
ON HOMOGENEOUS SPACES, HOLONOMY,

AND NON-ASSOCIATIVE ALGEBRAS
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1. Introduction. Let G be a connected Lie group and H a closed

subgroup. The homogeneous space M = G/H is called reductive if in the

Lie algebra g of G there exists a subspace m such that g = m + ^ (subspace

direct sum) and [ίj πt] c m where f) is the Lie algebra of H, see [8]. In

this case the pair (g, ίj) is called a reductive pair and the subspace m can be

made into an anti-commutative algebra as follows. For I , F e i n let [X F]

= XY+h{X,Y) where XY = [X F ] m (resp. h(X,Y)=[XYy is the projection

of [X Y] in g into m (resp. ϊj). The Lie algebra identities of g yield the

following identities for m and ϊj. For X, F, Z e πt and A e ϊj,

(1) X F = - YX (bilinear)

(2) h(X, Y) = - h(Y, X) (bilinear)

(3) [Z h(X, F)] + [X h{Y9 Z)-] + [Y h(Z, X)1 = (XY)Z + (FZ)X + (ZX)Y

(4) A(jfy, Z) + h{YZ, X) + A(ZX, Y) = 0

(5) [A * ( * , F)] = A([A X], F) + A(X, [A F])

(6) \h XY] = [A Z ] F + Z[A F].

The above algebra will be denoted by (m,XY) and note that (6) says the

mappings D{h) = admh : m~>m: X-±[h X] are derivations of this algebra.

Also note G\H is a symmetric space if (m, XY) is the zero algebra.

The algebra (rn,XY) and other non-associative algebras are related to

the differential geometry of G/H by using the following results of Nomizu

[8, Th. 8. 1].

THEOREM. Let GjH be a reductive homogeneous space with a fixed Lie algebra

decomposition g = m -j- ί) with [ή m] c m. Then there exists a one-to-one correspondence

between the set of all G-invariant connections on GjH and the set of all bilinear

functions a : nt x m-+m such that the mappings D(h) are derivations of the

resulting algebra.
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374 ARTHUR A. SAGLE

Thus if (nt, a) denotes the above algebra we have \h a(X, Y)] = a([h X], Y)

+ a(X, [h Y]). From [8, section 9] we have the following formulas for the

curvature endomorphism and torsion in terms of (tπ,α). Motivated by the

notation in [5], let a{X): m->nt: Y-+a(X,Y) zndb{X): m-*m: Y-*a{Y,X), then

(7) R(X, Y) = ίa(X), a(Y)] - a(XY) - D(h(X, Y)\

(8) Tor (X, Y) = [a(X) - b(X) - L(X)]Y

where L{X) : nt->nt: Y-+XY.

From [8, Th. 10. 1] the particular algebra (m,XY) is further related to

the geometry of G/H as follows.

THEOREM. On a reductive homogeneous space G/H, there exists one and only

one G-invaήant connection which has zero torsion and such that a 1-parameter subgroup

x{t) in G generated by l e n t projects by K : G-^G/H: x(t)-±x*(t) into a geodesic

x*{t) in G/H. In this case a{X, Y) = -=-XY and the connection is called the

{canonical) connection of the first kind on G/H.

Using identities (l)-(6) various results were proved in [10 11 12 13] relating

the algebra (m, XY) to the geometry of GjH. In this paper we attempt to

extend some of these results to the general connection on G/H defined by

(m, a) by comparing it with the algebra (m,XY). A comparison theory

was developed by Kostant in [5].

Given a connection on M=G/H defined by the algebra (nt, α), the

corresponding holonomy group, Hoi (α), acts on M by G-translating its

action on the tangent space Mv — m to all of M(p = i J e M). Thus since

Hoi (a) is a Lie group, we shall consider its Lie algebra, hoi (a), called the

holonomy algebra as a Lie algebra of endomorphisms acting on m. From

[5 7 9] we see that hoi (a) is the smallest Lie algebra ψ such that all

R{X9Y)tΞψ and [ β ( I ) , f ] c f . Thus ψ = hoi (a) is generated by {a{X)

and D{h{X, Y)) : X, Y e nt}. Geometrically, holonomy irreducible spaces G/H

are first considered and then extended by a "de Rham decomposition

theorem" to holonomy "completely reducible" spaces [10, Th. 8]. Algebrai-

cally, this leads to new problems not only in simple algebras (m,a) but

also in algebras (m, a) which have no ΐ)*-invariant subspaces; i.e. no left

ideals which are invariant under the derivation algebra.

In section 2 we review some basic facts in terms of the above non-

associative algebras. We see that the algebras (nt, a) generalize Lie

admissible algebras to reductive Lie admissible algebras [11, section 1].

https://doi.org/10.1017/S0027763000026799 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026799


HOMOGENEOUS SPACES 375

Next we see that holonomy irreducibility implies (m, a) is a simple algebra,

but frequently this algebra need not have an identity or idempotent

elements e.g. G/H Riemannian. Following the lead in [5], we compare a

pseudo-Riemannian connection given by (m, a) with a pseudo-Riemannian

connection of the first kind; we do this comparison by a one-to-one

correspondence between algebras (m, a) and elements in a neighborhood of

the identity in a certain Jordan algebra.

In section 3 we give some applications of algebras (m, a). For example,

we show that if (g,§) is a reductive pair \yith decomposition g = m + | such

that D{§) acts irreducible on nt, then any algebra (nt, a) must induce an

irreducible connection of the first kind [16]. We extend this using the

algebra (nt, a) to prove Kostant's results [5] about £>(ΐ)) having inequivalent

representations in m implying G/H is metric irreducible. We also give an

example of a reductive pair (g,ΐ)) with g simple and compact which yields

reducible or irreducible connections. This example seems to indicate that

the problem of irreducibility in the general case is more numerical than

structural; compare with the results on the connection of the first kind in

[13].

