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Abstract

Some new classes of finite groups with zero deficiency presentations, that is to say presentations with
as few defining relations as generators, are exhibited. The presentations require 3 generators and 3
defining relations; the groups so presented can also be generated by 2 of their elements, but it is not
known whether they can be defined by 2 relations in these generators, and it is conjectured that in
general they can not. The groups themselves are direct products or central products of binary
polyhedral groups with cyclic groups, the order of the cyclic factor being arbitrary.

1980 Mathematics subject classification (Amer. Math. Soc): 20 F 05.

1. Introduction

Let the group ^ b e generated by a (finite) family {av a2,... ,ad) of its elements,

with a (finite) family {ux = vv u2 = v2,... ,ue = ve} of defining relations, where

the M,-,«,- are words in the generators av a2,...,ad. These data constitute a

presentation of @, and I write

@ = gp(al,a2,...,ad;u1 = vx,u2 = v2,...,ue= ve).

This is a slightly revised and slightly amplified version of a paper that had been intended for the
Festschrift for Philip Hall's 80th birthday: He died, aged 78 years, on 1982-12-30. The original version
was semi-published in [11].
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[21 Groups with few relations 231

This notation, adapted from one first introduced by Phillip Hall to deal also with
other algebraic systems than groups, will be varied slightly in obvious ways, such
as writing a,b,... for the generators. The restriction to finite presentations, that is
to say, presentations with both the number d of generators and the number e of
relations finite, is not necessary, but convenient. The difference d - e is the
deficiency of the presentation. This is not an invariant of the group even if e is
chosen as small as the generating family will allow; one example is the group

gp(a,b; a2b = ba3)

of Baumslag and Solitar [1]: Graham Higman has remarked [6] that if this group
is generated by ax = a4 and bx = b, then at least two defining relations are
required. Another example is the clover knot group, that is the fundamental
group of the residual space of a clover knot in U3,

see Dunwoody and Pietrowski [4].
It is well known? that the deficiency of every presentation of a finite group is

non-positive. Thus finite groups with zero deficiency form a border-line class;
Johnson [8] calls them interesting groups. Such groups, if nilpotent, can be
generated by 3 or fewer elements; a finite nilpotent group that can be generated
by 4 but not by 3 elements needs at least 5 defining relations; and until quite
recently it was not known whether this bound is attained. Now Havas and
Newman [5] have constructed groups of orders 216, 217, 218, and 219 with
minimally 4 generators and 5 defining relations. The question whether there are
finite non-nilpotent groups with minimally 4 generators and zero deficiency
presentations is still open.

The present paper makes a modest contribution to the list of examples of finite
groups with presentations of zero deficiency. It has reached its present form after
a number of talks I gave in various places in Scotland, Australia, USA, Austria,
Germany in 1981 and 1982, and I have much profited from the discussions and
suggestions that arose out of these talks. I am particularly indebted, and grateful,
to Professor John Leech, Professor A. J. van der Poorten, Dr R. T. Worley for
help with the number theory I needed; to Mr W. A. Alford, Dr George Havas, Mr
P. E. Kenne, and Dr M. F. Newman, who helped with some of the group-theoreti-
cal computing; and to Dr Newman and Professor H. S. M. Coxeter, who have
drawn my attention to some relevant additional references.

'Statements described as "well-known" or without attribution can be found in Coxeter and Moser [3]
or Johnson [8].

https://doi.org/10.1017/S1446788700023090 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023090


232 B. H. Neumann [3j

2. Binary polyhedral groups

I begin with some known facts, in order to fix the notation here used.
Starting from the well known presentation

&{p, q, r) = gp(a, b; a<> = b« = (ab)r = l ) ,

which has deficiency - 1 , one first forms

(1) ®(p, q, r) - gp(a, b; a" = b" = (ab)r).

Here 1 stands both for the unit element of the groups that occur and for the
natural number; and the parameters p, q, r are integers. Nothing of interest is lost
if one assumes that

(2) 2 < | i | < \q\ < |r|.

It is well known that ^(p, q, r) is finite if, and only if

J_ J_ J_
\p\ + M + \r\> '

the groups &(p,q, r) are then known as the polyhedral groups. Specifically they
are

the dihedral groups: \p\ = |^| = 2, \r\ > 2, of order 2|r|,

for which I shall use the abbreviation @2\r\\

the tetrahedral group: \p\ = 2, |̂ r| = |r| = 3, of order 12, abbreviated3~X2;

the cotahedral group: \p\ = 2, |#| = 3, |r| = 4, of order 24, abbreviated 024;

