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Direct numerical simulations of the injection of a pulsed round liquid jet in a stagnant gas
are performed in a series of runs of geometrically progressing resolution. The Reynolds
and Weber numbers and the density ratio are sufficiently large for reaching a complex high-
speed atomisation regime but not so large so that the small length scales of the flow are
impossible to resolve, except for a very small liquid-sheet thickness. The Weber number
based on grid size is then small, an indication that the simulations are very well resolved.
Computations are performed using octree adaptive mesh refinement with a finite volume
method and height-function computation of curvature, down to a specified minimum grid
size Δ. Qualitative analysis of the flow and its topology reveals a complex structure of
ligaments, sheets, droplets and bubbles that evolve and interact through impacts, ligament
breakup, sheet rupture and engulfment of air bubbles in the liquid. A rich gallery of images
of entangled structures is produced. Most processes occurring in this type of atomisation
are reproduced in detail, except at the instant of thin sheet perforation or breakup. We
analyse droplet statistics, showing that as the grid resolution is increased, the small-scale
part of the distribution does not converge, and contains a large number of droplets close
in order of magnitude to the minimum grid size with a significant peak at d = 3Δ. This
non-convergence arises from the numerical sheet breakup effect, in which the interface
becomes rough just before it breaks. The rough appearance of the interface is associated
with a high-wavenumber oscillation of the curvature. To recover convergence, we apply
the controlled ‘manifold death’ numerical procedure, in which thin sheets are detected,
and then pierced by fiat before they reach a set critical thickness hc that is always larger
than 6Δ. This allows convergence of the droplet frequency above a certain critical diameter
dc, above and close to hc. A unimodal distribution is observed in the converged range. The
number of holes pierced in the sheet is a free parameter in the manifold death procedure;
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however, we use the Kibble–Zurek theory to predict the number of holes expected on
heuristic physical grounds.

Key words: aerosols/atomisation, breakup/coalescence, bubble dynamics

1. Introduction
Atomisation simulations have progressed at an amazing rate, however, the topic is still far
from mature. As we show in this paper, the prediction of the breakup of liquid masses in
a typical large-speed flow is marred by vexing numerical effects and profound physical
uncertainties. New developments, such as better codes, rapidly increasing processing
power and new numerical methods are however poised to mitigate the difficulties. In this
paper we investigate the pulsed jet, a paradigmatic case of atomising flow inspired by
diesel engine jets, although we do not aim at solving a particular applied problem or even
any experimental configuration, but rather to investigate the potential and limitations of
direct numerical simulation (DNS) of an atomising flow, and in particular, the ability
of such DNS to reveal physically relevant properties of the flow through statistically
converged numerical approaches. The emphasis here is on statistical convergence, rather
than ‘trajectory’ convergence, since only the former is conceivable in very complex,
irregular flows.

The study of such convergence already has a long history, despite rapid progress.
We review specifically the history of round-jet atomising simulations and we refer the
reader to reviews on the general topic of atomisation and its simulation (Gorokhovski &
Herrmann 2008; Villermaux 2020). The first attempts at testing the convergence of the
probability distribution function (PDF) of droplet sizes were those of Herrmann (2011).
His simulations of a round jet used a variant of the level-set method and showed that the
number of small droplets in the PDF was underestimated by coarse-grid simulations. This
can be understood by the fact the the level-set methods tend to eliminate small droplets
by ‘evaporating’ them. On the other hand, volume-of-fluid (VOF) methods keep too many
droplets in an intermediate range around the grid size Δ, and in that range the PDF of
droplet sizes is overestimated. This can be seen, for example, in a study of the convergence
of the droplet-size distribution in the round jet by Pairetti et al. (2020) where coarse grids
overestimate the number of large droplets.

A graphical illustration of the contrasting effects of level-set and VOF methods on
the droplet sizes in atomisation is shown on figure 1. Despite the inaccuracy of the
distribution for small droplet diameters, both methods may converge as the grid is refined
progressively. There is thus some hope that very large simulations will eventually produce
converged distributions, a hope we want to explore in this paper.

Aside from the two investigations cited above, very few studies address the issue of
PDF convergence, despite detailed analyses of aspects of the flow. Perhaps the first round,
single-jet atomisation simulation in the conditions of a diesel jet was that of Bianchi et al.
(2007) using the VOF method, followed by more detailed simulations by Ménard et al.
(2007) using the combined level-set VOF method (CLSVOF). This was followed by other
simulations using CLSVOF by Lebas et al. (2009), Chesnel et al. (2011) and Anez et al.
(2019) and by simulations using the VOF method (Fuster et al. 2009). The latter studied
both the coaxial jet cases in the so-called ‘assisted atomisation’ set-up and the conical
jet. For the conical jet, Fuster et al. (2009) showed that the PDF changed drastically with
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Figure 1. An illustration of the outcomes for the numerical simulation of a thinning liquid sheet; panel
(a) shows the initial configuration, before breakup. The other three images (b–d) show a schematic view of the
outcome either in reality or in various types of numerical simulation. It is arbitrarily assumed that there are two
breakup locations. Both the VOF and the level-set methods yield topology changes when the sheet thickness
reaches the grid size. In (b) fragments larger than the grid size are obtained because of mass conservation in the
VOF method. (c) In reality, the sheet thinning continues until much later than in the numerics, unless extremely
fine grids are used. The final size of some of the droplets is then much smaller than in the VOF simulation.
(d) The level-set or diffuse-interface methods on the other hand evaporate the thin parts of the sheet and loses
much more mass.

