. . .T(k)

s(k)
j −s(k)

i

.

Thus, we can factor the operator matrix [Ts j−si ] as

[Ts j−si ]i, j =
[

T(1)

s(1)
j −s(1)

i

. . .T(k)

s(k)
j −s(k)

i

]
i, j

=
[

T(1)

s(1)
j −s(1)

i

]
i, j
� · · ·�

[
T(k)

s(k)
j −s(k)

i

]
i, j
.

Since [T(l)

s(l)
j −s(l)

i

]i, j is a positive matrix for 1 ≤ l ≤ k [20] and since the representation
is Nica-covariant, it follows by Theorem 2.3 that [Ts j−si ]i, j is positive.

In the above we made use of [31, Theorem 7.1] to guarantee the existence of a
dilation. We will now pay closer attention to how the dilation there is constructed.
Then, following similar arguments of [30], we will show that there is a unique mini-
mal Nica-covariant isometric dilation.

Theorem 2.5 Let T be a Nica-covariant contractive representation of the semigroup
S =

∑⊕
i∈I Si , where each Si is subsemigroup of R+ containing 0. Then T has a minimal

isometric dilation that is Nica-covariant. Furthermore, this dilation is unique.

Proof We first sketch the details of the construction of an isometric dilation. Let H
be the space on which the representation T acts. Let K0 denote the space of all finitely
nonzero functions f : S→ H. For f , g ∈ K0 we define

〈 f , g〉 =
∑
s,t∈S

〈Tt−s f (t), g(s)〉.

By Theorem 2.4 this defines a positive semidefinite sesquilinear form on K0. Let

N = { f ∈ K0 : 〈 f , f 〉 = 0}

= { f ∈ K0 : 〈 f , g〉 = 0 for all g ∈ K0},

and set K = K0/N, where the closure is taken with respect to the norm induced by

〈 · , · 〉. We isometrically embed H in K by the map h 7→ ĥ, where ĥ(s) = δ0(s)h,
where δ0(s) = 1 if s = 0 and 0 otherwise.
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Now define maps Vs on K0 by (Vs f )(t) = f (t − s) if t − s ∈ S and (Vs f )(t) = 0
otherwise. Note that for f ∈ K0 and u ∈ S we have

〈Vu f ,Vu f 〉 =
∑

s,t

〈Tt−s f (t − u), f (s− u)〉 =
∑
s,t≥u

〈Tt−s f (t − u), f (s− u)〉

=
∑
s,t≥0

〈T(t+u)−(s+u) f (t), f (s)〉 =
∑

s,t

〈Tt−s f (t), f (s)〉 = 〈 f , f 〉.

Hence each Vu is isometric on K0 and leaves N invariant. It follows that we can ex-
tend Vu to an isometry on K, and we have that {Vs}s∈S is an isometric representation
of S.

Furthermore, note that for g ∈ G and h, k ∈ H we have

〈Vg ĥ, k̂〉 = 〈V ∗g−Vg+ ĥ, k̂〉 = 〈Vg+ ĥ,Vg− k̂〉

=
∑
s,t∈S

〈Tt−sĥ(t − g+), k̂(s− g−)〉

= 〈Tg+−g−h, k〉 = 〈Tgh, k〉.

Thus we have PHVg |H = Tg for all g ∈ G. In particular {Vs}s∈S is an isometric
dilation of {Ts}s∈S. It is easily seen to be a minimal isometric dilation. Dilations
with the property that PHVg |H = Tg are called regular dilations. We want to show
that this dilation is Nica-covariant.

Next we will show that if we have s ∈ Si and µ ∈ S such that s ∧ µ = 0. then
V ∗s Vµ|H = VµV ∗s |H. Take s, µ as described, ν ∈ S and h, k ∈ H. By the minimality
of the dilation it suffices to show that

〈V ∗s Vµĥ,Vν k̂〉 = 〈VµV ∗s ĥ,Vν k̂〉.

We calculate

〈V ∗s Vµĥ,Vν k̂〉 = 〈V ∗νV ∗s Vµĥ, k̂〉 = 〈V ∗(µ−ν−s)−V(µ−ν−s)+ ĥ, k̂〉

= 〈T∗(µ−ν−s)−T(µ−ν−s)+ h, k〉.

