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I. COMMISSION ACTIVITY, SYMPOSIA

Commission 36 acts as a sponsor or co-sponsor at the following symposia and
colloquia: IAU Colloquium No. 90 '"Upper Main Sequence Stars with Anomalous

Abundances', Crimea, USSR (May 1985), IAU Colloquium No. 89 "Radiation Hydrodynamics

in Stars and Compact Objects", Copenhagen, Denmark (June 1985), IAU Symposium No.
120 "Astrochemistry", Goa, India (December 1985), IAU Colloquium No. 87 "Hydrogen
Deficient Stars and Related Objects', Bangalore, India (December 1985).

The commission participates jointly with several other commissions in the
organization of Joint Discussions at the XIXth General Assembly on the topics
"Stellar Activity: Rotation and Magnetic Fields" and "Solar and Stellar Non-Radial
Oscillations".

IX. RECENT PROGRESS IN THE THEORY OF STELLAR ATMOSPHERES

As in earlier Reports on Astronomy, this report is not intended to be a
comprehensive review of all work done in the field covered by our commission,
nor does it contain a complete bibliography. (However, in Section III, below, an
attempt has been made to list monographs, proceedings from symposia etc. of
particular relevance for the activity of our commission.) Rather, the following
pages focuses on a few areas in which significant progress has been made in the
last three years. These areas represent different lines of direction that the
study of stellar atmospheres now follows - the invention of new efficient
numerical methods, the attempts to relate the atmospheric phenomena to global
properties such as the rotation of the stars, the study of complex dynamical
systems where mass flows are decisive such as Wolf-Rayet stars, the application of
rather classical model-atmosphere techniques for more "exotic" stellar photos—
pheres such as those of white dwarfs, and the use of stellar-atmosphere theory
in the study of non-stellar objects, such as accretion discs.

It is obvious to any reader that new observations in new wavelength regions,
or at higher spectral, temporal or spatial resolution, is of key importance today
for the study of stellar atmospheres. In particular, one should here emphasize
the fundamental value of solar studies. It is also clear that the development of
new generations of fast computers has led and will lead to impressive progress
in the theoretical simulation of stellar atmospheres and of phenomena in them.
However, one must strongly stress the need for a deeper physical understanding
of the interplay between the different complex phenomena that in interaction form
the stellar atmospheres. An inquiry to some experienced astronomers in this field
led to suggestions as to what problems are yet unsolved but would be worth attack-
ing: The behaviour of radiation-pressure dominated plasmas; structure and physics
of magnetized atmospheres, including interaction with motions in deeper layers; the
problems of mass loss, coronae and extended layers; effects of dust and polyatomic
molecules in cool stars; problems connected with partial redistribution; physical
and numerical instabilities; atmospheres of accretion discs. The 1list could well
be much longer - in fact,most problems beyond the classical treatment of plane-
parallel atmospheres are still unsolved. Hopefully, it will be possible in future
Reports of Astronomy to report on further significant progress in these respects.
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1. Numerical Methods (Wolfgang Kalkofen)

Introduction. Much progress has been made in numerical radiative transfer
during the last several years; the subject has been treated recently in some
detail in a book entitled "Methods in Radiative Transfer", published by
Cambridge University Press, and in a workshop held in Trieste, for which the
proceedings are to appear shortly by Reidel.

The principal numerical methods to emerge that are suitable for investi-
gations of time-dependent media in which radiative transfer as well as gas
dynamics play a role are based either on the probability of photon escepe from
a medium or on the perturpation of an operator. Both will be reviewed here. For
the older methods which are suitable mainly for static media the reader is
referred to these publications, as he is for two new ones that show great
promise: one, by Anderson (1985), is based on a treatment of the frequency
dependence of the radiation field in analogy to the variable Eddington factor
for the angle dependence; it results in a significant reduction of the order
of the system of coupled equations that must be solved; and the other, by
Wehrse (1985), is a generalization of the formal integral of the scalar
transfer equation to that of a matrix transfer equation.

This report reviews mainly the escape probability and operator perturbation
methods, their derivation and the underlying principle; for applications the
interested reader can be guided by the references to the basic papers. In the
escape probability method (reviewed recently by Rybicki 1984, 1985), the
mathematical description of the transfer process is much simplified; this
results in a major economy, but also in errors over which one has only very
limited control. In the operator perturbation method (reviewed by Kalkofen
1984, 1985a), the solution of the complete set of equations is speeded up
by the use of an approximate integral operator in the calculation of
correction terms; this still permits an accurate solution of the problem, but
at the price of iterations.

