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ON ADJOINTS OF NON-LINEAR MAPPINGS

DlNAMERICO P. POMBO J R .

Amply boundedness of collections of analytic mappings is proved

to be equivalent to equicontinuity of the corresponding

collections of adjoints, for certain classes of locally convex

spaces which have good analytic properties.

In the linear theory of locally convex spaces i t is well known that a

collection of continuous linear mappings defined on an infrabarrelled

locally convex space is equicontinuous if and only if the collection of

their adjoints is strongly equicontinuous ([9], p. 138). The main purpose

of this ar t ic le is to obtain certain analytic versions of this result

(Theorem 2, Corollary 5) , using the notion of adjoint of an analytic

mapping introduced by Aron and Schottenloher ([2]). Using an argument of

Grothendieck, we also prove that, under a polynomial condition, spaces of

continuous m-homogeneous polynomials with values in spaces of continuous

mappings can be identified with spaces of continuous mappings with values

in spaces of scalar valued continuous m-homogeneous polynomials

(Corollary 2). As we have observed, some of the preliminary results which

are necessary do not depend on analyticity. For this reason, we shall

define the adjoint of an arbitrary mapping in the natural way and derive

some simple properties in this general context.

We shall adopt the notation and terminology of [5], [7], and [9].

Given two complex vector spaces E and F , L (E;F) shall denote the
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complex vector space of a l l linear mappings from E into F . Given a
Hausdorff topological space X and a Hausdorff locally convex space F
over C , ¥(X;F) shall denote the complex vector space of al l mappings
from X into F and C{X;F) the vector subspace of al l continuous
mappings from X into F . Given a Hausdorff locally convex space E
over C , P( E;F) shall denote the complex vector space of a l l continuous
m-homogeneous polynomials from E into F . When m = 1 we write

?(mE;F) = L(E;F) . Given a non-void open subset U of E , H(U;F)
shall denote the complex vector space of a l l analytic mappings from U
into F . When F = C , i t is not included in the notation for function
spaces,- thus ¥ (X) stands for F (X;C) , e t c . . . . Let CS (F) denote the

set of a l l continuous seminorms on F and let x S X . A collection
o

X C ¥(X;F) is said to be amply bounded at x e X if, for each

6 G CS (F) , there exists a neighbourhood V of x in X such that

sup 6 (fix) ) < + = > .

X is said to be amply bounded if X is amply bounded at every point of
X . If X is a collection of m-homogeneous polynomials from E into F ,
then X is equicontinuous if and only if X is amply bounded ( [4] ,
Theorem 1) .

DEFINITION. If / S F(X;F) , i t s adjoint tf is the linear mapping
from F' into ¥(X) defined by

V = l*)o/ • f°r a 1 1 * e F' •

The m a p p i n g f S ¥(X-,F) ** tf G L (F';¥(X)) i s o b v i o u s l y l i n e a r a n d i f

feC(X;F) ( r e s p e c t i v e l y H (V ;F) ,V(mE;F)) then tf e L^F' ;C (X) )

( r e s p e c t i v e l y L (F'}H(U)) , L (F';?(mE))).

PROPOSITION 1. Let 6 be a covering of F by bounded subsets. If

f e ¥(X;F) , then tf e /-(F';F (X)) , wfcere F ' denotes F' with the
v s b

locally convex topology of 0-convergence and F (/) denotes ¥{X) with
s

the locally convex topology of pointwise convergence ( [ 5 ] , §1) .
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Proof. Let us denote by F' the vector space F' endowed with the

a

weak topology a{F',F) . Since 8 is a covering of F , the identity

mapping F' -*• F' is obviously continuous. Hence it suffices to prove

that */ G L(F';F (X)) . Let xn ,... ,x G X , e > 0 , and consider
OS -L m

W = {g G F(X); Ig(x,) | < e , . . . , | g ( x _ ) | < e} , a basic neighbourhood of

zero in f^iX) . Let y . = f(x.) , j = l , . . . , m , and consider

V = {<(> G F' ; 14> (j/ ) | < e , . . . , \$(y ) | < e} ; V i s a neighbourhood of

zero in F' and f(V) C W , p rov ing the d e s i r e d c o n t i n u i t y of f .