grid resolution. The PDF never peaked as the droplet size was decreased towards the grid
size. Until 2022, the most detailed (or highest-fidelity) published simulations of a round jet
were performed by Shinjo & Umemura (2010) using a combination of level-set and VOF
techniques with a ratio of jet diameter to grid size of 286. These simulations, together
with those of Herrmann (2011) are the two outliers above the trend line in figure 2. In
addition to revealing a wealth of details about ligament and sheet formation, and the
perforation of sheets, Shinjo & Umemura have also shown distributions of droplet sizes,
but without investigating explicitly their convergence. As in earlier simulations of the
round jet, the droplet-size distribution has a single maximum close to the small droplet
end of the spectrum, almost at the grid size. Studies by Jarrahbashi & Sirignano (2014)
and Jarrahbashi et al. (2016) focused on a round, spatially periodic jet and analysed the
effect of vortex dynamics on the development of instabilities along with the jet core.
Studies by Zhang et al. (2020) and Pairetti et al. (2020) applied the VOF method with
octree adaptive mesh refinement. As already mentioned, the latter paper investigated the
distribution of droplet sizes showing some difficulties in reaching statistical convergence.
Several authors including Torregrosa et al. (2020) and Salvador et al. (2018) have focused
on the effect of injection conditions and turbulence. Khanwale et al. (2022) and Saurabh
et al. (2023), using a diffusive interface method with octree adaptive mesh refinement,
obtained the most refined simulations published at the time of writing with a special
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Figure 2. The increase in two-phase round-jet grid resolution in time. The graph includes two simulations
published only on the Gerris and Basilisk websites (and in other channels outside of academic journals) before
2017. The 2024 simulations are those reported in this paper.

treatment of the refinement in thin regions. It should be noted that all of the round-jet
studies cited above involve a variety of physical parameters and grid resolutions, despite
the fact that they share similarities, such as moderate density ratios and liquid Reynolds
numbers (defined below) in a range 5000 � Rel � 13 400 that are attainable by DNS for
single-phase flow. For example, the two octree studies of Zhang et al. (2020) and Pairetti
et al. (2020) have gas-based Weber numbers (defined below) of respectively 177 and 417.
As a general rule, it is better to select relatively small density ratios, Reynolds and Weber
numbers to increase the likelihood of reaching convergence in computation. In this work,
we thus chose the parameters in the lower range of Re, We, as it correspondens to Weber
number and density ratio for this type of flow. Similar attempts at obtaining convergence
were realised in the simulations of Ling et al. (2017), investigating assisted quasi-planar
atomisation after the experiment of Grenoble (Ben Rayana et al. 2006; Fuster et al. 2013).
Ling et al. (2017) performed computations on four grids of increasing resolution. Despite
the huge computational effort involved in that latter simulation, convergence was clearly
not reached, both quantitatively as droplet-size distributions had a very narrow region of
overlap, and qualitatively as clearly under-resolved structures in thin sheet-like regions
were observed. One of our objectives in this work is to see what happens if ever finer grids
are used, until very thin sheets are clearly resolved. In experiments as well as in some
simulations it is clear that thin sheets are the site of weak spots (Lohse & Villermaux
2020). The presence of these weak spots as one of the mechanisms leading to atomisation
forces the following somewhat sobering conclusion. Numerical simulations of diffuse-
interface, level-set or VOF type can never be converged if thin sheets break or perforate
only when they reach the grid size. Instead, a physical mechanism for weak spots or
perforations must be present to nucleate holes in a manner independent of the numerics.
Although such a mechanism may not be known yet, we suggest as a backstop procedure
to define a critical sheet thickness hc beyond which perforations occur with relatively high
frequency, that is, at the rate of one or more perforations per connected thin sheet region.
Chirco et al. (2022) have called manifold death (MD) this procedure (this choice of words
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partially echoes that of Debrégeas et al. 1998). It should be noted that bags or membranes
are observed at relatively low velocities in many atomisation configurations (droplets, jets
etc.) and that at higher velocities, bags are not visible and perhaps non-existent. We note
that the literature (Lasheras & Hopfinger 2000; Tolfts et al. 2023) distinguishes two kinds
of atomisation, a bag or membrane-type atomisation at low Weber numbers and a fibre-
type atomisation at high Weber numbers. The transition between the two behaviours was
found by Tolfts et al. (2023) to lie between Weg = 70 and Weg = 400. From the connection
between thin sheets and the lack of statistical convergence one may conjecture that in the
fibre-type regime statistical convergence could be achieved. This is however contradicted
by the lack of convergence observed by Herrmann (2011) at Weg = 500. A definite answer
to this argument may have to wait for a study similar to the one in this paper in the
fibre-type regime, a study which would probably be even more expensive.

In what follows we first describe the characteristics of our test case. We then describe
our numerical method, including the MD procedure. Then we continue with our results
that are both qualitative and quantitative. Qualitatively our results reveal new processes of
numerical rupture. Quantitatively they allow an analysis of the droplet-size distributions
or PDF. A discussion of the phenomenology of hole expansion in a thin sheet is given in
Appendix A. We end with a conclusion including perspectives and discussion.

