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Abstract. The bifurcation of C1- continuous families of maps of the interval or circle
is studied. It is shown, for example, that period-tripling cannot occur. This yields
topological properties of the stratification of CX(I, I) induced by the Sarkovskii
order, and corresponding bifurcation properties.

1. Introduction
This paper deals with the bifurcation theory of maps of the interval and of the circle.
We are interested in how the least period of a periodic point can change in a family
which is continuous with respect to the C1 topology. More precisely, if a map fs

in a C1-continuous family {/,} has a periodic point xs of period k (which will always
mean least period), we ask what may be the period of a periodic point x, (of /,)
near xs, where f is near s. If the period of x, is 2k, but fs has no 2k- periodic point
near xs, we say a period-doubling bifurcation occurs; if 3k, period-tripling, etc.
Period-doubling bifurcations have been studied extensively (see for example [6],
[7]). The first theorem of this paper implies that for C1-continuous families of
maps of compact one-dimensional spaces, period-tripling, quadrupling, etc.,
bifurcations do not occur. This is easily seen to be false for families which are only
C°-continuous.

THEOREM 1. Suppose (/„) is a sequence of maps in Cl(I,I) or Cx(Sl, S1) and (/„)
converges to f {in Cl{I, I) or C1(S1, S1)). Suppose each /„ has a periodic point xn of
period k (where k is a fixed positive integer). Suppose some subsequence of (xn)
converges to x. If k is odd, x is a periodic point of f of period k. If k is even, x is a
periodic point of f of period k or \k.

Using theorem 1, we show that the Sarkovskii ordering provides a stratification
of C^(I, I) and gives topological restrictions on one parameter families in Cl(I, I).
Let F(n) denote the set of maps in Cl(I, I) which have a periodic point of period
n. We will use the symbol «a to denote the Sarkovskii order,

2"<i2n+1<3- • •<32"+1-5<a2B+1-3<i-- • 2" - 5 < J 2 " -3.

Sarkovskii showed that if n o m then F(m)sF(«) ([5], [10], [12]). Let G(n)
denote those feF(n) such that f£F(m) if n «=am. We may include the symbol oo
by defining fc-aoo if k =2', for some integer j^O, and ooofc, otherwise. Those
maps in F(oo), but not F(m) for any m with oo<m, will be denoted G(oo).

https://doi.org/10.1017/S0143385700001450 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001450


126 L. Block and D. Hart

The following corollaries follow immediately from theorem 1 and Sarkovskii's
theorem. The second corollary was known to Misiurewicz [8].

COROLLARY l.Ifn is not a power of 2, F(n) is a closed set.

COROLLARY 2. If n is a power of 2, the closure of F{n) is contained in F(^n).

It follows at once from corollary 2 that F(oo) is closed. Hence the closure of the
set of maps in Cltf, I) with positive topological entropy is contained in F(oo). The
following result characterizes F(oo) as those maps whose set of periodic points is
not closed.

THEOREM 2. Let fe Cl(I, I) or / e C1(S1, S1) and suppose the set of periodic points
off is a closed set. Then f has only finitely many periods.

In [11], Nitecki gives an example of a continuous / e <7(oo) whose periodic points
are closed; the above theorem shows this is a pathology of C°(I, I). Also, theorem
2 and [11] imply that for any / e G(oo) which is C1, there is a non-wandering point
whose (infinite) orbit is 'separated to all orders.' If fe G(oo) is C3 and has negative
Schwarzian derivative, the orbit structure of / is completely described by
Misiurewicz in [8] under the assumption that / is unimodal.

Our final result uses theorem 1 and the stability theorem of [1] to obtain an
intermediate value result for families in CX{I, I), in terms of the Sarkovskii ordering.

THEOREM 3. Let fs be a continuous arc in Cl(I,I), 0 < s < l , with f0eG{n) and
fx e G(m). Then for any k such that n o/fc o m , there exists s^ such that fSk e G(k),
and i < j implies st < Sj.

Note that n, m or k may be oo. It follows that any such arc with h (f0) = 0 but
h(fi)>0, where h denotes entropy, must pass through G(oo). Theorems 2 and 3
make the following strengthening of the remarks after corollary 2 seem reasonable.