the icosahedral group: |/>| = 2,|g| = 3,|r| = 5,or order 60, abbreviated^,.
They are normally written with p, q, r positive, as this loses no generality.
However, for the groups 38{p,q, r) derived from them, the fact that no generality
is lost by assuming (2), while not deep, is not immediately obvious; and it is not
true that (as I innocently assumed until fairly recently) no generality is lost by
taking the parameters positive. Put, more generally (and temporarily only),

a(P, Q, R, a, fi) = gp(fl, b; ap = bQ= (aab^)R),

where P, Q, R are arbitrary non-zero integers and a = ±1,0= ±1 . If |P|, |g|,
\R\ are all different, there are 6 permutations of the set {|P|, |g|, \R\}, and 25

possible combinations of the signs of the 5 parameters to be considered, giving
192 presentations 3S{±p, ±q, ±r, ± 1 , ±1), where {/>, q, r} = {|i>|, \Q\, \R\).
However, it is an easy exercise to show that by chosing new generators

ax = b, bx = a,

or

a2 = a'1, b2 = b,
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or

a3 = ab, b3 = b,

or by a concatenation of such changes, one can transform every 38{P, Q, R, a, /?)
to one of the 4 forms @(p, ±q, ±r, + 1, +1), with {p, q, r) = {\P\, \Q\, \R\)
and, say, 0 < p < q < r. The presentations thus obtained, with the simpler
notation (1), namely

®(p, ±q, ±r) = gp(a, b;af = b±"= (ab)±r),

should be compared with those attributed to Threlfall [14]2 by Coxeter and Moser
[3, p. 68]:

(I, m, n) = gp(a, b, c; a' = bm = c" = abc).

The similarity becomes obvious when it is observed, as Coxeter and Moser [3, p.
69] do, that one can write

<2, m, n) = gp{b, c; bm = c" = (6c)2).

It follows that

(2,m,n) =

the verification is not difficult, and omitted.
In particular the binary polyhedral groups, which are extensions of a central

cyclic group of order 2 by a polyhedral group, are:
(2,2, r) = 38{2, -2, r) of order 4|r|, the dicyclic groups of Coxeter and Moser

[3, p. 7], for which I shall use the abbreviation @*\r\,
(..3,3) = 38(2, -3,3) of order 24, the binary tetrahedral group, here abbrevia-

ted^*;
(..3,4) = @(2, -3,4) of order 48, the binary octahedral group, here abbrevia-

ted 04*g; and
(..3,5) = S8{2, -3,5) of order 120, the binary icosahedral group, here abbrevi-

ated ^*20.
The other finite groups of the form 3S{p, ±q, ±r) are as follows:
The group 38(2,2, r) has order 4r(r - 1); it can be described as the extension

of a cyclic group of order 2r(r — 1), generated by ab = / , say, by a cyclic group
generated by a, such that

a-lfa=f2r-2 and a2=f.

2Actually Threlfall in [13] only asks for the order of (5,2,3). In [14, footnote] he credits Max Dehn
with the fact that the groups (-3,2,3), (-4,2,3), (-5,2,3) are also finite. Seifert [12] gives their
orders; see also Coxeter [2].
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If r is even, the group can also be described as the direct product

0(2,2, r) s <»;„, X *„_!,,

where ¥„, with n > 0, stands for the cyclic group of order n. The group is
isomorphic to Coxeter and Moser's (-2,2, r) (see [3, p. 70]).

The group 0(2,3,3) has order 72; it can be described as a (necessarily split)
extension of the quaternion group by a #9 that induces the automorphism of
order 3 on the quaternion group; thus the subgroup of order 3 of the #9 is central
in the whole group, and factoring it out one obtains the binary tetrahedral group
&£. The group 0(2,3,3) is (-3,2,3) in Coxeter and Moser [3, p. 70] and also
occurs in Seifert [12, p. 8]; it has recently been incorporated by Kenne [9] in an
infinite sequence of cyclic extensions of the quaternion group with zero deficiency
presentations. This group is also isomorphic with 98(2, -3 , -3).

The remaining finite groups 0 ( />, ±q, ±r) are

0(2,3,-3) =^-2*X«^7,

0(2,3,4) = 0*8X<<?7,

0(2,3,-4)== 04*8 X <€u,

0(2,-3,-4) s<%X«-s,

0(2,3,5) a / f j j X * , , ,

0(2,-3,-5) sS&oXVn.

All these groups were determined by Coxeter [2], and most of them are listed in
Coxeter and Moser [3, p. 70]. The last three occur already in Holder [7, pp. 350
sqq.], with rather different presentations. Note that here, as in Coxeter [2], all
these groups have zero deficiency presentations. In the next section infinite
sequences of such groups with zero deficiency presentations will be constructed,
of which the above groups are special cases.