PROPOSITION 2. X c F{X;F) is equiaontinuous (respectively amply
bounded) if and only if for each equicontinuous subset V of F' , the

collection K(V) = {<\>°f -, <j> G V ( f G X} is equicontinuous (respectively
locally bounded).

Proof. We s h a l l prove the amply bounded case , the other one being

analogous. Suppose X amply bounded. Let x G X and take V C F'

equicontinuous. By equicont inu i ty , the mapping 6(y) = sup |i)>(i/)| (y G F)

i s a continuous seminorm on F . Hence there exis ts V a neighbourhood

of x in X so that
0

sup B(/(x)) < +~ .

Consequently,

sup | (<fro/) (x) | < +°° .

and X(S/) i s locally bounded at x . Conversely, le t us fix x 6 X ,

6 G CS(F) , and define V = {<fr G f ; | <fr | < 6} . By the continuity of

3 , y i s equicontinuous. Hence, by hypothesis, there exists a

neighbourhood V of x in ^ such that

sup | ((fro/) (x) | < +°° .
xGF,<frGy,/GX

On the other hand, the Hahn-Banach theorem gives 6(y) = sup |(fr(y)| , for
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each y G F . Thus sup B {fix)) < +°° , and X i s amply bounded a t
^VfeX

xo •

We now apply an idea of Grothendieck to the non-linear case ( [S] ,

p . 167). Let T be a Hausdorff local ly compact topological space and

consider C(T) endowed with the compact-open topology. We have the

following

THEOREM 1. C(X;C(T)) is algebraically isomorphio to the vector

subspace H of C(T;C (X)) of all h e C(T-,C (X)) which map compact
s s

subsets of T into equicontinuous subsets of C{X) , where C (X) denotes
s

C{X) with the topology of pointwise convergence.

Proof. For each t G T , l e t q(t) G(C(T)) ' be defined by

<M*) (/) = /(*) , i f / G C{T) . The mapping tp : t G T ** 4>(t) G (C(7) ) '

i s continuous, i f (C(T)) ' i s endowed with the weak topology

o( (C(T)) ' ,C(T) ) . Moreover, the topology of C(T) i s the topology of

uniform convergence on the equicontinuous se ts i>(K) of (C(T)) ' ,

where K varies in the co l lec t ion of compact subsets of T (see [&] ,

p . 167, for the d e t a i l s ) . Now, for each g G C{X;C(T)) , define

= 9°*l> • By Proposit ion 1, W(g) G C(T;C (X)) , and, by Proposition

2, W(g) maps compact subsets of T into equicontinuous subsets of C(X)

(thus W(g) maps compact subsets of T into compact subsets of C{X)

for the compact open topology, by Ascoli's Theorem). The mapping

w : g G C(X;C(T)) «• wig) G C(T;C (Z))
o

is obviously linear and injective, and we have just observed that

W{C{X;C(T))) C H .

Let h. G ff and define # : ^ •*• F(T) by ^(x) (t) = h(t) (x) , for X G X ,

£ G T . we must prove tha t g{x) G C(T) and g G C(X;C(D) . In fac t ,

i f x € X , the evaluation mapping 6 : C(X)-> C i s continuous for the

simple topology and g{x) = 6°h . By composition, g(x) G C(D. Now,

f i x x ^ X , K C T compact and e > 0 . By the equicontinuity of h(K)

a t x , we can find a neighbourhood V of x in X such tha t the

r e l a t i o n s x G V , t S if imply
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\h{t) (x) - h{t) (x ) | < e .

Thus,

sup \g(x) (t) - g(x) (t) | < e ,

ten

for all x £ V , proving the continuity of g at x Finally, by

definition, W(g) = h , and the theorem is proved.

Let 9 be a collection of bounded subsets of the Hausdorff locally

convex space E and denote by B the vector space of all mappings from

T into P( E) which map compact subsets of T into bounded subsets of

P(mE) for the topology of 8-convergence on P( E) . Consider on 8

the locally convex topology defined by the family of seminorms

p v „ : h e 8 «• p v (h) = s u p ( s u p \h(t) (x) | ) e R ,
K'B K'B t£K x£B +

where K varies in the collection of a l l compact subsets of T and B

varies in 9 . We obtain the following

COROLLARY 1. (a) The restriction of w to ?{mE;C(T)) establishes

a vector space isomorphism between P( E;C{T)) and

H(m) = {h G C(T;? (mff)) ,• h maps compact subsets of T into equi-s

continuous subsets of P( E)} .

