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1. In t roduc t ion . Ho l sz tynsk i [ l ] ca l led a m a p f : X - * Y 
f r o m a space X into a space Y ' u n i v e r s a l for a l l m a p s of X 
into Y f if for a l l m a p s g :X-> Y t h e r e e x i s t s a point x € X 
such that f(x) = g(x) , i . e . , if f has a co inc idence with a l l m a p s 
f r o m X into Y . As the word ' u n i v e r s a l 1 i s a l r e a d y widely 
used with d i f ferent m e a n i n g s , we p r e f e r the m o r e p r e c i s e t e r m 
' co inc idence p r o d u c i n g ' for t he se m a p s . Such m a p s m u s t c l e a r l y 
be s u r j e c t i v e . 

Ques t ions conce rn ing co inc idence p roduc ing m a p s a r e r e ­
lated to fixed point q u e s t i o n s . Coincidence p roduc ing m a p s f r o m 
X onto Y can ex i s t only if Y has the fixed point p r o p e r t y , and 
the iden t i ty : Y-* Y i s in th is c a s e co inc idence p roduc ing for a l l 
m a p s f r o m Y into i t se l f . C r i t e r i a for co inc idence p roduc ing 
m a p s onto the n - c e l l have been e s t ab l i shed in [ l ] and [2] , 

This p a p e r i s conce rned with m a p s onto (gene ra l i zed ) t r e e s . 
S imple e x a m p l e s show that an a r b i t r a r y m a p onto a t r e e need not 
be co inc idence p roduc ing , but we e s t a b l i s h a sufficient condi t ion 
for co inc idence p roduc ing m a p s f r o m a cont inuum onto a t r e e 
( T h e o r e m 1). This condi t ion i s , in p a r t i c u l a r , sa t i s f ied by m a p s 
which a r e e i t he r mono tone , q u a s i - m o n o t o n e , or open. Hence 
our r e s u l t g e n e r a l i z e s one found by Wal lace [3J for monotone 
t r a n s f o r m a t i o n s . 

It i s e a s y to c o n s t r u c t e x a m p l e s which show that a co inc idence 
p roduc ing m a p onto a t r e e need not sa t i s fy the a s s u m p t i o n s of 
T h e o r e m 1. The p r o b l e m of finding a condi t ion which is both 
n e c e s s a r y and suff icient for a co inc idence p roduc ing m a p r e m a i n s 
open . 

2 . Def ini t ions and R e s u l t s . All s p a c e s in th is s ec t i on a r e 
a s s u m e d to be c o m p a c t Hausdorff, and a l l m a p s to be s u r j e c t i v e . 
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By a continuum we mean a connected compact Hausdorff space. 
A locally connected space is a space such that for every point x 
and every open neighbourhood N of x the component of N to 
which x belongs is a neighbourhood of x . 

We use the word combinatorial t ree for a connected finite 
linear graph without one-cycles, the word t ree according to 

DEFINITION 1. A t ree T is a locally connected con­
tinuum which is acyclic in the sense that for every finite open 
cover VL of T there exists a finite open refinement IS C \L 
such that the nerve N(^) is a combinatorial t r ee . 

The following lemma shows that the local connectivity of a 
t ree can be expressed in t e rms of finite open covers . 

LEMMA 1. A continuum X is locally connected if and 
only if for every open cover It of X there exists a finite open 
cover V C V- such that all V € V a re connected. 

The lemma is an easy consequence of resu l t s given in 
Wilder ([5J, pp. 40-41, 106-108). Our definition of a t ree is 
hence equivalent to the one in Wallace [3J. 

DEFINITION 2. A map f : X-> Y from a continuum X 
onto a space Y is called weakly monotone if for any continuum 

-1 
CC Y with non-empty inter ior , each component of f (C) is 
mapped onto C under f . 

We now state our main resu l t . 

THEOREM 1. If a map f : X - * T from a continuum X 
onto a t ree T is weakly monotone, then it is coincidence p ro ­
ducing. 

If f :X-*Y is a monotone map ([4], p . 127) then the inverse 
of every connected subspace of Y is connected. Hence we have 
the following corol lary. 

COROLLARY 1. A monotone map f : X-> T from a con­
tinuum onto a t ree is coincidence producing. 

This resu l t was already proved by Wallace [3]. 

Two further special cases which can easily be obtained from 
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Theorem 1 concern quasi-monotone and open maps . 

DEFINITION 3. A map f:X->Y from a continuum X 
onto a space Y is called quasi-monotone if for any continuum 

-1 
CC Y with non-empty inter ior , f (C) has only a finite number 
of components and each of these maps onto C under f (compare 
Whyburn [4], p . 151). Hence quasi-monotone maps are weakly 
monotone. This yields 

COROLLARY 2. A quasi-monotone map f :X->T from 
a continuum onto a t ree is coincidence producing. 

