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1. Introduction. Holsztyfiski [1] called a map f:X—=Y
from a space X into a space Y 'universal for all maps of X
into Y ' if for all maps g:X—=Y there exists a point x e X
such that f(x) = g(x), i.e., if f has a coincidence with all maps
from X into Y . As the word 'universal' is already widely
used with different meanings, we prefer the more precise term
'coincidence producing' for these maps. Such maps must clearly
be surjective.

Questions concerning coincidence producing maps are re-
lated to fixed point questions. Coincidence producing maps from
X onto Y can exist only if Y has the fixed point property, and
the identity: Y- Y is in this case coincidence producing for all
maps from Y into itself. Criteria for coincidence producing
maps onto the n-cell have been established in [1] and [2].

This paper is concerned with maps onto (generalized) trees.
Simple examples show that an arbitrary map onto a tree need not
be coincidence producing, but we establish a sufficient condition
for coincidence producing maps from a continuum onto a tree
(Theorem 1). This condition is, in particular, satisfied by maps
which are either monotone, quasi-monotone, or open. Hence
our result generalizes one found by Wallace [3]| for monotone
transformations.

It is easy to construct examples which show that a coincidence
producing map onto a tree need not satisfy the assumptions of
Theorem 1. The problem of finding a condition which is both
necessary and sufficient for a coincidence producing map remains
open.

2. Definitions and Results. All spaces in this section are
assumed to be compact Hausdorff, and all maps to be surjective.
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By a continuum we mean a connected compact Hausdorff space.
A locally connected space is a space such that for every point x
and every open neighbourhood N of x the component of N to
which x belongs is a neighbourhood of x .

We use the word combinatorial tree for a connected finite
linear graph without one-cycles, the word tree according to

DEFINITION 1. A tree T is a locally connected con-
tinuum which is acyclic in the sense that for every finite open
cover U of T there exists a finite open refinement & C U
such that the nerve N(¥) is a combinatorial tree.

The following lemma shows that the local connectivity of a
tree can be expressed in terms of finite open covers.

LEMMA 1. A continuum X is locally connected if and
only if for every open cover U of X there exists a finite open
cover ¥ C U such that all Ve V are connected.

The lemma is an easy consequence of results given in
Wilder (|5), pp. 40-44, 106-108). Our definition of a tree is
hence equivalent to the one in Wallace [3].

DEFINITION 2. Amap f:X—-Y from a continuum X
onto a space Y is called weakly monotone if for any continuum

CCY with non- empty interior, each component of f—1(C) is
mapped onto C under f.

We now state our main result.

THEOREM 1. If amap f:X—-T from a continuum X
onto a tree T is weakly monotone, then it is coincidence pro-
ducing.

If £f:X-Y is a monotone map ([4], p.127) then the inverse
of every connected subspace of Y is connected. Hence we have

the following corollary.

COROLLARY 1. A monotone map f:X-=T from a con-
tinuum onto a tree is coincidence producing.

This result was already proved by Wallace [3].

Two further special cases which can easily be obtained from
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Theorem 1 concern quasi-monotone and open maps.

DEFINITION 3. Amap f:X—->Y from a continuum X
onto a space Y is called quasi-monotone if for any continuum

CCY with non-empty interior, f-i(C) has only a finite number
of components and each of these maps onto C under f (compare
Whyburn |4], p.151). Hence quasi-monotone maps are weakly
monotone., This yields

COROLLARY 2. A quasi-monotone map f:X->T from
a continuum onto a tree is coincidence producing.

Using the fact that every open map from a compact
Hausdorff space is weakly monotone! , we obtain a further
corollary.

COROLLARY 3. An open map: X= T from a continuum
onto a tree is coincidence producing.

3. Some Lemmas. The following two properties of trees
are needed in the proof of Theorem 1.

LEMMA 2. Any finite open cover U of a tree has a
finite refinement § C U such that each Ge 3G is a continuum
with non- empty interior and that the nerve N(G) is a combinatorial
tree.

LEMMA 3. The intersection of two continua of a tree is
again a continuum.

Lemma 3 is proved in [3]. It is further shown there that
any finite open cover WU of a tree has a finite refinement 9 of
connected closed sets such that the nerve N(§) is a combinatorial
tree. A study of the proof shows that the interior of the sets
Ge g can be assumed to be non-empty.

Next, we prove a result on finite open covers for coincidence
free maps.

LEMMA 4. Let X and Y be compact Hausdorff spaces

1 The proof of Theorem 7.5 on p. 148 of [4] remains valid in the
non-metric case.
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and f, g:X-=>Y be two maps such that f(x) # g(x) for all xeX .
Then there exists a finite open cover U = {Ui} of Y such that

for no xeX are f(x) and g(x) contained in the same Ui .

Proof. Consider the product map fX g : X—-Y X Y
determined by f, g: X-=Y . As the image C ={X g(X) and the
diagonal D of Y X Y are disjoint closed sets in Y X Y, there

exists an open set V such that DCVCY X Y and CMNV = o .
By definition of the product topology, V = U Uu xuU ,

Nen,peM A b
where U)\ , U are opensetsin Y . For every point X = (x,x)eD ,
v)

we therefore have

X € U)\(x) X Up(x) cV

for some \(x)e N , p(x)e M.