Note that, by our choice of s and µ, we have that (µ − ν − s)+ = (µ − ν)+ and
(µ− ν − s)− = s + (µ− ν)−. Also s ∧ (µ− ν)+ = 0. Thus,

〈V ∗s Vµĥ,Vν k̂〉 = 〈T∗(µ−ν−s)−T(µ−ν−s)+ h, k〉 = 〈T∗s+(µ−ν)−T(µ−ν)+ h, k〉

= 〈T∗(µ−ν)−T(µ−ν)+ T∗s h, k〉 = 〈PHV ∗(µ−ν)−V(µ−ν)+ PHV ∗s ĥ, k̂〉

= 〈V ∗(µ−ν)−V(µ−ν)+V ∗s ĥ, k̂〉 = 〈VµV ∗s ĥ,Vν k̂〉.

This tells us that the representation V has the Nica-covariant property when re-
stricted to H. We will now extend this to all of K.
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By the minimality of the representation V it suffices to show that for s ∈ Si , t ∈ S j ,
where i 6= j, µ, ν ∈ S and h, k ∈ H that

〈V ∗s VtVµĥ,Vν k̂〉 = 〈VtV
∗
s Vµĥ,Vν k̂〉.

The right-hand side of the above is

〈VtV
∗
s Vµĥ,Vν k̂〉 = 〈V ∗νVtV

∗
s Vµĥ, k̂〉 = 〈V ∗νVtV

∗
(µ−s)−V(µ−s)+ ĥ, k̂〉

= 〈V ∗νVtV(µ−s)+V ∗(µ−s)− ĥ, k̂〉.

Note that t + (µ− s)+ = (t + µ− s)+ and (µ− s)− = (t + µ− s)−, hence we have

〈VtV
∗
s Vµĥ,Vν k̂〉 = 〈V ∗νV ∗(t+µ−s)−V(t+µ−s)+ ĥ, k̂〉 = 〈V ∗ν+(t+µ−s)−V(t+µ−s)+ ĥ, k̂〉

= 〈V ∗(t+µ−ν−s)−V(t+µ−ν−s)+ ĥ, k̂〉,

with the last equality coming from the fact that(
(t + µ− s)+ − (t + µ− s)− − ν

)
− = (t + µ− s− ν)−

and (
(t + µ− s)+ − (t + µ− s)− − ν

)
+
= (t + µ− s− ν)+.

Hence,

〈VtV
∗
s Vµĥ,Vν k̂〉 = 〈V ∗(t+µ−ν−s)−V(t+µ−ν−s)+ ĥ, k̂〉

= 〈V ∗νV ∗s VtVµĥ, k̂〉 = 〈V ∗s VtVµĥ,Vν k̂〉.

It follows that V is Nica-covariant.
To show that the dilation is unique we follow a standard argument. Suppose V

and W are two minimal isometric Nica-covariant dilations of T on K1 and K2 re-
spectively. Take h1, h2 ∈ H and ν, µ ∈ S. Then

〈Vµh1,Vνh2〉 = 〈V ∗νVµh1, h2〉 = 〈V ∗(µ−ν)−V(µ−ν)+ h1, h2〉 = 〈Tµ−νh1, h2〉.

Similarly 〈Wµh1,Wνh2〉 = 〈Tµ−νh1, h2〉. Thus the map U : Vνh 7→ Wνh extends to
a unitary from K1 to K2 that fixes H, and the two dilations V and W are unitarily
equivalent.

3 Semicrossed Product Algebras

Throughout let S be the semigroup S =
∑⊕k

i=1 Si , where each Si is a countable sub-
semigroup of R+ containing 0. We further suppose that S is the positive cone of the
group G generated by S.
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Definition 3.1 Let A be a unital operator algebra. If α = {αs : s ∈ S} is a family
of completely isometric unital endomorphisms of A forming an action of S on A,
then we call the triple (A, S, α) a semigroup dynamical system.

Definition 3.2 Let (A, S, α) be a semigroup dynamical system. An isometric (con-
tractive) Nica-covariant representation of (A, S, α) on a Hilbert space H consists of a
pair (σ,V ), where σ is a completely contractive representation σ : A → B(H) and
V = {Vs}s∈S is an isometric (contractive) Nica-covariant representation of S on H

such that
σ(A)Vs = Vsσ

(
αs(A)

)
for all A ∈ A and s ∈ S.

