Miss C. M. HAMILL

The death, at the early age of 32, of Christine Hamill has
saddened many, not least those who met her at the Society’s colloquia

at St Andrews in 1951 and 1955.

Miss Hamill graduated at Caimbridge in 1945, a Wrangler in
the Mathematical Tripos. Twelve -months later she began research
under Dr J. A. Todd and was a Research Fellow of Newnham College
by 1950, in which year she submitted her thesis The fintte primitive
collincation groups which contain homologies of period two. She
took the doctorate in 1951. Her first teaching appointment was a
lectureship at Shetheld, her second a lectureship at University College,
Ibadan, Nigeria. During the long vacation of 1955 she was home
i Britain and attended, in addition to the St Andrews colloquium
in July, the British Mathematical Colloquium at Exeter in September.
Six months later she had a fatal attack of poliomyelitis and died
at Ibadan after two days’ illness on 24th March, 1956—the day Sir
Edmund Whittaker died at Edinburgh. She was to have been married
in July.

Miss Hamill’s published work culminated in two papers:

A, On a finite group of order 6531840 :
Proc. London Math. Soc. (2) 52, 1951;

B. A collineation group of order 2'-3°-5*-7:
Proc. London Math. Soc. (3) 3, 1953;

and it is pertinent, before summarising their contents and appraising
their achievement, to sketch their pedigree.

In 1890 H. Burkhardt, whose researches were based on lectures
by Felix Klein, published the second part of a long memoir on
hyperelliptic modular functions, and in it examined the group of tri-
section of the periods. This group, of order 25920, had been found 20
yvears before by Camille Jordan; but Burkhardt constructed 5 theta-
functions that were linearly transformed by it and so was able to
display it as a group G of linear substitutions on 5 variables. He
thereupon worked out the complete set of invariants of G, finding
the one, J say, of lowest order to be a quarticc. When the variables
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which undergo substitution are taken as homogeneous coordinates in
[4], / = O is the equation of a quartic primal. This primal was
encountered by Coble, in 1906, who saw that it has 45 nodes, and gave
some details of their configuration, Now H. F. Baker, on a visit to
Gottingen to study under Klein, had there met Burkhardt who gave
him offprints of his papers; these Baker studied and copiously
annotated and when, nearly 50 years on, retirement from his Cambridge
chair had brought comparative leisure he set out to describe, without
any dependence on theta-functions, the geometry of the 45-nodal
primal, calling it Burkhardt’s primal. The outcome was the Cambridge
tract: A locus with 25920 lLnear self-transformations published in
1946. These linear self-transformations, or projectivities, include
45 projections (the homologies of period 2 of Miss Hamill’s thesis)
whose vertices are the nodes of the Burkhardt primal. Todd, who
had found in 1936 a representation of this primal on [3], read the
proof-sheets of the tract and noticed that the geometry afforded a
means of partitioning the 25920 projectivities into 15 classes such
that operations conjugate in G necessarily belonged to the same class.
All operations in a class have the same’ period, and equivalent sets
of invariant subspaces, but closer scrutiny may be called for to see
whether all operations in the class are conjugate or whether the class
is a union of different conjugate sets in G. Todd’s results tally in
every detail with the separation of G into its 20 conjugate sets
accomplished by J. S. Frame in 1936 by different methods. (Frame
had represented G as a group of unitary 4-rowed matrices over a
Galois Field of 4 marks.) Todd shows incidentally that every operation
of G is the product of 5 or fewer projections.

It was at this juncture that Miss Hamill became Dr Todd’s
pupil, and he set her to analyse certain larger groups wherein the
occurrence of projections had been known since 1914. Fortunate
she may well have been, but she soon showed in no uncertain fashion
that she could exploit the opportunity that fortune gave her. Before
the end of June 1948 she had finished in fair copy the paper A in
which, in the space of 50 pages, the separation into 34 conjugate
sets of a group of order 6531840 is set out in full detail, This group
includes 126 projections whose vertices lie in a [5]; each has a [4]
“opposite to” its vertex and each such [4] contains 45 vertices
forming therein the configuration of nodes of a Burkhardt primal
Miss Hamill first describes the whole figure, the various spaces which
occur and their mutual relations, and then considers products of pro-
jections. The group is partitioned according to the least number of
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projections of which its operations are products and the type of space
spanned by the vertices of these factors: for instance, an operation
may be the product of 4 projections whose vertices span a solid,
and there are 7 types of solid in the figure. All operations expressible
as products of 5 or fewer projections can be handled thus; they fall
into 28 classes and account for 31 conjugate sets. Some operations
however demand 6 factors; these provide 3 more conjugate sets.
The whole paper impresses by the steady forward march of the
discussion, and by the exercise of insight and imagination that would
do credit to anv geometer. At the close the subgroup, of index 2,
constituted by those operations that are products of even numbers
of projections, is mentioned and its separation into 20 conjugate
sets deduced.