In section 4 we introduce the Lie transformation algebra L{a) generated

by all the endomorphisms a{X), b(Y) for I , F e m . We show that if G/H

is a Hoi (α)-irreducible pseudo-Riemannian manifold, then hol(α) is a

reductive subalgebra of L(a) and in this case it is easy to see that L{a)

is the Lie algebra of the Lie group generated by Hol(α) and the holonomy

group of the connection of the first kind. We also note L(a) = hoi (a) if

and only if (nt, a) induces a connection of the first kind. Finally when g

is semi-simple (with G/H irreducible as above), we show how to reduce the

study of a pseudo-Riemannian connection induced by (m, a) to the study of

a finite sequence of reductive pairs (Lif Ht) where Lt is semi-simple and

(Li9 Hi) is an irreducible symmetric pair or induces an irreducible connec-

tion of the first kind on the corresponding homogeneous space ^fjSίf,

2. Algebra (nt,α). Let (g,f)) be a reductive pair with fixed decom-

position g = nt 4- ί) and [ή tπ] c nt. Then as previously described a G-

invariant connection on G/H yields a non-associative algebra (nt, a) so that

D{§) = admfy are derivations of this algebra. We shall assume that G/H is

simply connected then in this case [7 10], the holonomy group, Hoi (α),
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is irreducible in nt if and only if its Lie algebra, hoi {a), is irreducible in

nt. We shall also assume G/H is not "flat" i.e. hoi (a) ψ 0.

Next we note that if hoi (α) is reducible, then there is a Z)(ϊ))-invariant

subspace tt of m which is β(nt)-invariant; i.e. n is a £>(ί))-invariant left ideal

of the algebra (m,a). From this remark we obtain the following theorem.

THEOREM 1. Let G/H be a simply connected reductive homogeneous space

with fixed decomposition g = nt 4- •& such that the algebra (nt, a) determines a G-

invariant connection. If G/H is a holonomy irreducible non-symmetric space with zero

torsion, then the algebra (m,a) is simple.

Proof. First (nt, a) is not the zero algebra; for if a(X,Y) = 0 for all

I j G u t , then 0 = Tor (X, Y) = a{X, Y) - a(Y,X) - XY = XY. Thus G/H

would be symmetric. Next if (nt, a) has a proper ideal b (i.e. subspace b

with α(b, nt) c b and α(nt, b)cb), then (nt, a) has a proper ideal n which is

Z)(f))-invariant [10 11 13]. Thus hoi (α)n e n so that G/H is not holonomy

irreducible, a contradiction.

Contrary to the situation of a connection of the first kind, the converse of

this theorem is false. In [5, section 3. 2] Kostant constructs a simply

connected reductive non-symmetric homogeneous space G/H with G simple

and compact such that G/H has a reducible (G-invariant) metric connection

induced from the Killing form in g. Thus in the decomposition g = nt + ϊj

we obtain an algebra (nt, a) which induces this reducible connection. This

algebra is simple for if b is an ideal of this algebra, then since the

connection is metric we have for l e m , F G B that XY = a(X,Y) — a{Y,X)

e b. Thus the algebra (nt, XY) has a proper ideal so that G/H is not

irreducible relative to the connection of the first kind [10]. This contradicts

the fact that if G is simple and G/H is reductive Riemannian simply

connected homogeneous space, then G/H is irreducible relative to the

connection of the first kind [10].

The algebras (nt, a) are not as general as might be expected. First as

explained in [11] the algebra (nt, a) is reductive Lie admissible when

Tor {X, Y) - 0 as follows. In general a non-associative algebra A with

multiplication XY yields an algebra Λ~ which is the same vector space A

but with multiplication X*Y = XY — YX. The algebra A is reductive Lie

admissible if there is a Lie subalgebra, D(A~)9 of the derivation algebra of

A" such that g = A" © D(A") is a Lie algebra and (g, D(A~)) is a reductive

pair relative to the above decomposition and [X Y]A- = X*Y. Note that
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if D(A~) can be taken to be 0, then A is Lie admissible; in general a

non-associative algebra A is Lie admissible if A~ is a Lie algebra; see

references in [11]. Also in [11 17] it is shown that alternative algebras

are reductive Lie admissible and therefore so are associative algebras. It

should be noted that Jordan algebras arise from symmetric pairs (g, ϊj) and

are trivially Lie admissible.

Next we note that the reductive Lie admissible algebra (nt, a) is a

subspace of a Lie admissible algebra as follows. Let A be the vector space

in 4- ΐ) = 3 a r*d define multiplication on A by:

(a) IjEi, then X Y = a(X,Y)+±-

(b) l e n t and h e ί), then 2X- h =[X h] in the Lie algebra g

(c) hγ^^ and A2 e §, then 2/&i /z2 = [/*i /*2] in the Lie algebra g.

Then with this multiplication i is a Lie admissible algebra such that

A~ = a as Lie algebras. Note that for α(X, Y)=-^~XY i.e. canonical

connection of first kind with zero torsion, we have A = g. The role of

the algebra 4̂ in studying the connection determined by (m, α) is probably

analogous to the Lie algebra g and the connection of the first kind.

For example, analogous to the results concerning a simple Lie algebra g

implying G/H is irreducible relative to the connection of the first kind [10],

one can ask if A is simple, then when is G/H irreducible relative to the

connection induced by (nt, a).

We now study the algebra (nt, a) in more detail when it induces a

pseudo-Riemannian connection on G/H. Thus from [8 5] we see that

the reductive pair (g, ϊj) with fixed decomposition g = nt 4- ί) is such that

there is a nondegenerate symmetric bilinear form, C, defined on m which

satisfies

C{DX,Y) = -C(X,DY)

for D = admh with h e f) and

C(a(Z,X),Y) = -C(X,a(Z,Y))

for X,Y,Z e nt. Thus the mappings D and a(Z) are C-skew-symmetric.

Also from [8, section 13] the multiplication a(X,Y) can be written uniquely

as
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a(X,Y)=±-XY+U(X,Y)

where U(X,Y) is a commutative multiplication on m and might be regarded

as a perturbation of the connection of the first kind (given by -~-XYj to

obtain the connection given by a{X,Y). Note that a[X,Y) — a{Y,X) = XY

this is because Tor {X, Y) = 0.