2. Mathematical model and numerical method
Our mathematical model is based on the mass and momentum conservation equations for
incompressible and isothermal flow, i.e.

∇ · u = 0, (2.1)

∂ρ u
∂t

+ ∇ · (ρ u u) = −∇ p + ∇ · (2μD) + fσ , (2.2)

where u( x, t) is the velocity field and p( x, t) is the pressure field. The tensor D is
defined as (1/2)[∇ u + (∇ u)T ]. The density and viscosity of the flow are noted as ρ

and μ, respectively. The last term on the right-hand side of the Navier–Stokes equation
(2.2) represents the surface tension force

fσ = σκ nδs, (2.3)

which depends on the surface tension σ and the interface shape, particularly on its
curvature κ and unit normal vector n. The Dirac distribution δs indicates that the force
only acts at the free surface. We consider the phase distribution function c(x, t) that takes
value unity in the reference phase and null outside of it. The transport equation for this
function is

∂c

∂t
+ ∇ · (c u) = c ∇ · u. (2.4)

In the context of incompressible flow, the right-hand side above is equal to zero. The c
function implicitly defines the interface at its discontinuity surface, defining also the δs , n
and κ fields, e.g. ∇c = nδs .

The VOF method represents the evolution of c using the piecewise linear interface
capturing method of Hirt & Nichols (1981) and DeBar (1974). In this context, the mean
value of the colour function on a cell is

f = 1
|Ω|

∫
Ω

c( x, t) dV, (2.5)
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where |Ω| is the volume of the cell Ω . Then f is the volume fraction of the reference
phase in the cell. The mixture properties of the cell may then be computed by arithmetic
averages

ρΩ = fρl + (1 − f )ρg, μΩ = f μl + (1 − f )μg. (2.6)

Spatial discretisation of the above equation is realised on a network of cubic cells
obtained by a tree-like subdivision of an initial cubic cell of size L0. The subdivision is
realised using a wavelet-based error estimate and is adapted dynamically as the simulation
progresses. At all times the maximum subdivision level is a fixed number 	 and the
smallest grid size is

Δ	 = 2−	L0. (2.7)

From now on, we consider the algebraic equations derived from applying the finite volume
method on each cell. In this context, the approximate projection method by Chorin (1968)
can be used to solve the coupling between (2.1) and (2.2), considering that the velocity u
is staggered in time with respect to the volume fraction f and the pressure p. The discrete
set of equations can then be expressed as

ρ u∗ − ρ un


t
+ ∇ ·

(
ρn+ 1

2 un+1/2 un+1/2
)

= ∇ · [μn+ 1
2 (Dn + D∗)] + fn+1/2

σ , (2.8)

∇ ·
(


t

ρn+ 1
2
∇ pn+ 1

2

)
= ∇ · u∗, (2.9)

un+1 = u∗ − 
t

ρn+ 1
2
∇ pn+ 1

2 . (2.10)

In the above the expression, ∇ · (ρn+ 1
2 un+1/2 un+1/2) must be interpreted as the use

of a predictor–corrector scheme for advection of the velocity field. Both the predictor
and the corrector use the Bell–Collela–Glaz scheme (Popinet 2003, 2009), and involve
two projections. A full description of the predictor corrector scheme with projection is
best found in the ‘literate’ source code at http://basilisk.fr/src/navier-stokes/centered.h.
In addition to these equations, f is advanced in time using the split-volume-fraction
advection scheme of Weymouth & Yue (2010). We use the semi-implicit Crank–Nicholson
time stepping to compute the diffusive flux due to the viscous term in (2.8). An important
aspect of the method is the numerical approximation of the surface tension force fσ . We
use the continuous surface force well-balanced formulation fσ = σκ∇c for (2.3), where
we discretise ∇c at cell faces with the same scheme employed to compute the pressure
gradient ∇ p. This is useful to reduce spurious currents provided curvature is accurately
computed, as explained by Popinet (2009, 2018). The interface curvature is computed
using a complex method described in Popinet (2009). When the grid resolution is
sufficient, second-order stencils based on height functions are used to compute curvature.
In some large-curvature cases the height functions are not defined and fits by quadratic
functions are used instead. Equations (2.9) and (2.10) are the projection steps that will
ensure continuity for the velocity field at time step n + 1. The mesh is adapted dynamically,
by splitting the grid cells to eight smaller cells whenever the estimated local discretisation
error exceeds a set threshold (see Appendix B). Details of the procedure can be found
on the web site basilisk.fr and, in particular, in the documented free code available at
http://basilisk.fr/src/examples/atomisation.c.