Let U(x) = U)\ Then U(x) is an open subset

of Y, and

Nu
M

(x) (x)

Xe Ux) X U(x)CV,
hence

Dc |J Ux)xUx) cV
xeX

As D is compactin Y X Y , there exists a finite subcollection

{Ui’ i=1,...,n} of the {U(x), x e X} such that
n
DC‘U Uiin cVv.
i=1
n
But C\V = ¢ , therefore C N iL—J1 Ui X Ui) = ¢ , so that

U= {Ui} is the desired finite open cover of Y .

Finally, we prove a result which is the counterpart of
Theorem 1 in the case of simplicial maps from (finite or
infinite) polyhedra onto combinatorial trees. The (closed)

star of the vertex a of a polyhedron is denoted by st(a) .

LEMMA 5, Let u:M~=N be a simplicial map of a
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polyhedron M onto a combinatorial tree N such that

st{u(a)] = u[st(a)] for all vertices a of M. K v:M-=N is

an arbitrary vertex transformation, then there exist two (not
necessarily distinct) neighbouring vertices a', a'" of M such
that u(a'a') is contained in the chain joining v(a') to v(a') .

Proof. If u(a) = v(a) for any vertex ae M, the result
is trivial. Otherwise, let aL1 be an arbitrary vertex of M,

let b1 = u(ai) , and let b2 be the next vertex after b1 on the

chain in N from b1 to V(ai) . As st[u(a1)j =u[st(a1)J , there

exists an edge aa, of M such that u(az) = bZ . Continuing
in this way we obtain a chain ai, a2, a3, ... in M and a chain
bi’ b2, b3, ... in N such that u(ai) = bi and bi+1 is the next

vertex after bi on the chain from b. to v(a.). As N is
i i

finite, there exist two indices i and k, i< k, such that

bi = bk , but bi 7 bj if i< j< k. By definition of the b, we
1
have k> it+1 . It is not possible that k> i+2 , as otherwise
b,b. ,b. ,...,b 1db le i : i i >
2P P K Wou e a cycle in the combinatorial tree
N . Hence k = i+2, and the vertices a' =a,., a' = a,
1 i+1
satisfy the conditions of Lemma 5.

4. Proof of Theorem 1. Let f:X-=T be a map from a
continuum X onto a tree T which is weakly monotone. In
order to prove that f is coincidence producing we show that the
existence of a map g:X-—=T with f(x) # g(x) for all xe¢ X leads
to a contradiction.

Assume that g:X—=T is such a map. It follows from
Lemma 4 that we can find a finite open cover U = {Ui} of T

such that for no x € X are both f(x) and g(x) contained in the
same U, . According to Lemma 2 we choose a finite cover
i

§ € W such that each Ge§ is a continuum with non-empty
interior and that the nerve N = N(§ ) is a combinatorial tree.
Let ¥F ={F} be the cover of X consisting of all the components

of all the f—i(G) . Then all F ¢J are continua, and the nerve

M = M(F) is a one-dimensional polyhedron.

A vertex transformation from M to N is defined as
follows: Let the vertex a ¢ M corespond to Fa e ¥. Take
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e 9 such that F  is a component of f_1(G ) . Clearly
a

G
u(a)
this determines a simplicial map u:M-=>N .

u(a)

The relation u[st(a)] C st[u(a)] is true for an arbitrary
simplicial map. But here we have st[u(a)] C u[st(a)] as well:
Let u(a) = b, and take any b' e st(b) . It follows from Lemma
3 that Gmeb' is a continuum, and as f is weakly monotone,

we have that f(Fa) = Gb , hence at least one component K of

f-1(Gmeb') is contained in Fa . As KC f-i(G ), we have

bl
-1 )
Faﬂf (Gb') # ¢, i.e. for atleast one component Fa of

1
f_i(Gbl) is it true that FamFa' # ¢ . Hence a'e st(a) with
u(a') = b' .

Therefore u:M—>N is a simplicial map such that
stfu(a)] = u[st(a)] for all vertices aeM .

We further define a vertex transformation v:M—->N by
assigning to each atM a vertex v(a) e N such that g(Fa)ﬂGV(a) .

By Lemma 5, there exist two neighbouring vertices a', a"
of M such that u(a'a'') is contained in the chain joining wv(a') to
v(a'") . Hence we find a chain of sets

Gv(a")’ ey Gbi, cee, Gu(a')’ Gu(a")’ e ey ij, ey Gv(a') .
Let
D = Gv(a”)U .U GbiU oo UGu(a,) ,
E = Gu(a") U...u GbJU WU Gv(a') )
Then D and E are continua with DI E = G NG =
u(a') u(a')
f(Fa,)ﬂf(Fa“) . As F_NF_, #¢, itfollows that C=g(F_,) Ug(F_,)

is a continuum, and by definition of v , both cNaG

# ¢ and
v(a')
CmGV(a") #¢. As CN(DUE) is a continuum by Lemma 3 and
non-empty, we have C(\(DMNE) # ¢ , or
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[&(F ) Us(F_ JINIEE_)NEEF_ )] # 6 -

Hence

gF_INEF_)+#¢

o o
for at least either a =a' or a = a'.
o o

Now select an x ¢X for which g(x) e g(Fa )ﬂf(Fa ). Then
o o
both f(x) and g(x) are in f(Fa ) . By construction, f(Fa )CUi
o o
for some Ui e U, so that both f(x) and g(x) are contained in the

same Ui , in contradiction to the choice of W . Therefore it is
not possible that f(x) # g(x) for all xeX , and f is coincidence
producing.
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