This mass of new information is all Miss Hamill’s own discovery
and none of it has ever been published elsewhere. But it so happens
that this subgroup, of order 32635920, is isomorphic to one of what
Dickson called the hyperorthogonal groups; it is listed in the left
hand column on the last page of the text of his Linear Groups
(Leipzig, 1901). This offers an alternative line of attack, and although
the separation into conjugate sets so obtained is unpublished I am
given to understand that it is in complete accord with Miss Hamill’s.
The larger group, which provides the title of A, can be got by imposing
a certain outer automorphism of period 2 on the smaller one, and
Miss Hamill’s results for it thus corroborated.

The paper B treats of groups G®, G° G’ of projectivities in
spaces of dimensions shown by the superscripts; G° includes 36 project-
ions and is a subgroup of G° which includes 63 projections and is,
in its turn, a subgroup of G7, the group of the title and including
120 projections. Miss Hamill separates (7 into 67 conjugate sets
and deduces the separations of G* and G° and then, from that of
G®, the separation of the group of order 25920 which is a subgroup
of index 2 in G°.

Dr Todd suggested these groups as subject-matter for the thesis
because they include projections. But they are known in other
contexts; not only are they groups of symmetries of regular polytopes
in Euclidean space, but they are also the groups of automorphisms of

the 120 tritangent planes of a canonical curve of genus 4,

the 28 bitangent lines of a non-singular plane quartic (ie. a
canonical curve of genus 3),

the 27 lines of a cubic surface.
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Miss Hamill was well aware of this before submitting her paper
early in February 1952; but she did not then know that G° and G°
had, in their representations as groups of symmetries of regular
polytopes, just been investigated by Frame who published their
separations into conjugate sets in Italy in 1951, Indeed, although it
had not apparently come to the notice either of Frame or of Miss Hamill,
G° had been separated into conjugate sets as long ago as 1904 by
Dickson, who used its representation as a symplectic group of 6-rowed
matrices over the Galois Field of 2 marks. But these anticipations
in no way detract from Miss Hamill’s spectacular success. Her results
for G' were not anticipated and those for G° and G°, which were,
are mere corollaries once the geometry in [7] has been set out in detail.
Table III on pages 76 and 77 of B, displaying as it does a huge
mass of information that is all her own original contribution, is
perhaps the summit of her achievement. It is also her legacy,
and two benefactions that may flow from it are already discernible.
A mention of them should end this notice.

Those operations of G7 that are products of an even number
of projections form a subgroup whose order, half that of G7, is
174182400. This number appears, on the page of Dickson’s text-
book already cited, as the order of a group there symbolised as FH (8, 2)
which, being interpreted, denotes a subgroup of index 2 of the group
of non-singular linear transformations, of 8 variables over the Galois
Field of 2 marks, for which

1Yy + oYy + XsYs 4 24y,

is invariant. There are reasons to suspect this group to be isomorphic
to that which provides the title of B, so that it can also be investigated
as a group of projectivities in the finite space and of the 8-rowed
matrices that impose them. This is the first of the benefactions;
the second may be the reopening of an old question. The geometry
of the 27 lines of a cubic surface is classical, so is that of the 28
bitangents of a quartic curve. The possession of this knowledge
has sometimes lured- geometers to probe the configuration of 120
tritangent planes of a canonical curve of genus 4; they would be the
first to confess their feeling of frustration and disappointment. Miss
Hamill’s table has now disclosed many numbers that must have some
interpretation in the configuration; will their publication impel us at
last to discover more about this elusive curve?
W. L. Ebck.

httpsf//do‘\,org/mﬂ 017/50950184300000306 Published online by Cambridge University Press


https://doi.org/10.1017/S0950184300000306