3. New presentations

Building on the groups considered in the preceding section, I now introduce
groups with the following presentations:

9(p, q, r, s, t, u) = gp(«, b, c; a" = cs, b" = c', (ab)r = c"),

where p, q, r, s, t, u are integral parameters, which will presently be restricted so
as to make the groups finite. Nothing of interest is lost if one assumes that

0 < \P\ < \q\ < V\\
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and as no restrictions will be placed on the signs of s, t, u, I shall even assume,
without loss of generality, that

0 <p < $ < r.

The case/? = 1 is somewhat exceptional and will be treated later; for the present I
shall, therefore, further assume

2 </? < ? < r.

It is clear that putting c = \ will give &>(p,q,r) as a factor group of
9{p, q, r, s, t, u); thus it is natural to restrict attention to the polyhedral cases

(3) i + UI>l.
• P 9 r

Equally necessary to ensure finiteness of 9 = 9{p, q, r, s, t, u) is that the factor
group of the derived group, 9/9', should be finite. This requires that the matrix

p 0 -s
0 q -t

r ~u

be non-singular, that is that the determinant is non-zero:

(4) A = -pqu + prt + qrs # 0.

In the presence of the inequality (3) and the inequation (4), a sufficient
condition for finiteness of 9 is that s, t, u are pairwise coprime. Less is necessary
when p = 1, vide infra, and when p = q = 2; but when p = 2, q = 3, r = 3 or 4
or 5, this coprimality appears to be necessary, too.

LEMMA 1. / /

(5) (s,t) = (s,u) = (t,u) = l,

then c is central in 9(p, q, r, s, t, u).

PROOF. AS CS is a power of a, it commutes with a; similarly c" commutes with
ab. Thus csu commutes with both a and ab, hence with b. But also c' commutes
with b, and as (su, t) = 1, then also c commutes with b. Then c" commutes with
both ab and b, hence with a, and as (s, u) = 1, then c also commutes with a.

THEOREM 2. Conditions (3), (4), (5) are jointly sufficient to ensure the finiteness of
9{p,q,r,s,t,u).

PROOF. Condition (5) ensures that c is central in 9 — 9(p, q, r, s, t, u), and
condition (4) ensures that a non-trivial power of c, for example cA, falls into the
derived group 9'. Let K be the order of c modulo 9'. Then c" lies in both the
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centre and the derived group of &, hence in the Schur multiplicator of #*, the
factor group of 'S modulo the (cyclic normal) subgroup generated by c". Now &*
is a finite group, because it is an extension of the central subgroup generated by
the image c* of c, of order K, by an isomorphic copy of the polyhedral group
&(p, q, r)—which is finite because of condition (3). But the multiplicator of a
finite group is finite; hence c" has finite order—in the cases under consideration
the order is, in fact, 2. It follows that ^ is finite, and in fact an extension of a
central cyclic group of order 2 by 9*.

To compute the order of ^, it is first necessary to compute K. NOW if the index
of the derived group 0>l of the polyhedral group & = £P(p, q, r) is denoted by F,
then clearly

where A is given by (4). The values of F are well known; they are:
for the dihedral groups 3>2r:

if r is odd, F = 2;
if r is even, F = 4;

for the tetrahedral group 3~X1: F = 3;
for the octahedral group 024: F = 2;
for the icosahedral group S^: F = 1.

The order of ^is then simply

Thus the order of 9 depends on the particular polyhedral group involved and on
| A |; and A depends linearly on s, t, u, say

A = kxs + lxt + mxu,

where kv = qr, /j = pr, ml = -pq. The coefficients kx, lx, ml here are all divisible
by F, say kx = Tk, /x = Tl, ml = Tm, so that

A
-p = ks + It + mu.

The actual coefficients that arise from the polyhedral cases are as follows:

k = r, / = r, m = -2, (dihedral with odd r);

k — \r, I = \r, m = -1 (dihedral with even r ) ;
k = 3, / = 2 m = -2 (tetrahedral);
k = 6, / = 4, m = -3 (octahedral);
A: = 15, / = 10 ,m = -6 (icosahedral).

Thus in all cases (k, I, m) = 1.
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To determine the possible values of |A|/r, and thus the orders that the groups
& can have, one has to find all values of n for which the linear diophantine
equation

(6) ks + It + mu = n

has a solution s, t, u subject to

(5) ( s , t ) = ( s , u ) = ( t , u ) = l,

given that the coefficients k, I, m are jointly coprime:

(k,l,m) = 1.

In the polyhedral cases one can show, by ad hoc arguments, that the equation
(6) subject to (5) has solutions for every n; and I am grateful to Professor John
Leech for providing me with an elegant such solution in the icosahedral case. But
it would be more satisfactory to establish the following proposition:

THEOREM 3. Let k, I, m, n be integers with (k, I, m) = 1 and n arbitrary; then
there are infinitely many integer solutions of the diophantine equation

ks + It + mu = n

subject to (s, t) = (s, u) = (/, u) = 1.