Using the fact that every open map from a compact 
Hausdorff space is weakly monotone* , we obtain a further 
corol lary. 

COROLLARY 3. An open map: X-*T from a continuum 
onto a t ree is coincidence producing. 

3. Some Lemmas . The following two proper t ies of t rees 
are needed in the proof of Theorem 1. 

LEMMA 2. Any finite open cover IL of a t ree has a 
finite refinement 5 C XL such that each G c S is a continuum 
with non-empty interior and that the nerve N(S) is a combinatorial 
t r e e . 

LEMMA 3. The intersection of two continua of a t ree is 
again a continuum. 

Lemma 3 is proved in [3], It is further shown there that 
any finite open cover U of a t ree has a finite refinement 5 of 
connected closed sets such that the nerve N(5) is a combinatorial 
t r e e . A study of the proof shows that the interior of the sets 
Ge 5 c a n D e assumed to be non-empty. 

Next, we prove a resul t on finite open covers for coincidence 
free m a p s . 

LEMMA 4. Let X and Y be compact Hausdorff spaces 

The proof of Theorem 7.5 on p . 148 of [4] remains valid in the 
non-metr ic case . 
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and f , g : X - * Y be two m a p s s u c h tha t f(x) ^ g(x) for a l l x e X . 
Then t h e r e e x i s t s a f in i te open c o v e r XL - {U. } of Y s u c h tha t 

for no x e X a r e f(x) and g(x) conta ined in the s a m e U. . 

P roof . Cons ide r the p r o d u c t m a p f X g : X-> Y X Y 
d e t e r m i n e d by f , g : X-*Y . As the i m a g e C = f X g(X) and the 
d i agona l D of Y X Y a r e d i s jo in t c losed s e t s in Y X Y , t h e r e 
e x i s t s an open s e t V such tha t D C V c Y X Y and C f l V = 0 . 
By def ini t ion of the p r o d u c t topology, V = i i U X U , 

X e A , [ j L € M 

w h e r e U , U a r e open s e t s in Y . F o r e v e r y poin t x = (x, x) eD , 
X |JL 

we t h e r e f o r e have 

x € U X U C V 
X(x) ^(x) 

for s o m e X(x)e A , JJL(X) e M . 

Le t U(x) = U , . O u , . . Then U(x) is an open s u b s e t 
X(x) ^(x) 

of Y , and 

hence 

X€ U(x ) X U(x) C V , 

D C \J U(x) X U(x) C V . 
x e X 

As D is c o m p a c t in Y X Y , t h e r e e x i s t s a f ini te subco l l ec t i on 
{U., i = 1, . . . , n } of the {U(x) , x € X } such tha t 

n 
D C I I U . X U . C V , 

' A X 1 

1=1 

n 
But CPlV = 0 , t h e r e f o r e C 0 ( (J U. X U.) = 0 , so tha t 

i= l 
CH= { U . } i s the d e s i r e d f ini te open cover of Y . 

F i n a l l y , we p r o v e a r e s u l t which i s the c o u n t e r p a r t of 
T h e o r e m 1 in the c a s e of s i m p l i c i a l m a p s f r o m (finite or 
infini te) p o l y h e d r a onto c o m b i n a t o r i a l t r e e s . The (c losed) 
s t a r of the v e r t e x a of a p o l y h e d r o n i s denoted by st(a) . 

L E M M A 5 . Le t u : M - > N be a s i m p l i c i a l m a p of a 
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p o l y h e d r o n M onto a c o m b i n a t o r i a l t r e e N such that 
st[u(a)J = u[s t (a) ] for a l l v e r t i c e s a of M . If v : M - > N is 
an a r b i t r a r y v e r t e x t r a n s f o r m a t i o n , then t h e r e ex i s t two (not 
n e c e s s a r i l y d i s t inc t ) ne ighbour ing v e r t i c e s a' , a" of M such 
tha t u (a f a" ) i s contained in the cha in joining v(aT) to v(a") . 

P roof . If u(a) = v(a) for any v e r t e x a s M , the r e s u l t 
i s t r i v i a l . O t h e r w i s e , le t a be an a r b i t r a r y v e r t e x of M , 

let b = u ( a . ) , and le t b^ be the next v e r t e x af ter b on the 
1 1 2 1 

cha in in N f r o m b to v ( a ) . As s t f u f a ) ! = u f s t f a j l , t h e r e 
1 1 1 1 

ex i s t s an edge a a of M such that u(a ) = b . Continuing 

in th is way we obtain a cha in a , a , a , . . . in M and a chain 

b t > t u , b 0 , . . . in N such that u(a. ) = b. and b . t i s the next 
1 2 3 l i l+l 

v e r t e x after b . on the cha in f rom b . to v(a.) . As N is 
l l i 

f ini te , t h e r e ex i s t two ind ices i and k , i < k , such tha t 
b . = b , but b . ^ b . if i < j < k . By defini t ion of the b . we 

l k l j î 

have k > i+1 . It i s not pos s ib l e that k > i+2 , as o t h e r w i s e 
b . , b . . , b . . . . . , b would be a cyc le in the c o m b i n a t o r i a l t r e e 

l l+ l i+2 k 
N . Hence k = i+2 , and the v e r t i c e s a' = a. , a" = a. t 

l l+l 
sa t i s fy the condi t ions of L e m m a 5. 