In all the data reported in this paper, the velocities are expressed in multiples of
the jet velocity U . All the numerical values for time are made dimensionless by
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τ0 = L0/(3U ) and all the reported lengths are made dimensionless by L0/3. However
in the theoretical discussions the dimensional values are used unless otherwise indicated.
To avoid confusion, we note with a ∗ exponent the dimensionless values, so that

t∗ = t/τ0 x∗ = 3x/L0 Δ∗ = 3(2−	). (2.11)

In addition to the aforementioned model and procedure, we implement the MD procedure
as described by Chirco et al. (2022). This procedure involves the following two primary
steps. (i) The identification of thin liquid sheets with a thickness of hc or less, achieved
through a local integration of the characteristic function c. This integration results in the
calculation of the signature of a quadratic form, based on the local main inertia moments.
(ii) The creation of holes within the so identified thin sheets, using a probabilistic
approach. This procedure is applied at a given frequency, defined by the user within
this method. From a physical standpoint, this technique aligns with the weak spot
model, wherein the likelihood of hole formation is exceedingly low for h > hc and
substantially increases, rapidly approaching certainty, for h < hc. Note that this procedure
distinguishes thin sheets from other shapes such as ligaments, only the thin sheets are
detected and perforated. The specific implementation of the MD method we used is
called the signature method. The complete MD code with the signature method can
be accessed at http://basilisk.fr/sandbox/lchirco/signature.h. In the present case, hole
punching is attempted every time interval of τm = 0.01τ0, that is, the raw dimensionless
breakup frequency is f̃ ∗

b = τ0/τm = 100. At these instants Nb = 200 holes are attempted.
We loosely term the pair of parameters ( f̃ ∗

b , Nb) the breakup frequency. The breakup
frequency chosen in this study is probably too high, as will appear in the discussion below.
However, it is chosen to maintain the same parameters as in other studies, and possible
improvements are discussed in the conclusion section. As we show in Appendix A, the
characteristic time for sheet thinning is τc given by

τc = D

U

(
ρl

ρg

)1/2

, (2.12)

where D is the jet diameter. From the definition of these quantities, we can obtain
the breakup attempt frequency in units of the sheet thinning characteristic time
fb = τc/τm , i.e.

fb = 3 f̃ ∗
b D

L0

(
ρl

ρg

)1/2

, (2.13)

that is, with the parameters of our simulation

fb = 50
3

(
ρl

ρg

)1/2

. (2.14)

The numerical value is fb � 87.9, ensuring that punching attempts are sufficiently frequent
as not to ‘miss’ transient thinning sheets. It is large enough to eliminate numerical breakup
events but is likely to be too high as discussed below.

Using this numerical method, we analyse the atomisation of a circular jet injected
at average velocity U in a gas-filled cubical chamber of edge length L0. We consider
incompressible, isothermal flow. The dimensionless groups most relevant for this problem
are the gas-based Weber number, the liquid-based Reynolds number and the ratios

W eg = ρgU 2 D

σ
, Rel = ρlU D

μl
, ρ∗ = ρl

ρg
, μ∗ = μl

μg
,

L0

D
, (2.15)
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Rel Weg ρ∗ μ∗ Ap ωp L0/D

5800 200 27.84 27.84 0.05 π /5 18

Table 1. The dimensionless numbers characterising our simulation. The Reynolds number Rel based on the
liquid is rather moderate. The density and viscosity ratios are identical, which implies that Reg = Rel .

where ρl and ρg are the densities of liquid and gas, respectively. The viscosity coefficients
are noted by μl and μg , and σ is the surface tension coefficient. The boundary condition
on the injection plane x = 0 imposes the no-slip condition everywhere except on the liquid
section (y2 + z2 < D2/4), where the injection velocity is

ux (t) = U
[
1 + Ap sin

(
ωpUt/D

)]
. (2.16)

On the remaining cube sides, we allow free outflow: ∂n uΓ = 0 and pΓ = 0.
The dimensionless parameters of our simulation are given in table 1. These numbers

are in the low range of the dimensionless numbers used in the above cited work. They are
much smaller than the numbers of the spray G case of the engine combustion network (see
Duke et al. 2017) used by Zhang et al. (2020). The Reynolds number and density ratio
are identical to those of Ménard et al. (2007) and of the same order as those of Herrmann
(2011). The equality of the gas and liquid Reynolds numbers stems from the fact that the
viscosity and density ratios are equal, so the ratio of kinematic viscosities is one. However,
while the moderate density ratio is realistic in the context of diesel jets, the viscosity ratio
is not and would be much larger in a realistic set-up, which would lead to much larger
values of Reg that are expensive to resolve by DNS. This motivates the choice of viscosity
ratio. We note that the same choice of equal viscosity and density ratios and moderate
Weg was made by Ling et al. (2017) who also studied atomisation and PDF convergence
in a simplified set-up. The Reynolds number is somewhat larger than that of Shinjo &
Umemura (2010) while the gas Weber number Weg is smaller than that of all the other
papers in the literature. The rationale for selecting such a small Weber number is twofold.
First the simplest prediction for the droplet size, based on the ratio of Bernoulli pressure
ρgU 2 to surface tension, is d = DW e−1

g . Indeed if a purely inviscid flow with a velocity
jump is considered, the cutoff wavelength for the Kelvin–Helmholtz instability scales as
DW e−1

g . The wavelength thus obtained is a natural scale for the subsequent formation
of sheets and ligaments. The number of grid points in the diameter of a droplet of this
diameter d is then We−1