This is indeed true, and using a suggestion of Professor A. J. van der Poorten I
managed to prove it (and its natural generalization to more than 3 variables),
employing the heavy guns of Dirichlet's theorem on primes in arithmetic progres-
sions. However, recently R. T. Worley [15] has found a straightforward proof of
the (generalised) theorem:

W O R L E Y ' S THEOREM. Ifkv k2,---,kd are integers such that (kx, k2,...,kd) = 1,

then for each integer n the equation

kxxx + k2x2 + • • • + kdxd = n

subject to

(•*/> xj) = 1 for 1 < i <j < d

has infinitely many solutions.

4. Interlude

The case/? = 1 will be briefly considered. The groups ^"(1, q, r) and 98{\, q, r)
are obviously cyclic, and their orders are easily determined. The structure of
9(1, q, r, s, t, u) is less obvious. Replacing the generator a by cs and omitting it
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from the presentation, one has

9 = 9(1, q, r, s, t, u) = gp(b, c; V = c', (csb)r = c").

As before, a necessary condition for finiteness of ^is that the matrix

r rs — u

be non-singular, that is that the determinant be non-zero:

(7) A = qrs - qu + rt * 0.

This is, of course, the special case p = 1 of condition (4). It does not suffice to
ensure finiteness of IS; for example, 9(1,2,2,2,2,2), with A = 8, is an extension
of a central group of order 2 by the infinite dihedral group. By contrast,
^(1,2,2,1,2,2) is the quaternion group. The verification of these facts is easy,
and omitted.

THEOREM 4. Condition (7) jointly with

(*,«) = 1

is sufficient to ensure that 9(1, q, r, s, t, u) is a finite cyclic group, of order |A|.

PROOF. AS C' is a power of b, it commutes with b; similarly c" commutes with
csb, and thus also with b. As t and u are coprime, it follows that c commutes with
b, and the group is abelian; it has order |A| because this is the index in it of its
derived group, now seen to be the trivial group. Finally a finite abelian group
with a zero deficiency presentation, and hence with trivial Schur multiplicator,
must be cyclic.

Thus, for example,

is a presentation of the trivial group; is this trivial? I think not, though a
bare-handed proof is not too difficult. In fact, P. E. Kenne, using a computer
program he has devised [9] to prove such facts from an analysis of the computer
execution of a Todd-Coxeter enumeration has produced a proof in 9 steps. The
Todd-Coxeter coset enumeration, not the one Mr. Kenne employed, but one
using a procedure due to Felsch, had to generate more than 2,800 cosets to show
the group to be trivial—which it did in very few seconds!

There are other conditions that ensure that the group is abelian and thus, under
assumption of (7), finite cyclic; for example, if (q, r) = 1 and / divides s, one
shows by an equally easy argument that the group is abelian.
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5. Further remarks

It has been shown that the groups 9= &(p, q, r, s, t, u) are, for the "poly-
hedral" choices of p, q, r and for suitable choices of s, t, u, extensions of a cyclic
central subgroup <g2n of arbitrarily prescribed even order 2 M by the polyhedral
group that belongs to the choice of p, q, r. In many cases, for example if n is not
divisible by 2 or 3, or if p = 2, q = 3, r = 5, that is in the icosahedral case, ^ is
the central product of #2n and the corresponding binary polyhedral group,
amalgamating the central involutions; but some different groups also turn up, for
example the group of order 72 described as 38(2,3,3) in Section 2, which here
occurs as 3^(2,3,3,1,1,1). [In fact all groups SS(p, ±q, ±r) occur as

All the groups here considered can be generated by two elements; for if a, T are
so chosen that

as + Tt = 1,
then

aP'b* = c;
thus c is superfluous as a generator. Do the groups then also have a zero
deficiency presentation when generated by a and bi In some cases they have, for
example if p = q = 2 (the dihedral case); but in general I do not know the
answer, and I conjecture that in general the answer is negative. In particular I
conjecture that if S?(2,3,5, s, t, u) is generated by a, b only, then for all suffi-
ciently large values of

A = 15s + lOt - 6«

the group requires 3 defining relations. If this is true, then it provides examples of
finite groups with presentations that, even in terms of the least number of
defining relations, have different deficiencies. However, while single relation
presentations of groups have been studied in great depth, starting with the
fundamental paper [10] of Wilhehn Magnus, (and it is this that allows one to
verify Higman's remark about the Baumslag and Solitar group mentioned in the
Introduction), far too little seems to be known about presentations with more
than one relation.
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