CONJECTURE. The closure of the maps in C^/ , / ) which have positive entropy is
exactly F(oo). The boundary of that set, and of the set of maps in Cl(I, I) with only
finitely many periods, is exactly G(oo).

Of course, the above results do not exhaust the bifurcation behaviour of interval
maps. The 'particle-antiparticle' bifurcation (which is sometimes called 'saddle-
node' in higher dimensions) which occurs as a segment of the graph of / (or of fk)
moves across the diagonal is the most obvious additional phenomenon. The cluster
of bifurcations which occurs as fs moves into the positive-entropy region which
results in homoclinic orbits is another (which we shall address in another paper).

2. Proof of theorem 1
We begin the proof of theorem 1 by proving two lemmas.

LEMMA 1. Let {pupi, •• -,Pk) be a periodic orbit of f & C\l,I) of period k where
k>2 and pt<p2<- • -<Pk- There are points y and z in the interval [pupk] with
f (y)>0
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Proof. For some integer m with l<m<fc , either f{pm)-Pi, or f(pm) — Pk- H
f(Pm) = Pi, there is a point y € [pm, pm+1] with /'(y) > 0. If f(pm) = pfc, there is a point
ye[pm-i,Pm]with/'(y)>0.

Now, let / be the smallest element of {1 ,2 , . . . , k} with f(pd<Pi. Then i > 1,
/(/?<)<£,_!, and/(p,_i)spi. Hence by the Mean Value Theorem, there is a point
z€(p , - i ,p , )wi thf (z )£- l . D

LEMMA 2. Suppose (/„) converges to f {in CX{I, I) or C1(S1, S1)) and suppose that
for each n, xn is a periodic point of fn of period k, where k is a fixed positive integer
with k>2. If (xn) converges to x then x is a fixed point of fk but not a fixed point
off.
Proof. By continuity, x is a fixed point of fk, so it suffices to prove that x is not a
fixed point of /. We assume that x is a fixed point of / and obtain a contradiction.

First suppose that (/„) converges to / in ^{1,1). Let pn denote the smallest
element and qn the largest element of the orbit of xn. By taking subsequences, we
can assume that {pn) converges to p and {qn) converges to q. There are positive
integers i and / such that

{fn)\xn)=pn and (/„)'(*„) = qn

for infinitely many n. Hence, by continuity,

f(x) = p and f'\x) = q.
Since /(*) = *, we have x=p=q. By lemma 1, / '(x)sO and f'(x)<-l, a contra-
diction.

Now suppose that (/„) converges to / in C1(S1,S1). Since f(x) = x, there are
proper closed intervals K and / on S1 with K <= int (/), f(K) <= int (/), and x e int (K).
For n sufficiently large, the orbit of xn will be contained in K and fn(K) will be
contained in / . Hence, we can look at the restrictions of /„ and / to the interval K
and apply lemma 1, as in the preceding paragraph, to show that f'(x)>0 and
f\x)< —1, a contradiction. •

Proof of theorem 1. We have three cases.

Case \.k\s odd and k s 3. If k = 3 the conclusion follows from lemma 2. Proceeding
by induction, we assume the conclusion is true for all odd numbers less than k. By
lemma 2, x is a periodic point of / of period r where 1 < r < k and fe is a multiple
of r. Hence, k =r • s where s is an odd positive integer.

Let gn = {fn)
r and g =/r. Then (gn) converges to g and xn is a periodic point of

gn of period s (for each n), but x is a fixed point of g. By our induction hypothesis,
s = 1 and k = r.

Case 2. k = 2s for some integer s s 0. If k — 1 or k = 2 the conclusion is immediate,
so we assume i t>4. Let gn = (/n)

<?lc). Then for each n, xn is a periodic point of gn

of period 4. By lemma 2, x is a periodic point of g of period 2 or 4. Hence, x is
a periodic point of / of period k or \k.