(b) H(m) is a vector subspace of 8 , and ?Q(rnE;C(T))

(V( E-,C(T)) with the topology of ^-convergence) is isomorphic to H ,

if H is endowed with the locally convex topology induced by B .

Proof. (a) Obviously, W(?(mE;C(T))) C # ( m ) . Conversely, i f

h G H , we can apply Theorem 1 to obtain g e C(E;C(T)) so that

W(g) = h . Thus, i t remains to verify tha t g i s an m-homogeneous

polynomial from E in to C(T) . In fac t , for each t £ T , there ex is t s

a unique continuous symmetric /n-linear mapping from E in to C , A ,

such tha t A, ( x , . . . ,x) = h(t) (X) , i f X S E . Define A : if" -»• F(T) by

i4(x , . . . ,x) (t) = A, (xn , . . . ,x ) , for x, , . . . ,xm 6 £" , t G J7 . Arguing
A. m L L fit ± 7 7 1

as in the proof of Theorem 1 and using [11], Proposition 2.6, we verify
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t h a t A(x , ,x ) G C(T) . Final ly , i t i s easy to see that A i s a

symmetric m-linear mapping from E in to C(T) such that

A(x,.. . ,x) = h(x) , i f x£E , proving (a) .

(b) Let P e V(mE;C(T)) , K C T compact and B e 9 . By

the cont inui ty of P , we have

sup (sup |P (x ) ( t ) | ) < +» .
x&B te#

B u t ,

sup (sup \P(x)(t)\) = sup (sup |w(P) ( t ) (x) |) = sup (sup |u(P) (t) (x) | ) .
t&K tEK

Thus, H C B , and the locally convex space isomorphism is also

established.

COROLLARY 2. If E is a polynomially barrelled locally convex space

fill, Definition 5), then H{m) = C (T',? s(
mE)) . Consequently,

Pa(.
mE;C(T)) and C(T-,? (mE)) (with the topology indicated as before)

w s

are isomorphic as locally convex spaces.

Proof. Let h e C(T;?^(mE)) . For each K C T compact, h(K) is

s

a compact, hence bounded subset of P( E) for the simple topology. By

[11], Proposition 3.23, h(K) i s an equicontinuous subset of P( E) .
Thus, h £ H , and the proof is complete.

We could have considered the Banach space CAT) of a l l continuous

complex valued mappings on T which vanish at infinity endowed with

the supremum norm, instead of C(T) . By similar arguments we get:

THEOREM 1'. C(X;C {T)) is algebraically isomorphic to the vector

subspaae of C (T;C (X)) of all such continuous mappings which map To s

into an equicantinuous subset of C(X) .

Obviously, we would have the analogues of Corollaries 1 and 2

corresponding to this case.

Now, le t U be a non-void open subset of the Hausdorff locally

convex space E , and denote by T (respectively T „ ) the topoloc

C(U;F) of uniform convergence on the compact (respectively finite
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dimensional compact) subse t s of V . Obviously, T _ < T^ , and i t can

be proven t h a t they co inc ide in the polynomial case ( [ / / ] , P ropos i t i on 2 .7 ) .

PROPOSITION 3 . X C C(U-,F) is T -bounded (respectively, x~-

bounded) if and only if X(4>) is T -bounded (respectively, T _-

bounded) in C(i/) , for all «f> 6 F' .

Proof. If cj> £ F' , then B = |<i>| e CS(F) . Thus X T -bounded

(respectively, x --bounded) in C(U;F) implies immediately X(<)>)

T -bounded (respectively, T --bounded) in C(U) . Conversely, if K i s

a compact (respectively, f inite dimensional compact) subset of U , our

hypothesis ensures that X.(K) i s a (F,F') -bounded in F , hence a

bounded subset of F for i t s original topology. Thus X is T -bounded

(respectively, T --bounded) in C{U;F) .

PROPOSITION 4. Let us denote by Fl the vector space F' endowed

with the strong topology and consider X c C(U;F) . Then, X i s

equicontinuous from F£ into (C(£/) ,T ) (respectively, (C(U),T -))

if and only if for each compact (respectively, finite dimensional compact)

subset K of U there exists a bounded subset B of F such that

X(X) C B .