The Escape Probability Method. In the Escape Probability Method one can
distinguish between first-and second-order methods. In the former, the global
relation between the radiation field and the source function which is ordinar-
ily expressed either by the differential equation of transfer or its formal
integral, J(t) = | K(t,t")S{t")dt', is replaced by a local relation, J(1) =
= S(t) [ K(t,mdt', for the mean integrated intensity, J, in a line or a
continuum for a finite or semi-infinite plane-parallel atmosphere. This equa-—
tion is obtained from the formal integral by assuming that the scale of
variation of the source function, S, is large compared to that of the integral
kernel, K. If this condition is satisfied the formal integral can be written
in terms of the escape probability from the medium, P{t) =1 - | K(t,t')dt",
giving J(t) = [1 - P(1)]1S(t). Combining this relation with the equations of
statistical equilibrium in the form of the source function equation, S(t) =
= (1 ~ e)J(1) + eB (cf. Athay 1976), results in a local relation for the
source function, S(t) = eB/[e + (1-e)P(t)]. Thus, the source function and the
mean integrated intensity are known throughout the atmosphere when the escape
probability P(1) is known; and P{t) can be determined very rapidly by the use
of asymptotic relations (cf. Canfield et al. 198k who give asymptotic
expressions for P(t)for lines broadened by the Doppler, Voigt, Lorentz, or
Stark effects, and for bound-free continuaj; c¢f. Ivanov 1973 for an approach
to obtaining asymptotic results).

The first-order escape probability method has fair accuracy deep inside
the medium (a factor of two or three for the net rate coefficient p =1 - J/S
and hence for the energy loss rate from large depth). But even when the
collision parameter € and the Planck function B are constant the solution
carries a large relative error near the surface of a medium (of order 2/e for
the source function of a line transition with complete redistribution in a
semi-infinite static atmosphere), especially when scattering is important
(i.e., when e<<1). A modification by Frisch (1984) improves the solution near
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the surface and extends the method to the case of scattering by resonance
lines described by the Rrr redistribution function. - In contrast to static
media, the first-order escape probability method works well in the Sobolev
limit of a high velocity gradient. — A typical application of the method
{for a static medium) is the discussion by Kwan and Krolik (1981) of the
formation of emission lines in quasars.

The accuracy is improved significantly with the second-order escape
probability method, often referred to as the probabilistic method. It
originated in a suggestion by Athay (1972) to describe the radiative transfer
in a spectral line by means of a first-order differential equation for the
mean integrated intensity, with the escape probability as the independent
variable. A rigorous derivation of this equation was given by Frisch and
Frisch (1975); a derivation stating clearly the mathematical assumptions was
given by Canfield et al. (1984); and one making explicit the physical assump-
tions, by Scharmer (1981, 198L4).

A first-order differential equation, the probabilistic equation, describes
the transport of energy and hence information in one direction only. Thus,
in the normal course of the solution from the inside in the outward direction,
the structure of the outer layers of a medium cannot influence the state of
the gas in the deeper layers; a major shortcoming. Other assumptions that
must be satisfied for the equation to be valid are that the profile function
for the line absorptions be depth-independent, that the line be formed in
complete redistribution (CRD), that differential velocities be negligible,
and that the background continuum be weak. When these assumptions are satis-
fied, the equation yields the exact solution at the outer surface of a semi-
infinite medium, a distinct improvement over the first-order method. Although
the probabilistic equation appears to yield a fair accuracy throughout an
atmosphere when these conditions are satisfied (a typical value is 20%), the
problems that call for such fast methods tend to be those where these
conditions are not met, resulting in larger errors that are difficult to
estimate. A further drawback is that the method does not provide for a way
to improve the numerical result; another method must be used if a higher
accuracy 1is desired. - A modification of the probabilistic equation by Canfield
et al. (198L4) separates the equation into two first-order differential equa-
tions, for the inward and outward-directed mean integrated intensities,
respectively. This allows the specification of two boundary conditions for the
incident intensities in a finite medium.

The Operator Perturbation Method. The Operator Perturbation Method for the
solution of the differential equation of radiative transfer subject to
integral constraints was originally proposed by Cannon (1973). He applied it
to partial redistribution (PRD) problems, perturbing the PRD operator
about the isotropic CRD operator; to media with differential flow velocities,
perturbing about the static case; and to media with spherical symmetry,
perturbing about the plane-parallel case (for references to these and to
related papers, cf. Cannon 198L4).

Scharmer (1981, 1984) and Scharmer and Nordlund (1982) have expressed
the operator perturbation in terms of integral equations. In their formulation,
corrections to a solution are based on the error incurred in the conservation
equation; the reference to a conserved quantity makes this powerful approach
suitable also for non-linear problems.

The essence of the method is the separation of the calculation into two
parts: the apppoximate calculation of corrections to a solution using an
approximate integral operator, and the accurate calculation of the error with
which the solution satisfies the conservation equation. The accuracy of the
converged solution depends only on the accuracy of the error calculation.