We will be interested in two nonself-adjoint semicrossed product algebras asso-
ciated with a semigroup dynamical system (A, S, α). We define A N×α S to be the
universal algebra for all contractive Nica-covariant representations of (A, S, α) in
the sense that contractive Nica-covariant representations are uniquely determined by
representations of A N×α S. We define A N×iso

α S similarly as the universal algebra
for all isometric Nica-covariant representations.

The algebras A ×iso
α Z+ were introduced by Kakariadis and Katsoulis [15] and

have proven to be a more tractable class of algebras than A ×α Z. While in general
one expects A N×α S and A N×iso

α S to be different, there are times when the two
algebras coincide. For example, when A = An is the noncommutative disc algebra
and S = Z+ it follows from [5] that

An ×iso
α Z+

∼= An ×α Z+.

Further examples of when the semicrossed product and the isometric semicrossed
product are the same for the case S = Z+ can be found in [8, Section 12]. When A is
a unital C∗-algebra we will see (Corollary 3.7) that

A N×iso
α S ∼= A N×α S.

Let P(A, S) be the algebra of all formal polynomials p of the form

p =

n∑
i=1

Vsi Asi ,

where s1, . . . , sn are in S, with multiplication defined by AVs = Vsα(A). If (σ,T) is
a contractive Nica-covariant representation of (A, S, α), then we can define a repre-
sentation σ × T of P(A, S) by

(σ × T)
( n∑

i=1

Vsi Asi

)
=

n∑
i=1

Tsiσ(Asi ).

We define two norms on P(A, S) as follows. For p ∈ P(A, S) let

‖p‖ = sup
(σ,T) contractive

Nica-covariant

{
‖(σ × T)(p)‖

}
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and

‖p‖iso = sup
(σ,V ) isometric
Nica-covariant

{
‖(σ ×V )(p)‖

}
.

We can realise our semicrossed product algebras as

A N×α S = P(A, S)
‖ · ‖

and A N×iso
α S = P(A, S)

‖ · ‖iso
.

If (B,G, β) is a dynamical system where β is an action of the group G on the
C∗-algebra B by automorphisms, there is an adjoint operation on P(B,G) given
by (VgB)∗ := V−gβ

−1
g (B∗). If (π,U ) is covariant representation of (B,G, β), then

{Us}s∈S is necessarily a family of commuting unitaries, and hence {Us}s∈S is auto-
matically Nica-covariant.

Example 3.3 Let (A, S, α) be a semigroup dynamical system. Let σ be a completely
contractive representation ofA on a Hilbert spaceH. Define a completely contractive
representation σ̃ of A on H ⊗ `2(S) by

σ̃(A)(hs)s∈S =
(
σ(αs(A))hs

)
s∈S

for all A ∈ A and (hs)s∈S ∈ H ⊗ `2(S).
For each s ∈ S define an operator Ws on H ⊗ `2(S) by Ws(h)t = (h)s+t , where

h ∈ H and (h)s ∈ H⊗`2(S) is the vector with h in the s-th position and 0 everywhere
else. Then (σ̃,W ) is an isometric Nica-covariant representation of (A, S, α).

Note that in the case where each αs is an automorphism on A then we can extend
this idea to give a Nica-covariant representation (σ̂,U ) on H⊗ `2(G), where each Us

is unitary.

Definition 3.4 The isometric Nica-covariant representation (σ̃,W ) constructed
above is called an induced representation of (A, S, α).

3.1 Dilations of Nica-covariant representations

We now consider some dilation results for Nica-covariant representations of a semi-
group dynamical system (A, S, α) in the case when A is a C∗-algebra.

In the case that S = Zk
+ the following theorem is a special case of a theorem

of Solel’s [30, Theorem 3.1] that deals with representations of product systems of
C∗-correspondences. The result has also been shown by Ling and Muhly [18] for the
case S = Zk

+ and α is an action on A by automorphisms.

Theorem 3.5 Let S =
∑⊕

i∈I Si , where each Si is a subsemigroup of R+ containing 0
and let (A, S, α) be a semigroup dynamical system, where A is a unital C∗-algebra. Let
(σ,T) be a contractive Nica-covariant representation of (A, S, α) on H. Then there is
an isometric Nica-covariant representation (π,V ) of (A, S, α) on K ⊇ H such that

(i) π(A)|H = σ(A) for all A ∈ A
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(ii) PHVs|H = Ts for all s ∈ S.