Proof. We shall prove the x -case, the T --case being similar to

the f i r s t one. Let us suppose X equicontinuous from F/ into

(C(U),T ) . Given a compact subset K of U , we can find a bounded

subset B of E and A > 0 such that the relations <\> G p' ,

sup |<j>(j/) | ^ X imply

(A) sup | <f> (/(a:)) | < 1 , for a l l / e X .

Let S = — (closed balanced convex hull of B ); B is a bounded subset
A 1

of E and B° C {K(K))° , by ( 6 ) . Hence, X(Z) C (K(K))°° C B°° = B ,

the l a s t e q u a l i t y be ing a consequence of t h e Bipolar Theorem (where we are
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t ak ing polars with respect to the duali ty (F,F')) . Conversely, i f K

i s a compact subset of U , and e > 0 , consider W = {h € C(U) ;

sup | / J ( X ) | < e} a basic neighbourhood of zero in (C(i/) ,T ) . Take B

a bounded subset of F so that K(K) C B . Then, V = ( ^ e f ;

sup \<b(y) | < e} is a neighbourhood of zero in FJ such that K{V) C W ,
y£B
proving the equicontinuity of X .

COROLLARY 3. *X is equioontinuous from Fl into (C(U) ,T )

(respectively, (C(U) ,T J) if and only if X is i -bounded

(respectively, T ̂ -bounded) in C(,U-,F) .

COROLLARY 4. If X is pointwise bounded, C(U) being endowed with

T (respectively, T „ ) , then X is equicontinuous from F-! into

(C{U) ,XQ) (respectively, (C(U) ,i J) .

Proof. Follows immediately from Proposition 3 and Corollary 3.

We can now state our main result

THEOREM 2. Let E be a holomorphically infrabarrelled locally convex

space ([10], Definition 9). For any collection X c H(U-,F) , the

following conditions are equivalent:

(i) X is T -bounded in H(U;F) ;

(ii) X is amply bounded ;

(iii) X is pointwise bounded, if H(U) is endowed with x ;

(iv) X is equicontinuous from F' into (H(£/),T ) .

Proof. (i) =* (ii) since E is holomorphically infrabarrelled.

(ii) =* (iii): by Proposition 2, X(<j>) is locally bounded, for all

$ € F' . Thus, X((j>) is T -bounded in H(U) , by a straightforward

compacity argument.

(iii) =* (iv): immediate consequence of Corollary 4.

(iv) =* (i): immediate consequence of Corollary 3.

COROLLARY 5. Let E be a holomorphically barrelled locally convex

space ([10], Definition 6). For any collection X C H(U;F) , the
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following conditions are equivalent:

(i) X is T -bounded in H(U-,F) ;

(ii) X is amply bounded ;

(iii) X is pointwise bounded, if H(U) is endowed with T ;

(iv) X is equiaontinuous from F' into (H(£/) ,T ) :

(v) X is T f-bounded in H(U;F) ;

(vi) X is pointwise bounded, if H(U) is endowed with T - .

Proof. Since every holomorphically barrelled space is holomorphically

infrabarrelled, then (i) •* (ii) ** (iii) ** (iv) , and, obviously, (i) °* (v) .

As in the proof of Theorem 2, (ii) =* (vi) by Proposition 2.

(vi) =• (iii) : if *X(<j>) is TQ--bounded in H(U) , then
 tK(4>) is

locally bounded, since E is holomorphically barrelled. Hence X(<j>) is

T -bounded in H{U) , proving (iii).

(v) =* (ii) since E is holomorphically barrelled.

We end by furnishing examples of certain types of locally convex

spaces which were considered in the text.

EXAMPLES. Every metrizable space is holomorphically infrabarrelled

([3], Propositions 6 and 54) and every DFM space (strong dual of a

Frechet-Montel space) is holomorphically infrabarrelled ([6], Proposition

6 and [3], Proposition 52); every Baire space and every Silva space is

holomorphically barrelled, hence polynomially barrelled ([3], Propositions

37 and 41); every barrelled DF space is polynomially barrelled ([/],

p. 41, Remark (b)).
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