Also from [8] we have that U{X9Y) is uniquely determined by the form

C and this yields the unique determination of a(X9Y) by

(9) 2C(Z, a(X, Y)) = C(Z9 XY) + C(ZX9 Y) + C(X, ZY).

We have seen that when (m, a) induces an irreducible connection, this

algebra is simple. However, contrary to the usual simple algebras, these

algebras need not have an identity or idempotent elements. Let (m, a)

induce an irreducible pseudo-Riemannian connection via the nondegenerate

form C and suppose e is the identity element for (m, a). Then X = a{e, X)

= a{X, e) + eX = X + eX thus eX = 0 for any X e m. Next using (9) we

have

2C(e,X)=2C(e,α(e,A'))

= C(ef eX) + C(ββ, X) + C(e, eX)

= 0 ;

thus e — 0, a contradiction. Next if the connection is Riemannian and if

e = a(e9 e) is an idempotent of (m, a), then using (9),

2C(e, e) = 2C(e, a(e9 e)) = 0

thus in this case (nt, α) cannot have an idempotent.

P R O P O S I T I O N 2. Z^ί (g,ϊj) έ^ β reductive pair with fixed decomposition

g = in 4- ί) r£;ΛzVA induces an irreducible pseudo-Riemannian connection on the

corresponding G/H by means of the algebra (nt, α). Then (m, α) ύ ^oί an alternative

algebra {and therefore not associative).

Proof. We use the fact that a simple finite dimensional alternative

algebra over the reals has an identity. Thus although alternative algebras

yield connections, they are not irreducible.

In [5] Kostant compares the general metric connection with the connec-

tion of the first kind when it is also a metric connection. Many of these
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results extend to pseudo-Riemannian connections and we shall do a similar

comparison of the connections and the holonomy algebras by means of the

algebras defined on nt.

For a fixed decomposition 3 = m + ή let the algebra m with multiplica-

tion XY = [X Y]m be denoted by (nt, XY). Let the canonical connection of

the first kind be induced by the pseudo-Riemannian metric B{X9 Y) thus

the algebra (m,XY) is an anti-commutative algebra with an invariant form

[10] and the mappings D(h) and L{Z) : rn-ϊrn: X-+ZX are B-skew-symmetric.

As in [5] we have, since B and C are nondegenerate forms on nt, that

there is S e GL(m) such that C(X, Y) = B{SX9 Y) for X, Y e nt. Thus from

(9) we see the algebras (nt, a) and (m, XY) are related by

(10) 2a(X, Y) =

that is, U(X, Y)=-\- S'ι[X{SY) -

Some immediate properties of S are

(a) [S, D\ = 0 for all Z) e α^mή and

(b) S δ = Sc = S

where b and c denote adjoints relative to B and C. Conversely if Sb

= S e GL(nt) satisfies (a), then we can define a pseudo-Riemannian metric

C and a corresponding connection by the above formulas. Next note that

the set of S's in Horn (m, m) satisfying (a) and (b) form a Jordan algebra

{A, ) under the usual multiplication 2Sj S2 = SXS2 + S2Si The S's which

yield connections are the elements of M = A Π GL{vx), which is a submani-

fold of A and forms a reflexion space [6]. Thus for L(S) : ^4-^A: X~+S X

and for Q(S) = 2L(S)2 — L(S2) we have that M is closed under the differenti-

able product

S1*St =

More details will appear in a later paper.

3. Some applications. For the applications of the algebras (nt, a) and

(vx,XY) we shall assume that the reductive pair (g,ϊ)) and the (fixed)

decomposition g = nt + % is such that D{h) = 0 implies h = 0. First let

D{h) = αί/m/ϊ act irreducibly in nt, then from [10, Th. 6] we have mm = 0

or {m,XY) is simple; thus G/H is an irreducible symmetric space or G/H is
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irreducible non-symmetric space relative to the connection of the first kind.

Now assume the connection of the first kind is given by a pseudo-Riema-

nnian metric B. For example, if g is simple, then using [11, Th. 6] ϊj is

semi-simple so that we may take m = §± relative to the Killing form of g

and let B equal the Killing form restricted to m x m, see [13]. Now let

(m, a) be any other algebra where a is given by (10) and induced by a

metric C. Since 5 = Sc and C is a metric, S has a real characteristic

value λ. Since [S, D{h)] = 0 we have {x e m : Sx = λx} is a non-zero D{h)-

invariant subspace and must equal m. Thus S = λl and a{X, Y) =-—-XY.

Thus any metric connection on G/H given by fixed decomposition g = m

4- f) and adm§ irreducible on m must be an irreducible connection of the

first kind. For complete details in this case see [16].

The above result has been generalized in sections 4. 6 and 5. 1 of [5].

For example, let G/H be a Riemannian reductive homogeneous space such

that g = m -}- ί) is simple. If D{fy has inequivalent representations in m,

then G/H is irreducible in any metric connection. ζζD{ί}) has inequivalent

representations in m" means every irreducible representation of D(§) has at

most multiplicity 1 on m see [5], We shall now use the algebra (m, a) to

prove a variation of this result and to show the hypothesis is necessary.

LEMMA 3. Let G/H be a reductive homogeneous space with corresponding

reductive pair (g, ζ) and decomposition g = m + ί) satisfying

(a) g = m + ί)(tn,m) ( = m + [mm]),

(b) D[h) = 0 implies h = 0,

(c) G/H is completely reducible relative to some connection; i.e. there is an

algebra (m, a) such that the corresponding holonomy algebra acts as a completely

reducible Lie algebra on tn.

Then

(1) Ij is reductive in g i.e. adgfa is completely reducible in g

(2) Z>(ϊ)) is completely reducible in m.