Furthermore, K is minimal in the sense that K =
∨

s∈S VsH.

Proof Let K0, K, and N be as in the proof of Theorem 2.5. For each A ∈ A we
define π0(A) on K0 by (

π0(A) f
)

(s) = σ
(
αs(A)

)
f (s),

for each f ∈ K0 and s ∈ S. Note that, for A ∈ A and t, s ∈ S we have

Tt−sσ
(
αt (A)

)
= T(t−s)+ T∗(t−s)−σ

(
αt (A)

)
= T(t−s)+σ

(
αt+(t−s)−(A)

)
T∗(t−s)−

= σ
(
αt+(t−s)−−(t−s)+ (A)

)
T∗(t−s)−T(t−s)+ = σ

(
αs(A)

)
Tt−s.

It follows that, if f ∈ N and g ∈ K0 then for each A ∈ A,〈
π0(A) f , g

〉
=
∑

s,t

〈
Tt−sσ

(
αt (A)

)
f (t), g(s)

〉
=
∑

s,t

〈
Tt−s f (t), σ

(
αs(A∗)

)
g(s)
〉
= 0,

we thus can extend π0 to a representation π

π : A→ B(K).

It is easy to check that (π,V ) form a Nica-covariant representation with the desired
properties.

Remark 3.6 In the case when S =
∑⊕

i∈I Si , where each Si is a subsemigroup of R+

containing 0 and each Si has the extra condition of being commensurable then the
statement of Theorem 3.5 is a special case of [28, Theorem 4.2]. However, in the proof
there, the only place where the commensurable condition is used is in ensuring that
contractive Nica-covariant representation of S has minimal Nica-covariant isometric
dilation. As Theorems 2.4 and 2.5 provide the existence of minimal Nica-covariant
isometric dilations in the case when each Si is not necessarily commensurable the
proof given in [28] provides an alternate proof of Theorem 3.5.

Corollary 3.7 Let S =
∑⊕k

i=1 Si , where each Si is a countable subsemigroup of R+

containing 0 and let (A, S, α) be a semigroup dynamical system where A is a unital
C∗-algebra. Then the norms ‖ · ‖ and ‖ · ‖iso on P(A, S) are the same. Hence

A N×iso
α S = A N×α S.

Proof Take any p ∈ P(A, S). Since an isometric Nica-covariant representation is
itself contractive it follows that ‖p‖iso ≤ ‖p‖. Now take a contractive Nica-covariant
representation (σ,T) on a Hilbert space H. Let (π,V ) be the minimal isometric
Nica-covariant dilation of (σ,T). Then

‖(σ × T)(p)‖ = ‖PH(π ×V )(p)PH‖ ≤ ‖(π ×V )(p)‖.

Hence ‖p‖ ≤ ‖p‖iso.
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Remark 3.8 Let (A, S, α) be a semigroup dynamical system. If A is a C∗-alge-
bra, then (A, S, α) can be used to describe a product system of C∗-correspondences
over S. Fowler constructs a concrete C∗-algebra that is universal for Nica-covariant
completely contractive representations of this product system [12]. It was observed
by Solel [30] that the nonself-adjoint Banach algebra formed by the left regular repre-
sentation of the product system is universal for Nica-covariant completely contractive
representations (while Solel was working in Zk

+ the same reasoning works for count-
able S). Thus A N×α S can also be realised as the concrete tensor algebra in the sense
of Solel; see [30, Corollary 3.17].

Furthermore, if σ is a faithful representation of A, it follows that the induced
representation (σ̃,W ) is a completely isometric representation of A N×α S.

The following theorem can be proved by a standard argument in dynamical sys-
tems using direct limits of C∗-algebras. As stated below, the result is a special case of
[16, Theorem 2.1] and [22, Section 2].

Theorem 3.9 Let (A, S, α) be a semigroup dynamical system, whereA is a C∗-algebra
and each αs is injective. Then there exists a C∗-dynamical system (B,G, β) where
each βs is an automorphism, unique up to isomorphism, together with an embedding
i : A→ B such that

(i) βs ◦ i = i ◦ αs, i.e., β dilates α
(ii)

⋃
s∈S β

−1
s (i(A)) is dense in B, i.e., B is minimal.