Case 3. k = m • r where r = 2s for some s > 1 and m is odd with m > 3. Note that
the sequence (/n)r converges to f and (for each n) xn is a periodic point of (/n)r of
period m. Hence, by case 1, x is a periodic point of f of period m.
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On the other hand, the sequence (fn)
m converges to fm, so x is a periodic point

of fm of period r or \r by case 2.
Let / denote the period of x as a periodic point of /. Then \r and m are relatively

prime, \r and m divide t, and f divides k. Hence, t = k or t = \k and the proof of
theorem 1 is complete. •

3. Proof of theorem 2
We need the following lemma for the proof of theorem 2.

LEMMA 3. Let feC1^, I) have a periodic orbit {xi, x2, • •., xn}, where x, <JC,-+I and
4 < « =2k, for some k. Suppose this orbit is 'separated to first order' [10] i.e. if
f(xt) = Xj then i s \n if and only if \n <j. Then there are points y and z in the interval
[*i, /(*i)] with f'(y) :£ - 1 and f'(z) > 0. (The same statement holds for [/(xj, xj) .
Proof. Let / = \n. Then /(xy) >x,-+i and f(xj+i) <xjf by hypothesis, so 3y e [x,-, x,+i] ̂
[*i. /(*i)] such that f'(y) < - 1 . Next let /(x,) = xn, so 1 < / </. If / = 1 the desired z
exists by lemma 1. If / > 1 , then /(x,-i)</(x,) implies such a point exists in
[*;-i» Xj]s[xi, /(xi)]. (The final remark follows by taking the 'mirror image'
g(x) = W(l-*).) •
Proof of theorem 2. We first consider the interval case, feCl(I,I). Since the set
of periodic points is closed, every period is a power of 2 ([4], [11]). Therefore, [3],
any periodic orbit of fk is separated to order one under / , for any k > 0 (in [3]
this is called 'simples-

Suppose now that all powers of 2 are periods of periodic points of /. Let pn be
the least point in an orbit of period 2", for each n. A subsequence of these must
converge, say to p. Since the periodic points are a closed set, p is periodic of some
period s (a power of 2). Let g =f, so g(p)- p, and note that for all n, pn is an
endpoint of a periodic orbit of g (separated to order one under g). Moreover, a
subsequence of {gn(pn)} converges to g(p) = p, but then (since g e Cl{I, I)) lemma
3 implies that g ' ( p ) < - l and g'(p)^0. Hence not all powers of 2 can be periods
if the set of periodic points is closed, and so by the theorem of Sarkovskii, / has
but finitely many periods.

We next take up maps of the circle, feC(Sx,S1). We may assume / has a fixed
point (the set of periodic points of / and of fk coincide). Were some period of /
not a power of 2, / would have positive topological entropy [5], and the set of
periodic points would therefore not be closed [9]. Hence every periodic point of /
has a power of 2 as its period.

Choose an orientation of S1, and let {p\,..., pu] be a periodic orbit, labelled in
consecutive order so there are no points of that orbit interior to any of the intervals
Mi = [pi, p2], Mi = [p2, p3], ...,Mk = [pk, pi]. By theorem A i of [2], some M, is

not/-covered by any M, for i ^/, i.e. M; ^ f(L) for any interval L c Mt. By renumber-
ing, we may assume / = k. Denote by / the complement (in S1) of the interior of
Mk. Then as in theorem A2 of [2], / restricted to / is diflferentiably 'conjugate' to
a map g :I -*M. We may consider {pi, • •., pm} to be a periodic orbit of g; it is
separated to order one, and the 'endpoint' is well defined, so lemma 3 produces
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y,z between p\ and f{p\) with / '(y)=s-l, / ' (z)sO. Proceeding as above, / has
finitely many periods. •

4. Proof of theorem 3
We conclude by proving theorem 3. We will use a theorem of [1], which states
that if feC°{I,I) and / has a point of period n, then there is a neighbourhood
N(f) in C°(I,I) such that for all geN(f) and all k with k <m, g has a periodic
point of period k.

Proof.Lettk =inf {s e[0, l ] : / s eF{k)}. Note that this set is non-empty by the theorem
of Sarkovskii, since n <*k <m.

First suppose that k is not a power of 2. Let Sft = tk. By corollary 1 (or if k = oo
by corollary 2), /Sk eF(fc), so by the theorem of [1], fSk eG(k).

Now suppose that k = 2' where / s i . Let

Then fr£F(4k) (by the theorem of [1]), but /reF(fc) (by corollary 2). If
freF(k)\F(2) we let sk=r. If freF(2k) we choose e >0 sufficiently small that
fr-eeF(k) (by the theorem of [1]), and let sk =r-e. In either case/st eG(k). •
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