Proof. Let a{m) be the Lie algebra generated by the endomorphisms

a(X): m->τn: Y-+a{X9Y). Thus if Mγ = {a(X) : I e n t } and Mk+1 = [

we have a(m) = Mx + M2 + see [14]. From this and the fact

consists of derivations of (ut, a) we have ID, a(X)] = aUJDX) and by induction
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conclude [D(ty),a(m)] c a(m). Thus we see that a(m) + D(§) is a Lie algebra

and since the holonomy algebra, hoi (α), is generated by a{m) and D(ί)) we

have hoi (α) = a{m) + .D(ϊj). Now by (c) hoi (α) is completely reducible and

just as in the proof of Theorem 9 of [4] we can conclude that D(§) is

completely reducible in m. Thus Z)(ϊ}) = c{D) 0 Z)' where U is a semi-

simple ideal and the center of Z>(ϊj) is c(D) which consists of semi-simple

endomorphisms.

Next we shall show that the map

φ : £>($) -> αrf$ : D(h) -> αcί̂ A

is an epimorphism of Lie algebras. First D{h) = D{k) implies D(h — k) = 0

and therefore by {b), h = k thus the map φ is well defined. Next any

adφ determines an h e ζ so that ^ : Z>(Λ) -> ΛrfήΛ thus φ is surjective.

Finally using [D(h),D{k)] — D{[h k]) we see that φ is an epimorphism of Lie

algebras; thus ad$ = Im{φ) = φ(D(fy).

Next note that Ker^ = c(D). For 0 = φ(D(h)) = adφ yields for any

k e ή, 0 = {ad^ik) = [h Jfc]. Thus 0 = D([Λ fc]) = [/>(*),!>(&)] so that D(A)

e c(Z>). Conversely if D{h) ^ c{D), then for any fc e ΐ), 0 = [D{h),D{k)']

= D{[h kj). Thus using (6), 0 = [h ti\ = (adφ)(k) so that 0 = ad^h = Φ(D(h)).

Using this we obtain

ad$ = φ(D$)) = φ(c(D)) ® φ(Dr) = φ(iy),

thus ad$ is semi-simple.

Next from g = tn + ΐ) we choose a basis of g from m and f) to obtain:

where

I o
0 Ί \c{D)

j L o

C[a gί))

0

0 Jθ[

0 0 .

0

ad$

I
1

is the center of ad^ and consists of semi-simple linear transformations and

D' 0

0 adΛ
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is a semi-simple ideal. Thus by [2, p. 81] ad$ is completely reducible in

Remark. If G is simple and G/H is a Riemannian reductive non-

symmetric homogeneous space, then (a), (b), and (c) are satisfied: (a) since

m 4-ΐ)(ttt,ttt) is a non-zero ideal of g ; (c) using results in [5 10] on the

connection of the first kind and (b) as follows. Suppose D{h) = 0, then

[h h{X,Y)~] = h{[h X],Y) + h{X,[h Y]) = 0. Thus since ή = A(m,m) we have

•ad^h = 0. Therefore adQh = 0 so that [h g] = 0. But this means Rh is a

•one dimensional ideal in (j, a contradiction unless h = 0.

Let 3 = m + ή be (fixed) decomposition which induces a metric connec-

tion of the first kind with metric B. Let C{X, Y) = B{SX, Y) be another

metric which determines another connection via the algebra (nt, a) as

previously discussed and let hoi [B) and hoi (C) = hoi (α) be the correspon-

ding holonomy algebras, then we have the following result [5, Lemma

•4. 4 A].

LEMMA 4. Z ί̂ n fo # subspace of m such that Snan and hoi (C)n c tt

Then hol(B)nan.

The proof can be given by means of the algebras (πt, XY) and (m, a)

but we omit it.

THEOREM 5. Let G/H be a reductive homogeneous space with corresponding

reductive pair (a, ϊj) and decomposition g = m-f^ satisfying

(a) g = tit

(b) D(A) = 0 implies h = 0,

(c) G//f w irreducible non-symmetric relative to a metric connection of the first

kind {relative to above [fixed) decomposition),

(d) Z)(ϊj) Λ&s inequivalent representations in nt.

G//ί w irreducible relative to any metric connection.

Proof Suppose not, then there exists a metric C and a corresponding

algebra (nt, a) which has a Z)(ϊj)-invariant left ideal it i.e. hoi (Qtt c n.

Now let C(JSΓ, F) = B{SX, Y) where B induces the irreducible connection of

the first kind, then [S, JD(ίj)] = 0, i.e. S e centralizer D(ή). Since D( | )nci t

and i)(ί)) is completely reducible, we may write — using (d) — n = mt 4- 4- in,
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where the nt, a r e £)(f))-irreducible and non-isomorphic Z)(ϊ))-modules. These

tπ/s are actually homogeneous components of D(fy in m and since S

e centralizer Z)(ΐ)) we have SvXj c tit,-. Thus Sn c it and by Lemma 4 G/H

is not irreducible relative to the connection of the first kind, a contradic-

tion. (Perhaps see [3, p. 126] for homogeneous components using the

associative enveloping algebra D*).

COROLLARY 6. Let G/H be a non-symmetric Riemannian reductive homo-

geneous space with G simple and g = m -f fj the corresponding decomposition. If

D{§) has inequiυalent representations in m, then GjH is irreducible relative to any

metric.

The proof uses Theorem 5, the remarks following Theorem 4, and

results in [10] which show that G/H is irreducible relative to the connection

of the first kind.

The converse of this corollary appears to be an open problem. However,

we now give an example to show the hypothesis on D(ϊj) is necessary. Let

g be the simple compact Lie algebra of 5 x 5 skew-symmetric matrices. Let

ϊj be the simple Lie subalgebra of 3 x 3 skew-symmetric matrices imbedded

in g by:

(A 0 1
: A is 3 x 3 skew-symmetric L

]o o j J

Let m = 5-1 relative to the Killing form B on g, then m is given by:

if ° Z Ί . 1
m = \\ \: Y is 2 x 2 skew-symmetric L

Thus (g,5) is a reductive pair with g = m 4- 5 and — B\m x m is positive

definite and induces an irreducible metric connection of the first kind on

the corresponding G/H

Let βij denote the usual matrix basis, then a basis for m is

./ 1 015 05l> J 2 r = 025 052> J S == 035 053 5 a n Q

Λ = 045 — 054-

Let mt (resp. m2) be the subspace spanned by the //s (resp. //5s) and let

tn3 = i?/4. These subspaces are Z>(fj)-submodules and trtj -> nt2: Λ -» // yields

a Z>(5)-module isomorphism; also D(§)m3 = 0.
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Next we note that the algebra (m,XY) is given by:

m.2 = 0 i= 1 , 2 , 3 ;

Let / denote the 3 X 3 identity matrix and let

"pi (Γ

.0 r.

be the endomorphism on m = ntj + tn2 4- tn3 which defines the metric C(X, Γ)

= — B(SX, Y) we assume

p + ^ — r = 0 and det (S) > 0 .