4 . P roof of T h e o r e m 1. Let f : X-> T be a map f r o m a 
cont inuum X onto a t r e e T which i s weakly m o n o t o n e . In 
o r d e r to p r o v e that f is co inc idence p roduc ing we show that the 
e x i s t e n c e of a m a p g : X - * T with f(x) 4 g(x) for a l l x £ X leads 
to a c o n t r a d i c t i o n . 

A s s u m e that g :X-> T i s such a m a p . It fol lows f r o m 
L e m m a 4 tha t we can find a finite open cover XL = {U. } of T 

such that for no x e X a r e both f(x) and g(x) contained in the 
s a m e U. . Accord ing to L e m m a 2 we choose a finite cover 

i 

5 C U such tha t e a c h G e S is a cont inuum with n o n - e m p t y 
i n t e r i o r and that the n e r v e N = N( 5 ) i s a c o m b i n a t o r i a l t r e e . 
Le t jf = { F } be the cover of X cons i s t ing of a l l the componen t s 

of a l l the f (G) . Then a l l F e J a r e cont inua, and the n e r v e 
M = M( 3" ) i s a o n e - d i m e n s i o n a l po lyhed ron . 

A v e r t e x t r a n s f o r m a t i o n f rom M to N i s defined as 
fo l lows: Le t the v e r t e x a e M corespond to F e J . Take 

a 

4 2 1 
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_ 1 
G . . £ S such that F is a component of f ( G . J . Clearly 

u(a) a u(a) 
this determines a simplicial map u:M-*N . 

The relation u[st(a)J C st[u(a)] is true for an arbitrary 
simplicial map. But here we have st[u(a)] C u[st(a)] as well: 
Let u(a) = b , and take any b' e st(b) . It follows from Lemma 
3 that G HG is a continuum, and as f is weakly monotone, 

b b1 

we have that f(F ) = G, , hence at least one component K of 
-1 a b -1 

f (G, OG, ) is contained in F . As K C f (G ) , we have 
b b1 a b! 

F P|f (G ) 4- 0 , i .e . for at least one component F f of 
a D a 

_^ 
f (G ) is it true that F Ç\Y . 1 é . Hence a! e st(a) with 

b' a a1 r 

u(a») = b! . 

Therefore u:M->N is a simplicial map such that 
st[u(a)] = u[st(a)] for all vertices aeM . 

We further define a vertex transformation v :M-*N by 
assigning to each asM a vertex v(a) e N such that g(F ) PlG . . i é 

a v(a) r 

By Lemma 5, there exist two neighbouring vertices a! , an 

of M such that u(a!aM) is contained in the chain joining v(a!) to 
v(a") . Hence we find a chain of sets 

v(an) b. u(a!) u(a") b. v(a') 

Let 

D = G v ( a ! 1 ) U . . . U G b U . . . U G u ( a I ) ) 

E = G u ( a " ) U - - - U G b . U - - - U G v ( a . ) . 

Then D and E are continua with D O E = G , ,. MG . ,,, = 
u^a1) u(a ) 

f(F )Df(F J . A s F . n F , , ^ , it follows that C=g(F ,) |Jg(F fl) 

is a continuum, and by definition of v , both COG / f V ^ (6 and 
v(a ! ) r 

CflG , „. i (h . As Cn(DUE) is a con­
via") r 

non-empty, we have C 0(D HE) ^ 0 , or 

CflG . ,,. 4 6 • As Cn(DUE) is a continuum by Lemma 3 and 
v(a") r 
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[ g ( F a l ) u g ( F a I I ) ] n [ f ( F a , ) n f ( F a „ ) ] * (t> • 

Hence 

g(F ) f | f (F ) 5*0 
a, a, 

o o 

for at least either a = af or a = a" . 
o o 

Now select an x e X for which g(x) e g(F )flf(F ) . Then 
a a 

o o 
both f(x) and g(x) are in f(F ) . By construction, f(F ) C U. 

a a l 
o o 

for some U. e U , so that both f(x) and g(x) a re contained in the 
same U. , in contradiction to the choice of IJL . Therefore it is 

l 

not possible that f(x) î g(x) for all xeX , and f is coincidence 
producing. 
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