Δ , where

W el = ρgU 2l/σ (2.17)

is the Weber number based on length scale l and Δ is the grid size. Similarly,

Ohl = μl(σρl l)
−1/2 (2.18)

is the Ohnesorge number based on scale l. The values of WeΔ for two of the grids we use
are given in table 2. We also give the value of the Ohnesorge numbers OhΔ and Ohhc ,
which characterise the interplay of viscous and surface tension effects. In particular, they
typify the regime of the Taylor–Culick rims (Song & Tryggvason 1999; Savva & Bush
2009) occurring at the edge of a sheet of thickness Δ or hc. The Oh number of the thin
sheets at the moment of hole formation is relatively large, implying a viscous Taylor–
Culick flow and the absence of unsteady fragmentation as in Wang & Bourouiba (2018)
and Kant et al. (2023).
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Level 	 D/Δ WeΔ OhΔ

11 114 1.75 0.137
15 1820 0.11 0.55

Table 2. Characteristic numbers related to the grid size. The level 	 is defined in (2.7).

MD level m D/hc Wehc Ohhc

12 227 0.88 0.194
13 455 0.44 0.27

Table 3. Characteristic numbers based on the critical sheet thickness in our simulations. The MD level m is
defined in the text.

The second important consequence of selecting the relatively small value Weg = 200 is
that it makes the simulation sit on the boundary between membrane type and fibre type
defined in Lasheras & Hopfinger (2000). Membrane type in that later paper refers to the
formation of bags and sheets. Thus, the prevalence of thin sheets discussed in this paper
may be less marked at higher Weber numbers, the sheets being replaced by fibres, and also
less important at smaller Weber numbers where the flow may be less unstable.

3. Results

3.1. Uncontrolled perforation: numerical sheet breakup
Figure 3 shows a global view of the jet evolution (see also supplementary movies 1–6
available at https://doi.org/10.1017/jfm.2025.218). The dynamics is initialised with a
slightly penetrated jet at t = 0. At t = 0.1, a mushroom-like structure starts rolling up.
The annular structure stretches and extends in the form of a ‘corona flap’ that develops
behind the mushroom head. A rim forms at the edge of this flap then detaches. It is visible
at t = 0.2 as a corrugated and partially fragmented annular ligament. As the jet evolves,
pulsation results in a periodic series of corona flaps seen at t = 0.8. These flaps interact
with the ligaments coming from the mushroom head. At t = 2, the jet has evolved further
and we can identify an interval in the core structure where the effect of pulsation is lost.
Several mechanisms of droplet formation like sheet rupture, ligament breakup and their
interactions with the jet core and corona flaps are seen. At t = 3, the jet is fully developed
and we see long axial ligaments with a marked velocity gradient made visible by the colour
change along the axis, circular ligaments, corona fingers merging and sheet rupture. A
large number of droplets and ligaments are produced in the mushroom tip region. Most of
the phenomena illustrated above are also observed with controlled perforation, except the
initiation of sheet rupture and annular ligament detachment.

Figure 4 shows a contrasting view of the jet with the camera direction aligned with
the jet axis and the view positioned at the inlet. A full evolution of the jet, as seen from
the inlet, is available in supplementary movie 6. In figure 4(a) the objects are coloured
by curvature, so small droplets are red and small bubbles, with negative curvature, are
blue. The bubbles have been trapped in the bulk or core of the jet or inside other liquid
masses. The likely mechanism for the formation of a bubble is liquid mass collision,
for example, droplets and wavelets of fluid mass impacting on the jet core. Many such
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t = 0.1 t = 0.2

t = 0.8 t = 2.0

t = 3.0

(a)

(c)

(b)

(d )

(e)

Figure 3. The advancing pulsed jet at various time instants t and level 	 = 14. The fluid interface is coloured
by the axial velocity and the background is coloured by the vorticity. The background also shows the mesh
refinement. (a) The pulsed jet develops a mushroom head and a rim. In (b) the rim detaches. (c) Development
of flaps coming from the sinusoidal pulsation. (d) A jet entering in a regime where the effect of pulsation is
lost at the mushroom head. (e) A fully developed jet and a rich spectrum of droplets and ligaments. Since Reg
is rather low at 5800, there is relatively little vorticity away from the interface unlike in the case of Kant et al.
(2023).

droplet or ligament impacts are seen in supplementary movie 1. A surprising aspect of
the display is the relatively large number of droplets and bubbles seen. In figure 4(b) the
objects are coloured by axial velocity, as with supplementary movies 1 and 3. A further
interesting aspect of this view is to show the large dispersion in the axial velocities of the
droplets.

At this point in the exposition it may be useful to define the number distribution and
the PDF and to recall the connection between the two. We consider a fixed instant of time
t0. We partition the interval of droplet sizes (0, dM ) into a discrete set of M intervals
[di , di+1 = di + δi ]. The index i varies from 0 to im . The intervals are geometrically
distributed, with di+1 = 1.047di , so log(di ) is evenly distributed in log space. The
number of droplets with diameter in the interval [di , di + δi ] is nd,iδi . The PDF p(d)
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(a) (b)

Figure 4. View from the inlet at time t = 3.04 showing the inner region of the central core liquid jet. Plot
(a) is coloured by the curvature showing the encapsulation of gas bubbles identified by the negative curvature
(blue) in the liquid core encircled in the black circle. The droplets have positive curvature (red). The entrained
bubbles travel with the core jet velocity and could also result in the formation of a few compound droplets
during atomisation or provide a physical breakup mechanism for thin sheets. Plot (b) is the same as (a) but
coloured by the axial velocity. The simulation corresponds to level 	 = 14 with the MD method applied at level
m = 13.