We next have that the algebra (mfa) which induces the C-metric connection

is given by:

cί(ytίι9xtij) = 0 i = 1,2,3

Let it be the 4-dimensional subspace spanned by /4 and /< + /< with

i = 1,2,3. Then since m1 = m2 as above and D(h)fA = 0, we see that n is

Z)(f))-invariant. Also using the above multiplication and a{X, Y) = XY

+ a(Y,X) we have α(m; n) c m8 c n. Thus the algebra (m,α) yields a

reducible connection on the corresponding G/H.

We now change S slightly and obtain a new algebra (m, a) which

gives an irreducible metric connection. Assume that

O, and det (S) > 0.a = p + q — rφΰ, b = p — q —

Then we obtain an algebra (m,a) with multiplication

(a) α(m i,m t)=0 i =1,2,3 ;

(b) «(/„/}) = - ^ . ^ - / 4 ,

(C) f ^

Now if «i e nii are such that a = «j + β2 + az e n which is a Z)(ί))-

invariant left ideal of (m, α), then using the Z>(ϊ))-invariance5 we easily obtain

that elements of the form utfi + Vιf\ (with ui9Vi G i?) are in n for t = 1,2,3.
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Using this and (b) we see that fi e n. With /4 e tt we next use (c) and

a{X, Y) = a{Y, X) + XY and a,bψθ to obtain /„ / J e n ; thus n = m.

Next we give a less computational example of a reductive pair (g,ΐ))

with g and f) simple but g not compact and the corresponding G/H is

reducible in a naturally defined connection. Let 8 = 0|(w) be the Lie

algebra of all n x n matrices under commutation and let f) be the

subalgebra of q x q matrices of trace 0 imbedded as follows:

0 0]

o u\'

Let m be the subspace of g spanned by

"A BΛ
and /,

C OJ

then g = m + § with [tπ, §] c tn. Next for

we define

a{X,Y)-

Then (m, a) is an algebra

oj
-al, Y

(AP + BR

" L
such

a(X,Y)-a(Y,X) =

aA,P] + BR-QC

L CP-RA

CP

that

XY

AQ

•u

AQ

0

- P 5

0

oj

and

£>α(X, F) = a(DX, Y) + a(X, DY)

using

Γ 0 - BUΛ
D(h)X=\

lUC 0 J

where D = D{h) with h e ί) as above. Thus (m, α) defined a connection on

the corresponding G/// with zero torsion.
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This connection is reducible since we can construct left ideals of (m,α)

analogous to those in the associative matrix algebra. For let P and R be

matrices with O's in the first column, then the set of elements xx given by:

P

R

0 Ί

oj
ιP,R as above

I
It =

is Z)(ϊ))-invariant left ideal of (m, a).

Next since the ideal ϊ = RI of the Lie algebra g is ^-invariant, the

Lie algebra homomorphism g -> g = g/f yields a reductive pair (g, §) with

g = xit + 5 where | is isomorphic to ϊ) and [mf] = [mί)] c m thus we have

the reductive pair (g,ϊj) with g and ξ simple and g not compact. Also

(it, XF) is a homomorphic image of the algebra (m, AT) with XF = XF and

D(h)X= [h,X], Now on tit define the multiplication a by

By the construction of a we see that a is well defined and satisfies the

following: &(X,Ϋ) — a(X,Ϋ) = XΫ in m Z>(/0 is a derivation of (m,a) and

ϊn =ξ~L relative to the Killing form E of g. Furthermore B\m X it induces

a non-degenerate invariant form C on the algebra (m, α) thus (m, α) induces

a reducible pseudo-Riemannian connection on the corresponding G/H.

As a final application of the algebra (m, α) we use the results in [10,

section 4] which relate affine transformation of G/H and algebra automor-

phisms of (m, α).

THEOREM. Let G/H be a reductive homogeneous space with corresponding

reductive pair (g,ί)) and fixed decomposition g = m + ϊj. Let (tπ, a) be an algebra

which induces a connection on G/H. Let φ : G/H-+G/H be an analytic diffeomor-

phism which locally commutes with G and φ{H) = H. Then Φ is an affine

transformation on G/H if and only if φr is an automorphism of the algebra (m, a)

where φr is the differential of φ at the point H EL G/H.

To apply this let 2 be an analytic automorphism of a semi-simple Lie

group G. Let σ be the corresponding automorphism of g and let ϊj (resp.

m) be the Fitting zero (resp. one) component of g relative to a — / see

[2, p. 37], Thus ί) = {z e g : (σ — I)kz = 0, some k} is a subalgebra of g

and o — I is non-singular on m and g = vx + ί) (analogous to [2, p. 54, ex.

5]). Using a is an automorphism and B{σP,σQ) = B{P,Q) where B is the
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Killing form of g, we obtain nt = ϊ)-L relative to B and [m f)] c m. Thus

(g,ί)) is a reductive pair and if H is the subgroup of G corresponding to ϊ),

we see G/H is a reductive space such that B\m x m induces a pseudo-

Riemannian connection of the first kind on G/H note [13, section 4].

Since H is ^-invariant, Σ induces a diίfeomorphism φ : G/H-+G/H:

aH-±J]aH which locally commutes with G (because Σ is an automorphism).

Thus the algebra (m,XY) has φf as an automorphism using φ' = σ\m. Other

algebras (m, a) such that φr is an automorphism (and consequently φ is an

afϊine transformation) are as follows. Let S = Sb e Horn (m, m) satisfy [S, 0')

= 0 e.g. S is a suitable polynomial in φ\ and define a(X, Y) by formula

(10). We use φr is an automorphism of (ya,XY) to obtain φ'L{X)φ'~ι

= L(φrX) and use this with [0',S] = O in (10) to obtain φra{X)φr'1 = a(φrX).