Definition 3.10 Let (A, S, α) and (B,G, β) be as in Theorem 3.9, then we call
(B,G, β) the minimal automorphic dilation of (A, S, α).

The minimal automorphic dilation of a dynamical system is frequently utilised in
the literature. Group crossed product C∗-algebras have a long history and are well
understood objects. Thus it is beneficial if one can relate a semicrossed algebra to a
crossed product algebra, often the crossed product algebra of the minimal automor-
phic dilation. We will see in Theorem 3.15 that the minimal automorphic dilation
plays an important role when calculating the C∗-envelope of crossed product alge-
bras. First we will show now that A N×α S sits nicely inside B ×β G. In the case
where S = Z+ the following has been shown by Kakariadis and Katsoulis [15] and
Peters [26].

Theorem 3.11 Let (A, S, α) be a semigroup dynamical system, where A is a C∗-alge-
bra and each αs is injective. Let (B,G, β) be the minimal automorphic dilation of
(A, S, α). The A N×α S is completely isometrically isomorphic to a subalgebra of
B×β G.

Furthermore, A N×iso
α S generates B×β G as a C∗-algebra.

Proof Let σ be a faithful representation of A on H. Then the induced representation
σ̃ × W is a completely isometric representation of A N×α S, by Remark 3.8. We
will embed this completely isometric copy of A N×α S into a completely isometric
representation of B×β G by suitably dilating the representation (σ̃,W ).

Let i be the embedding of A into B as in Theorem 3.9. The representation σ also
defines a faithful representation of i(A), which we will also denote by σ. We can
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thus find a representation π of B on K ⊇ H such that π(A)|H = σ(i(A)) for all
A ∈ A, see e.g., [25, Proposition 4.1.8]. We thus have an induced representation
π̂ × U of B ×β G. Restricting π to A we see that (π̂ ◦ i) × U is a completely iso-
metric representation of A N×α S, since σ̃ ×W is. Further note that π̂ is faithful on⋃

s∈S β
−1
s (A). By the construction of B, π̂ is also faithful representation of B. Now,

by [25, Theorem 7.7.5], σ̃×W is a faithful representation of B×β G. Hence A N×α S
sits completely isometrically inside B×β G.

That A N×α S generates B×β G as a C∗-algebra follows immediately after consid-
ering the algebra Alg{P(A, S), (P(A, S))∗} inside P(B,G).

3.2 C∗-Envelopes

Our goal in this subsection is to calculate the C∗-envelope of A N×iso
α S in the case

when α is a family of completely isometric automorphisms on a unital operator al-
gebra A.

If C is a C∗-algebra that completely isometrically contains A such that C = C∗(A)
then we call C a C∗-cover of A. If A is a C∗-algebra, Theorem 3.11 says that B ×β G
is a C∗-cover of A N×iso

α S when (B,G, β) is the minimal automorphic dilation of
(A, S, α).

Definition 3.12 Let A be an operator algebra and let C be a C∗-cover of A. Let α
define an action of S on C by faithful ∗-endomorphisms that leave A invariant. We
define the relative semicrossed product A N×C,α S to be the subalgebra of C N×α S
generated by the natural copy of A inside C N×α S and the universal isometries
{Vs}s∈S.

The idea of a relative semicrossed product was introduced by Kakariadis and Kat-
soulis [15] when studying semicrossed products by the semigroup Z+. The key idea
is to realise the universal algebra A N×iso

α S as a relative semicrossed algebra. This
allows a concrete place in which to try and discover the C∗-envelope.

It is important to note that if α is an action of S on an operator algebra A by
completely isometric automorphisms which extend to completely isometric auto-
morphisms of a C∗-cover C of A, then each αs necessarily leaves the Shilov boundary
ideal J of A in C invariant, see e.g., [8, Proposition 10.6]. We will write {α̇s}s∈S for
the automorphisms on A/J induced by the automorphisms {αs}s∈S on A.

The proof of the following proposition follows the same reasoning as the proof of
[15, Proposition 2.3]. It is an application of Dritschel and McCullough’s [9] result
that any representation can be dilated to a maximal representation and Muhly and
Solel’s [21] result that any maximal representation extends to a ∗-representation of
any C∗-cover.

Proposition 3.13 Let A be an operator algebra and let C be a C∗-cover of A. Let α be
an action of S on C by automorphisms that restrict to automorphisms of A. Let J be the
Shilov boundary ideal of A in C. Then the relative semicrossed products A N×C,α S and
A/J N×C/J,α̇ S are completely isometrically isomorphic.