is proportional to the expected value 〈nd,i 〉 as

p(di ) = 1
N 〈nd,i 〉, (3.1)

where the normalising factor is

N =
M∑

i=0

〈nd,i 〉δi . (3.2)

We show two kinds of plots, one with the number N (di ) of droplets in each bin i , that is,

N (di ) = n(di )δi , (3.3)

and the other with the PDF p(d). Because of the difference between the definitions of N
(which is bin-size dependent) and n and p (which are both bin-size independent), there is
a scaling relation

N (d) ∼ d p(d) ∼ dn(d) (3.4)

between the two distributions. (We note that in the literature both n and N are reported with
the name ‘number distribution’.) The pulsed jet process is both deterministic (except for
the random character of sheet perforations) and transient, so the value of nd,i obtained at
t = t0 in a simulation is well defined. The expected value 〈nd,i 〉 differs very little from the
numerically obtained value nd,i . Moreover, in such a deterministic process no difference is
expected between two realisations, that is, two identical simulations should yield identical
droplet counts. On the other hand, in a jet with a random upstream injection condition
instead of a pulsed injection condition, the simulation is not deterministic and the value of
nd,i obtained in a simulation at some time t is fluctuating. The transient nature of the jet
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Figure 5. (a) The bubble size distribution for the image shown in figure 4. The number N is defined in (3.3).
(b) A 2-D histogram for the same image showing bubble size distribution on the transverse coordinates. The jet
is advancing in the x direction, which is the axial direction. The solid white circle is the inlet region. The curly
dotted white lines are drawn to highlight pale patches to indicate that some bubbles also exist outside the jet
core, indicating possible compound drops.

is also important. In a steady-state simulation (which should be obtained some time after
the jet starts flowing out of the simulation domain), initial perturbations are amplified
chaotically and the system is again probabilistic. Thus, our pulsating initial condition
simplifies somewhat the analysis by yielding a deterministic instead of a probabilistic
number density.

Figure 5 shows the number distribution of bubbles. The ordinate N is the number ni
of droplets defined in the text. We see that above the critical thickness, a distribution
N ∼ r−γ is seen. This distribution may have consequences in the sheet rupture and, hence,
the droplet-size distribution. We have discussed the physical implications of bubble size
distribution in Appendix A. In figure 5(b) we plot a two-dimensional (2-D) distribution of
the bubble size on a y–z plane. The white circle represents the inlet. The plot shows that
most of the bubbles are near the outer boundary of the jet core where we see wavelet
interactions and drop impacts the most (figure 3(c) and supplementary movie 1). The
distribution also shows eight characteristic high bubble-density zones. The occurrence
of these zones and what decides their number is beyond the scope of the current paper.
We also see some bubbles present outside the jet core encircled in dotted white lines. This
indicates that we do have a relatively small number of compound droplets.

We now discuss the statistical properties of the jet, in particular, the droplet-size
distribution in the case of uncontrolled sheet perforation or ‘no-MD’ case. As the jet
advances, the droplet-size distribution evolves. This is shown in figure 6. One can see
that the droplet-size distribution has started to converge at t = 1.8 and is approximately
converged at t = 2.8. The histogram thus only shifts in the vertical direction (the number
of droplets), while maintaining the same qualitative nature. This histogram is bimodal with
two peaks or local maxima. There is a large amplitude peak corresponding to a smaller
droplet size (referred to as peak 1) and a smaller amplitude one corresponding to a larger
droplet size (referred to as peak 2).

We investigate the statistical convergence of the droplet-size distribution by plotting
in figure 7 the histogram at t = 3.5 when the jet is fully developed. We plot various
grid resolutions or levels on that same figure. The highest resolution in the no-MD case
corresponds to the Δ14 line. This implies D/Δ = 920 grid points per initial diameter.
Figure 7 has two important characteristics: (i) the histograms at various resolutions are
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Figure 6. (a) The droplet-size number distribution (N is defined in (3.3)) and (b) the probability density
function of the droplet diameter (defined in (3.1)) at various time instants. The plot shows that the PDF has
converged in time t ∼ 2.5. This time convergence determines the choice of the end time of the simulation at
t = 3.5. Both (a) and (b) have 200 bins. The simulation corresponds to level 14 and the vertical dashed line
represents the grid size.
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Figure 7. (a) The droplet-size distribution and (b) the probability density function of the droplet diameter d
at the final time t = 3.5 for various grid resolutions. The grid sizes are shown with vertical dashed lines and
Δ	 is defined as in (2.7). The inset in (a) shows the converged tail region. All the plots are done with 200 bins.
A Pareto distribution N (d) ∼ d−2 is added to compare with the converged region of the distributions.