Thus 0' is an automorphism of (m, a).

Note that in general if we let C{X, Y) = B(SX, Y) where ^, φ', m and §

are as above and require C(φ'X,φ'Y) = C{X,Y), then using B{φ'X,φ'Y)

= J5(X, Y) we obtain \φ', S] = 0. Thus φr is an automorphism of the

corresponding algebra (m, α) i.e. φ is a C-isometry implies φ is a C-affine

transformation.

4. Holonomy algebra. Let (g,ή) be a reductive pair with g = m-j- |

a fixed decomposition. Let a{X) : m->m : Y-±a{X, Y) and let b{X) : m->m :

Y->a(Y, X) be the right and left multiplications for the algebra (m, a) which

defines a connection on the corresponding G/H. Let L{a) be the Lie

algebra generated by the a{XYs and £(Γ)'s for all I , F E m see [14 10],

THEOREM 7. Let (g,ί)) έ# # non-symmetric reductive pair such that the above

algebra (m,a) defines an irreducible connection with zero torsion on the corresponding

G/H. Then hoi {a) and L(a) are irreducible Lie algebras. If the connection is

pseudo-Riemannian, then hoi (a) c L(ά) in this case hoi (a) = L(a) if and only if

(m, a) induces a connection of the first kind.

Proof. Since G/H is irreducible we have hoi (a) is irreducible and

from Theorem 1 (m,a) is simple so that L(a) is also irreducible; (noting

that an ideal of (m,α) is just an L(α)-invariant subspace).

Next assume (m, a) induces a pseudo-Riemannian connection on G/H

via the nondegenerate form C{X,Y) defined on ttt. Since hol(a) = a{m)+D{fy

it suffices to show D(§) c L(a) to prove hoi (a) c L(a) see [10] when the
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connection is of the first kind. Let L* be associative enveloping algebra

of L{a) see [2]. Since L(a) is irreducible, L* is semi-simple and since

any D e Z)(f)) is a derivation of (m, α), [2>, L(«)] c L(α) and therefore [£), L*]

cL*. Thus D induces a derivation P : Z,*->L* : Q->[£>,©]. Since L* is a

semi-simple associative algebra, its derivations are inner [14]. Thus there

exists ί / e l * such that DQ = [ί/,Q] for all Q e ZΛ Next since L(α) is

irreducible, L(α) = c(L) © Z/ where U is semi-simple and c(L) is the center

of L(a) see [2, p. 81]. Also since U : L' -+L' : P->[D,P] is a derivation

of the semi-simple Lie algebra, there exists V e Z/ with Z>'P = <w/KP = [7, P]

for all P e L'. Next we note that for all C e c(L) c L*, [A C] = 5C

= [U, C] = 0, since [C, L*] = 0. Thus for any R = C + P e L(α) we have

[ A ^ ] = [AP] = [7,P] = [F',i?]. Thus [Z>-7,Λ] = 0 for all R e L(α) and

consequently D-V = T ^ Γ(m, a) = {S e Horn (m, m) : [5, β(X)] = [5, ft(Z)] = 0

all l e n t } which is the centroid of the algebra (m,α). Since (m,α) is simple,

,Γ(m, α) is a field [2, p. 291] and for any S e Γ(m,«) it is easy to see Sa(X)

= β(SA') S6(X) = A(SΛ') and using this SL(a) c L(α) and SL' c L'. Thus

trace SP = 0 for all S e Γ(m, α) and P e L'.

Next since C(X, Y) is nondegenerate form which induces a pseudo-

Riemannian connection we have all the D(h) and a(X) are C-skew-symmetric.

We shall now show every S e jΓ(m, α) is C-symmetric.

C{Sa(X,Y),Z) = C(Sa(X)Y,Z)

= C{a{SX)Y,Z)

= -C{Y,a(SX)Z)

= -C(Y,Sa(X)Z)

= -C(Y,a(X)SZ)

= C(a(X,Y),SZ)

and since (m, a) is simple, m = α(m,m) thus C(SU,Z) = C(U,SZ) for any

Using P = F + Γ with 7 ε Γ , T G Γ(nι,α) we have for any 5 e Γ(m,α)

that [Z),S] = 0 (remembering Γ(τn, α) is commutative).

Thus C(DSU, Z) = - C(SU, DZ)

= -C(U,SDZ)

= -C(U,DSZ)

so that tr DS = 0.
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Now from above equation D = V + T we see that if T ψ 0, then T"1

<Ξ Γ(m, a) and therefore / = T~ιT = T~XD — T'Ύ. Thus using the results of

previous paragraphs with S = T"1 we obtain the contradiction tr / = 0. Thus

D = V e V.

To prove the last part we note that if the connection is of the first

kind, then 2a{X, Y) = XY so that b(X) = - a(X) and L{a) c hoi (α). Thus

Z(α) = hoi (a). Conversely we see that if b(X) e hoi (a) = a(m) + Z>(ϊj), then

•b(X) = A(X) + D with A(X) e a(m). Since torsion is zero, 6(X) = a(X) - L{X)

where L{X) : m->m : Y-+XY. Thus L(Z) e hoi (α) and is C-skew-symmetric.

This yields C(AΎ,Z) = C(X,FZ) and from (9) we obtain 2a(X,Y) = I F .

COROLLARY 8. Let G/H be a reductive homogeneous space such that G/H is

an irreducible pseudo-Riemannian space as in Theorem 7. Then hoi (α) is a reductive

subalgebra of L{a) which is contained in U.

Proof. Let L(a) = c{L) © U 3 hoi (a) and let V = C + F r e hoi (α) where

C e c(L), F' e L'. Thus C e Γ(m, α) and if C φ 0, let S = C"1 e Γ(m, α).

Then SF = / + SVf and from the preceding proof, tr SV' = 0. Also since

5 is C-symmetric and V e hoi (a) is C-skew-symmetric, we have tr SV = 0.