Let (C, S, α) be a semigroup dynamical system, where C is a C∗-algebra and each

https://doi.org/10.4153/CJM-2012-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-051-8


780 A. H. Fuller

αs is an automorphism on C. Then it is immediate that the minimal automorphic
dilation of (C, S, α) is simply (C,G, α). If we view G as being a discrete group, then

G has a compact dual Ĝ. Recall that for every character γ in Ĝ we can define an
automorphism τγ on P(C,G) by

τγ

( n∑
i=1

Vsi Asi

)
=

n∑
i=1

γ(si)Vsi Asi .

The automorphism τγ extends to an automorphism of C×αGwith C as its fixed-point
set [25, Proposition 7.8.3.]. We call τγ a gauge automorphism. The gauge automor-
phisms restrict to automorphisms of C N×α S.

Lemma 3.14 Let A be a unital operator algebra. Let C be a C∗-cover of A and let J
be the Shilov boundary ideal of A in C. Let α be an action of S on C by automorphisms
which restrict to completely isometric automorphisms of A. Then

C∗env(A N×C,α S) ∼= C∗env(A)×α̇ G.

Proof By the preceding proposition it suffices to show that

C∗env(A/J N×C/J,α̇ S) ∼= C/J×α̇ G.

The algebra A/J N×C/J,α̇ S embeds completely isometrically into C/J ×α̇ G and
generates it as a C∗-algebra. Let I be the Shilov boundary ideal of A/J N×C/J,α̇ S in
C/J×α̇ G. Suppose that I 6= {0}.

The ideal I is invariant under automorphisms of C/J×α̇G and hence by the gauge
automorphisms of C/J×α̇ G. Therefore I has non-trivial intersection with the fixed
points of the gauge automorphisms, i.e., I ∩ C/J 6= {0}. But I ∩ C/J is a boundary
ideal for A in C/J. Hence I = {0}. This proves the result.

We can now prove the main result of this section. This theorem generalises the
result of Kakariadis and Katsoulis [15] from the semigroup Z+ to our more general

semigroups S =
∑⊕k

i=1 Si . From another viewpoint, in the case when A is a C∗-
algebra and A N×iso

α S ∼= A N×α S we have that the C∗-envelope of an associated
tensor algebra is a crossed product algebra, by Remark 3.8 and Corollary 3.7. This
was shown for abelian C∗-algebras by Duncan and Peters [11].

By [8, Proposition 10.1] the group Aut(A) of completely isometric automor-
phisms on the unital operator algebra A is isomorphic to the group of completely
isometric automorphisms on C∗env(A) which leave A invariant. Thus, if {αs}s∈S a
family of completely isometric automorphisms defining an action of S on A, then
they can be extended to a family completely isometric automorphisms defining an
action of S on C∗env(A).

Theorem 3.15 Let A be a unital operator algebra. Let α be an action of S on A by
completely isometric automorphisms. Denote also by α the extension of this action to
C∗env(A). Then

C∗env(A N×iso
α S) ∼= C∗env(A)×α G.
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Proof We will show that A N×iso
α S is isomorphic to a relative semicrossed product.

The result will then follow by Lemma 3.14.
Let {Vs}s∈S be the universal isometries in A N×iso

α S acting on a Hilbert space H.
For each s ∈ S let Hs = H and define maps Vs,t when s ≤ t ,

Vs,t : Hs −→ Ht

by Vs,t = Vt−s. Let K be the Hilbert space inductive limit of the directed system
(Hs)s∈S.

For each A ∈ A the commutative diagram

H
Vs

−−−−→ H

A

y α−1
s (A)

y
H

Vs

−−−−→ H

defines an operator π(A) on K. Thus we have a completely isometric representation
π : A→ B(K).

Now for each s, t ∈ S define operator U s
t : Hs → Hs by U s

t = Vt . Passing to the
direct limit we get a family of commuting unitaries {Us}s∈S on K satisfying

π(A)Us = Usπ
(
αs(A)

)
.

The unitaries {Us}s∈S thus define ∗-automorphisms of C := C∗(π(A)) extending α.
Thus

A N×iso
α S ∼= A N×C,α S.

The result now follows by Lemma 3.14.
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