qualitatively similar, that is, bimodal with a major peak 1 at small scales and a minor peak
2 at large scales; and (ii) despite such high resolution, it is clear that there is no convergence
for the droplet-size distribution. However, the tail region of the distribution, to the right
of peak 2, shows some degree of convergence. In that tail region a Pareto distribution
n(d) ∼ d−2 is seen reminiscent of such distributions found in other contexts (Balachandar
et al. 2020; Pairetti et al. 2021). The dependence of the two peaks with the grid size
is shown explicitly in figure 8(b) where we plot the ratios di/Δ	 corresponding to the
peaks as a function of the maximum level 	. We observe that the ratio for peak 1, d1/Δ	,
remains constant around a value of 3, while for peak 2, d2/Δ	 weakly increases with 	.
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Figure 8. (a) Schematic of the bimodal droplet-size distribution. The arrows indicate the logarithmic distance
from the grid size log di/Δ = log di − log Δ. (b) The values of di /Δ as a function of the maximum grid
refinement level 	 for the distribution of figure 7. The dashed line is at 3Δ, implying the droplets at peak 1 have
a grid-dependent diameter of d1 ∼ 3Δ.

The grid dependence of these two peaks is synonymous with the absence of statistical
convergence. We discuss possible explanations for the behaviour of these two peaks below
and, in particular, the relation between peak 1 and the curvature ripples appearing just
before sheet rupture. We also discuss a mechanism and a possible scaling for peak 2 in
Appendix A. Since the grid dependence behaviour is maintained at all resolutions, the
constant scaling of the diameter d1 of peak 1 with the grid size implies that no matter how
much we refine the grid, the distribution of droplet sizes is grid dependent.

The mechanism leading to peak 1 is related to the perforation of thin sheets. This
perforation is observed to occur in two contrasted ways. A simple mechanism is the impact
of small droplets on the liquid sheet. The droplets are formed by breakup previously
occurring elsewhere in the simulation. The impacts yield in some cases the formation
of an expanding hole, as shown on figure 9. We note that such impacts have already been
observed in previous studies such as those of Ménard et al. (2007) and Shinjo & Umemura
(2010). Not all droplet impacts create perforations. In figure 9, at time t = 2.94, we track
the droplets indicated by arrows. We see that droplet impacts often create holes with a
characteristic finger-like ligament inside the hole. Impacts are shown by arrows at time
t = 3.10 in figure 9. In the lower panel at t = 3.12 and t = 3.14 some droplet impacts do
not result in holes but instead droplets merge with the sheet. This hypothesis was confirmed
by repeated observations of the sheets at various angles and by visioning supplementary
movie 5. The red arrow from t = 3.14 and t = 3.16 captures an interesting moment, where
the droplet impact and sheet rupture happen simultaneously and it is unclear if the hole
was created by the numerical rupture process discussed below or by droplet impact.

Another mode of thin sheet perforation, much more complex and purely numerical, is
illustrated on figure 10 as well as supplementary movie 5. The curvature colouring of
the interface helps us identify the perforation spots. We see high-frequency oscillations
of the curvature field in the form of alternating red and blue colours. These indicate that
the ripples originate at the fluid interface before the sheet rupture happens. Finally, at
t = 2.82, we see a dense network of small diameter ligaments, scaling with grid size.
Another mechanism that may contribute to peaks 1 and 2 is the rupture of ligaments, also
shown on figure 10. Small diameter ligaments have large curvature and are thus easily
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t = 2.94 t = 3.02 t = 3.10

t = 3.16t = 3.14t = 3.12

Figure 9. Droplet impacts on the frontal liquid sheet. The points of interest are indicated by the arrows. Droplet
impacts can result in holes with characteristic ligaments as seen at t = 3.10. In some cases droplets coalesce
into the sheet seen at t = 3.12 and t = 3.14. At t = 3.16, the sheet is ruptured but the droplet is still identifiable.
All simulations are for the maximum level 	 = 13. The MD method is not applied. The interface is coloured by
axial velocity. The artefacts or corrugated surfaces particularly visible at t = 3.02 and t = 3.10 at the top right
are not aliasing artefacts (due to an approximate isosurface interpolation) but are representative of the curvature
oscillations seen in the next figures.

identified by their colour. They break physically and not numerically by the Rayleigh–
Plateau instability. The origin of these ligaments themselves is often an expanding hole
whose rim collides into other rims.

We note that the high-frequency pressure oscillations are due in part to the use of the
height-function method to compute curvature. The height-function method ceases to work
when the sheet is too thin. However, other methods will also fail as represented in figure 1.
To investigate the small-scale ligament networks, we zoom around such a breakup event
in figure 11. We see that a weak spot develops and curvature ripples appear at t = 2.78
as soon as the sheet reaches a thickness of a few times the cell size, as shown in the
inset. These curvature ripples then give rise to ligament networks inside the expanded hole
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t = 2.70 t = 2.74 t = 2.82

Figure 10. Appearance and evolution of the curvature ripples on the interface. The interface is coloured by
the interface curvature. These ligaments are coloured a darker red and the interfaces on the thin sheets are
closer to white. Ligament rupture is encircled in blue. The rupture or ligament pinch off appears in a darker
red colour. Sheet rupture, encircled in green, displays curvature ripples in the form of red–blue oscillations.
At time t = 2.82, the green-circled rupture region displays a grid-dependent ligament network that has evolved
from these ripples. These images correspond to a level 	 = 14 simulation. (See also supplementary movie 5.)

eventually leading to the grid-dependent droplets. To summarise, as the sheet reaches a
thickness of order 3Δ, the rupture mechanism is as follows: thin sheet regions > curvature
ripples > ligament networks and tiny droplets (d ∼ 3Δ). Since this sequence of events is
inherent to the numerical breakup of thin sheets, it is impossible to escape its occurrence
by increasing the grid refinement, although refinement can delay it. The numerical sheet
breakup identified here is the direct cause of the lack of convergence of peak 1. Indirectly,
the formation of droplets and ligaments of a given size in a non-converged manner leads
to all the droplet size counts being unconverged as these other size droplets are formed
through coalescence and breakup events from the peak 1 droplets and similarly scaled
ligaments.