Thus the contradiction tr / = 0 shows C = 0 and hoi (a) c ZΛ

Next we shall show adL hoi (α) is completely reducible in L = L{a) by

using [2, p. 81]. Since ή* = hol(α) is a subalgebra of L{a), the map

ϊj* -> βflf̂ * : Λ -> βJ^4 is a representation which is faithful. For if adLA = 0,

then [A,P] = 0 for all P e L'. But since A G Ϊ | * C L ' we see that A is in

the radical of U which is zero.

From the holonomy irreducibility we have the usual decomposition

ψ = c(ψ) © ψ and consequently adLψ = ad c(ϊj*) + ad ψ'. Since ad \ U

is a faithful representation, this sum is direct; ad ϊj*' is semi-simple; and

ad c(ψ) is the center of adLψ. Thus to show adLψ completely reducible,

Λve shall show that the elements in ad c(ή*) are semi-simple linear transforma-

tions.

Now let 0 ψ A G. c(Ij*), then since ψ is irreducible c(ί)*) is contained in

a division ring which is at worst isomorphic to the quaternions. In

particular A satisfies a quadratic equation A2 + a A + bl = 0 with a, b e /?.

Since A G | * , A is C-skew and tr A = 0 thus α = 0. Next b > 0, otherwise

4̂2 + 6/ = 0 factors so that we may conclude A = λl and therefore, by traces,

4̂ = 0. Thus 6 = j82 > 0 and for / = A/β e c(/**) we have / 2 + / = 0. Using
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this a straight forward computation shows that adLJ satisfies a polynomial

x{x2 + 4) e R[x~\ thus the minimum polynomial of adLJ is a product of

distinct irreducible polynomials so that the linear transformations in ad eft*)

are semi-simple.

Note that in general hoi (α) is not an ideal of L[a) e.g. L{a) semi-

simple but hoi (a) =ϊ)* such that eft*) ^ 0.

We have somewhat determined the location of ψ — hoi (a) in L{a)

and we next consider the semi-simplicity of these algebras.

THEOREM 9. Let (g, §) fo β non-symmetric reductive pair with £ = m 4- §

JZ/CA ί/zαί ίΛ̂  algebra (m, α) induces an irreducible pseudo-Riemannian connection on

the corresponding G/H. Then

(1) If c$ w semi-simple, then L{a) is semi-simple.

(2) If c{§*)¥=0, then c(ί)*) = RJ where p + I = 0 αwrf / induces a G-invariant

pseudo-Kaehlerian structure on G/H. Conversely if G/H has a G-invariant pseudo-

Kaehlerian structure 3 and if c{ψ)i= 0, then J = 3(p) e c(A*) where p = HZΞ G/H.

(3) ζ̂Γ dim. m ύ orfί/, ίΛm hoi {a) is semi-simple.

(4) If G/H is Riemannian and c(L) ψ 0, then c{L) = RI.

(5) iy" c(L) ψ 0 βWβf eft*) ^ 0, then c{L) = i?/ am/ eft*) = Λ/ wiίA P + I

= 0.

(6) i f G//ί has a G-invariant quaternionic structure, then the connection is not

of the first kind.

Proof (1) Choosing a basis for g from m and % we obtain for l e m

that

where L(Z) : m->m : F->XF. Thus since g is semi-simple, 0 = tr adX

— tr L{X). Next since the connection is pseudo-Riemannian we also have

tr a(X) = 0. But a(X) = 6(X) - L(X) yields tr 6(X) = 0 and since L(a) is

generated by a{m) + b{m) we see trT = 0 all T e L(α).

Since the connection is irreducible (m, a) is simple and L(α) = c[L) ® L'

is irreducible where c(L) c Γ(m, α) is a field. If 0 ^ = i G e(L), then A"1

e Γ{m, a) and / = A~ιΛ e Γ(m, α)i(α) c L(α) must have trace zero, a contradic-

tion. Thus c(L) = 0 so that L{a) is semi-simple.

https://doi.org/10.1017/S0027763000026799 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026799


HOMOGENEOUS SPACES 391

(2) Assume eft*) ψ 0 and let A,B e eft*) be linearly independent.

Now since eft*) c centralizer ft*) which is a division algebra over R see

[2], we have that the subdivision algebra K = R{A, B) generated by A and

B is actually a field, using {A, B] = 0. Thus K is a field which is a

proper finite extension of R and is isomorphic to the complex numbers;

thus dim. K = 2 and ϋΓ = A 4 + 7?£ c eft*). But A~' e i^ and / = A"1 A e 7Γ

c eft*) so that tr / = 0. This contradiction shows dim. eft*) = 1.

Let RA — eft*) c centralizer ft*) which is at worst isomorphic to the

quaternions so that A is quadratic: A2 + a A + bl — 0. But tr 4̂ = 0 yields

α = 0 ; also b>0, otherwise A = ± bll2l. Thus for / = b~ll2A we have

P + / = 0 and c(ψ) = RJ. Now since / commutes with ψ = hoi (α) and

/ is C-skew where C(X9Y) induces the pseudo-Riemannian structure, we

have C(JX9 JY) = C{X, Y). Thus analogous to [1, Prop 4. 2, p. 302], /

induces a pseudo-Kaehlerian 3 on G/H. Conversely using the results of

[18, p. 87] we see that the pseudo-Kaehlerian structure 3 on G/H yields

2(p) = i e centralizer (ί)*) such that A is C-skew and therefore tr A = 0.

But c(ί)*) = i?/ so that [A, /] = 0 and as above K = R(A, J) is a 2-dimensional

field if A and / are linearly independent. But this leads to tr / = 0 thus

A = aje- cffi*).

(3) If dim. m is odd, then eft*) = 0 otherwise (det J)2 = det (/2)

= det (-/) = - 1 .

(4) If c(L) ψ 0 and c(L) ψ RI9 then the above proofs show c(L) = Γ(m9a)

= RI + RJ where J2 + I = 0. Now as in the proof of Theorem 7, / is

C-symmetric and since C is positive definite (and therefore / has a symmet-

ric matrix), / has real characteristic roots. This contradiction shows

c(L) = RI.