In the integral equation formulation, the transfer problem is expressed
in the form LS = ¢, wherel is a linear integral operator,S is the source
function or another variable for the state of the gas that is to be determined,
and@is the known inhomogeneous term of the problem; this equation may describe
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the line transfer of a two-level atom with complete (Cannon 1984, Scharmer 1981,
198L4) or partial (Scharmer 1983) redistribution, a multi-level atom (Scharmer and
Carlsson 1984), or a model atmosphere (Nordlund 1984, Kalkofen 1985b); and both the
linear and the non-linear cases. The procedure by which the integral e?gation is
solved is to expand the unknown function in a series S\n/ = § + Zigls l), S = S(w),
where the initial estimate S is either the converged solution of the preceding time
step in a time-dependent problem, or an estimate, usually S = 0, in a static problem.
Given the solution in the nth order, the solution in the (n+l)th order is obtained
from the equation U's \B*l) = €{n) where L' is an approximate integral operator
(approximating L) and €(n) is the error made by the nth order solution in satisfying
the conservation equation, e(n) = ¢ - Ls(n),

The speed of the operator perturbation method, givingit a distinct time advan-
tage over the direct solution of the equations, depends on the speed with which the
approximate integral operator L' can be constructed and with which the set of coupled
equations for the corrections s(n) can be solved. Now, the operator L' can be
constructed very rapidly with Scharmer's (1981, 198L4) one-point quadrature formula
for the intensity in terms of the source function, i.e., essentially the Eddington-
Barbier relation applied to the interior of a medium. This results in a matrix of
nearly triangular structure, leading to fast solution times (proportional to N2,
not N3 as ordinarily, where N is the number of depth points for a single variable
S, or the product of the number of depth points and the number of levels in a multi-
level atom) for the corrections s&(n) by means of an lxu decomposition of the matrix
L' ; this decomposition needs to be carried out only once in each interation cycle.

- The error term €(n) is computed by solving the (scalar) differential equation of
transfer for known source function S either as the Feautrier equation with second-
order accuracy, or in Auer's (1976, 1984) formulation with fourth-order accuracy.
Thus the approximate integral operator L' is the only matrix that needs to be
constructed.

In line transfer, the large thermalization length due to scattering is contained
in the approximate integral operator L'; the error calculation, since it solves the
transfer equation for known source function separately for each angle and frequency
point, contains only the short-range behavior of the monochromatic transfer equation
(Kalkofen 1985a). The long-range behavior must be preserved when the matrix L' is
simplified in order to speed up the solution. — The operator perturbation method
can be adapted to computers with short word length by cancelling analytically
intensity-dependent terms in the equations of statistical equilibrium (Scharmer 198k,
Scharmer and Carlsson 1984), allowing the treatment of line transfer problems with
very small scattering parameter e.

The Core Saturation Method. One other approximate method that should be mentioned
here is the Core Saturation Method (Rybicki 1972). It is not very fast since it may
require a large number of iterations for convergence, but the essential physics on
which it is based can be used to advantage in reducing the construction time for
the approximate integral operator L' in the operator perturbation method (Kalkofen
1985a). In the core saturation method, the (scalar) transfer equation is solved by
means of a A-iteration for known source function in the shallow layers, where the
monochromatic optical depth is smaller than some value of order unity (for a
modification that allows for structure inside the medium such as shocks, cf.

Kalkofen and Ulmschneider 1984); at larger optical depth, the intensity is usually
assumed to have the same value as the source function. The core saturation assurption
permits a very general approach to complex problems; it has been used for media with
cylindrical symmetry (Stenholm and Stenflo 1977), the transfer of polarized radiation
(Stenholm and Stenflo 1978), and the co-moving frame description of the transfer in

a moving medium (Stenholm 1980). The method can also be modified to yield the exact
solution of a transfer problem (Rybicki 198k).
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2. Manifestations of the Interaction between Convection and Rotation in Stellar
Atmospheres (Lee Hartmann)

Introduction. According to dynamo theories, the interaction between convection
and rotation is responsible for the generation of magnetic fields in solar-type
Sstars. Stellar observations can explore the ways the global parameters, like the
surface rotation and internal structure, affect the production of magnetic fields.

In this very brief review I wish to concentrate on recent progress in understanding
the evolution of stellar rotation, and the dependence of stellar cycles and magnetic
activity on rotation, internal structure, and age.

Stellar Rotation. Most of the progress that has been made in understanding the
origins of magnetic activity derives from an explosion in the amount of stellar
rotation data. The measurement of rotational modulation of the Ca II emission in
slowly-rotating main sequence stars (Baliunas et al. 1983) has now provided a large
sample of stars for which the rotational peridds are accurately known. Modulation of
broad-band photospheric light by starspots even makes it possible to determine
accurate rotational periods for stars in the Hyades (Lockwood et al. 1983).

One of the biggest surprises in this area is the discovery that late-type dwarfs
go through a phase of very rapid rotation (van Leeuwen and Alphenaar 1982; Soderblom,
Jones and Walker 1983; Stauffer et al. 1984). Low-mass stars apparently spin up (by
a factor of 10!) as they contract toward the main sequence (Stauffer et al. 1984).
Furthermore, the observation of rapid rotation among G dwarfs in the o Per cluster
(stauffer et al. 1985), compared with the slow rotation of similar stars in the
Pleiades cluster (cf. Benz, Mayor and Mermilliod 1984) shows that many solar-type
stars go through a phase of rapid spin-down (from ~50 to ~10 kms—1 ) between the
ages of 5x107 and Tx107 years. While the implications of this behavior are not fully

https://doi.org/10.1017/50251107X00006556 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00006556