(5) If eft*) ¥*0, then c{ψ)=RJ. If c(L) ψ RI, then c(L)=RI@RP

with P 2 + / = 0. From Corollary 8, eft*) c Z/ and therefore [P, /] = 0.

Thus since the independent elements I9 J9 P(= K= R(J9 P) we see that K is

a 3-dimensional subfield of centralizer ft*) which is isomorphic to the

quaternions; this is impossible.

(6) Let G/H be a pseudo-Riemannian space with a quaternionic

structure [7, 15] which is compatible with the connection of the first kind.

The compatibility yields (analogous to [18]) a set Q = {/, /, K, L} of endo-
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morphisms which relative to the usual endomorphism multiplication is

isomorphic to the quaternions and such that [Q, ψ] = 0. Thus Q c

centralizer (§*). But since we are assuming the connection to be of the

first kind, L{a) = ψ = hoi (a) so that the centralizer (ή*) = Γ(m, XY) is a

field containing Q which is impossible.

We now use preceding results to reduce the study of an irreducible

pseudo-Riemannian connection on G/H induced by the algebra (m, a) to

the study of a finite family of anti-commutative algebras Mt which yield

reductive spaces JzfJ^έf which are irreducible symmetric or irreducible with

connection of the first kind.

THEOREM 10. Let (g,ϊj) be a non-symmetric reductive pair with fixed

decomposition g = m + ϊj such that g is semi-simple and the algebra (m, a) induces

an irreducible pseudo-Riemannian connection on the corresponding G/H. Then the Lie

algebra L = L(a) and the reductive subalgebra f)* = hoi {a) are such that

(a) (L,ί)*) is a reductive pair with L semi-simple and has decomposition

L = M +§* where M = ψ1- relative to the Killing form, K, of L.

(b) L = Lλ © © Lk where each L% is a semi-simple ideal of L. Each

L% contains a reductive subalgebra ϊjf which is an ideal of ψ such that (Lι9§*) is

a reductive pair with decomposition Lt = Mt + ή* where Mt = ί)* 1 relative to

Kt = K\Lt x Lim Furthermore with the usual anti-commutative multiplication induced

from Li9 the Mt is a zero algebra or a simple algebra. Examples show that in

general the case Lt semi-simple can not be reduced to Lt simple.

Proof The proofs are analogous to those in [11, section 2 13, section

3] and are outlined below. We first show the Killing form K of L restricted

to £)* x ζ* is nondegenerate. The representation ψ -> adLψ : U -> adLU is

injective since L is semi-simple; thus if ψ is semi-simple the trace form

tradLUadLV = K(U,V) is non-degenerate. Next if ψ = RJ®ψr it suffices

to show tr (adLJ)2 ψ 0. But a straight forward computation shows {adLJ)2

has minimum polynomial x2 + Ax e R[x~\ and therefore has non-zero trace.

Thus in both cases ψ Π ψL = 0 so we can decompose L = M + ϊ>* with

M = ψ±. Also K\ M x M is a nondegenerate invariant form relative to the

multiplication P-Q = [P,Q]M in M.

If M M^O and M is not simple, then M has a proper minimal adψ-

invariant ideal N. Since K is a nondegenerate invariant form on M we
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have that Nx c M is an ad §*-invariant ideal. Thus N Π N1- is an ad ψ-

invariant ideal in M so that N Π N1- = N or N Π N1- = 0. In case M M = Q

use a proper minimal #d ϊj*-invariant subspace N c M.

Case JV Π iV"1 = JV is analogous to the same situation in [13, section 3].

Thus since ad ψ is completely reducible on M we can find an ad ψ-

invariant complement N' and write M=N+N\ Since K{N,N) = 0 it

suffices to show #(iV, iV') = 0 to show N = 0.

To use the methods in [11 13] it suffices by [13, section 4] to show

tr adψψ = 0, which is clear, and tr adNψ = 0 for any ad ^-invariant subspace

N. This is also clear from what have proved: if ψ = RJ © ψr then adLJ

minimum polynomial xz + Ax on N so that tr (adNJ) = trN(adLJ) = 0 also

since ψr is semi-simple and ψ' -+adNψr is a representation, tr (adNψf) = 0.

Thus as in [13], we obtain for Pe iV, Q G JV' that

K(P,Q)=2 trNσ(P,Q)

where for i ? 6 M , <τ(P, Q)7? = [Λ(JP, Q), P] with h{R, Q) = [/?, 0]^* e ί)*. But

computations show tvNσ{P9Q) = tr adNh{P,Q) = 0 so that K(N,N')=0. In

case M M = 0 , then just choose TV" to be a minimal ΐ)*-invariant subspace

of M and the formulas in [13] simplify because the mappings L{P) : M

->M: Q-±P'Q are zero. Thus any minimal ί)*-invariant subspace of M is

non-isotropic which is just the other case.

Case JV Π N1- = 0 where N is any minimal ad ^-invariant ideal of M

(if M Mψ 0). Using Killing form arguments as in Lemma 3 of [13] we

have {NyN-Ί =0 and computing as in Lemma 2 of [13] we see that Lλ = N

+ h{N,N) is an ideal in L where h{N,N) = ί)ί is the subalgebra of ί)*

generated by all h(R,S) for R,S<=N. Next note that K\Lλ x Lγ is

nondegenerate so we can decompose L — Lλ® L^ . Now if L^ c f)*, then

M = N. If M is not a zero algebra, then it is a simple algebra relative

to the multiplication P Q = [P, Q]M otherwise if M has a proper ideal it

has a proper αd ΐ)*-πwariant ideal, contrary to the choice of N. Now if

Li1- ct ψ, then Ly1- satisfies the same conditions as L and we continue by

induction to obtain part (b). If M'M=0, then replace the "minimal

ideal JV" by a "minimal ad ί)*-invariant subspace N of M". In both cases

the f)? is reductive in ψ since it is an ideal and therefore radical §* = ϊ)* Π

radical ϊj* which is at worst RJ. The example in [13, section 4] shows

the case Lt semi-simple cannot be reduced to the case Lt simple.
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