We also note that the point of view and region of figure 9 were selected to show a large
number of drop impact situations, which are however scarcer than the numerical breakup
of sheets.

To give an overall idea of the evolution of the jet, we show the fully evolved jet at
	 = 13 in figure 12 and the same fully evolved jet but at 	 = 14 in figure 13. The mist
of tiny droplets near the mushroom head and near the inlet flaps is more pronounced in
the 	 = 14 case than in the 	 = 13 case. The 	 = 14 case retains more large drops and
deformed ligaments at mid-length compared with the 	 = 13 case. The inset zoom shows
the numerical sheet rupture. The ligament network structure is more clearly seen at 	 = 14
than at 	 = 13.

3.2. Controlled perforation by the MD method
We now present the results of atomisation when we apply the MD method. Here we adopt
the following conventions.

(i) The octree maximum refinement level 	 defines the finest grid size as given in (2.7).
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Numerical curvature Velocity

20 cells Zoom

t = 2.78 t = 2.82

Figure 11. The fully developed jet at t = 2.8. The inset shows a zoom in at the sheet rupture spot showing
the curvature ripples in the weak spot about to be punctured and the resulting ligament network. This ligament
network eventually produces grid-dependent droplets. The simulation shown here is at level 	 = 14.

(ii) The MD level m implies that the critical thickness for punching holes is given by
hc = 3Δm .

As an example, the notation (	, m) = (13, 12) would mean that the finest cell
size in the simulation is Δ13 and the critical thickness at which holes are being
punched is hc = 3Δ12 = 3 × (2Δ13) = 6Δ13. This convention for the definition of the
‘MD level m’ maintains consistency with the comments in the code available at
http://basilisk.fr/sandbox/lchirco/signature.h.

The extent of the integrated region in the quadratic form computation leads to the
correspondence hc = 3Δm . The overall evolution of the jet shows important variations
with the no-MD case. Comparing figure 14 MD (14, 13) to figures 12 (	 = 13) and 13
(	 = 14), we note that (i) the mist of tiny droplets near the mushroom head has disappeared
in figure 14, (ii) the mushroom-head corona-flap sheet is more affected by holes and
breakups and is closer to figure 13 	 = 14 than to figure 12 	 = 13, (iii) the cloud of
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t = 3.03

Figure 12. The fully developed jet at t = 3.03. The inset shows a zoom in at the sheet rupture spot showing
the curvature ripples in the weak spot about to be punctured. The simulation shown here is at level 	 = 13.

droplets at mid-length is similar to both no-MD cases but is more uniform and closer
to the figure 12 	 = 13 case.

Figure 15 shows the evolution of the PDF of the droplet-size distribution with time.
Similar to the no-MD plots, we see that here also the statistics are converged in time as
soon as t = 2.5. When compared with figure 7, we see that the peak corresponding to the
smaller droplet size has a smaller amplitude.

We show the number density n(d) in figure 16. Figure 16(a) shows the histograms
at various grid resolutions for a fixed MD threshold hc = 3Δ12. The distribution is
again bimodal, but the peak corresponding to the smaller droplets is weaker. We also
observe a clear converged region in the interval [dc, dim+1), where dc is the minimum
converged equivalent droplet diameter or ‘converged diameter’ for simplicity. The extent
of the converged region increases, that is, dc decreases as the grid size Δl decreases. In
figure 16(a) the vertical line marks dc for two consecutive grid sizes. We have shaded the
onset of the non-converged region between two consecutive grid refinements for clarity.

In practice, the ‘converged diameter’ dc is determined from the comparison of a pair of
distributions from simulations of two different grid sizes Δl . We note this pair Δl1 − Δl2 .
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t = 3.00t = 2.99

t = 3.01

t = 2.98

Figure 13. The fully developed jet at t = 3.01. The inset shows a zoom in at the sheet rupture spot showing
the curvature ripples in the weak spot about to be punctured. The simulation shown here is at level 	 = 14.

In figure 16(a) the orange vertical line marks dc for the pair {Δ14 − Δ13}. Similarly, the
purple vertical line marks dc for the pair {Δ15 − Δ14}. Some additional information may
be obtained by investigating a no-MD case. In such a case, there is a typical sheet thickness
at breakup he that is comparable to the controlled breakup for hc � he. Indeed, the critical
breakup film thickness he for no-MD is he � 1.5Δ, Then the above case hc = 3Δ12 with
MD has a critical sheet thickness equal to, per expression (2.7), he = 1.5Δ11 in the no-MD
case at level 11. Thus, the no-MD simulation at 	 = 11 is a rough equivalent to the three
simulations with MD level m = 12. The vertical black line is the converged thickness dc for
the pair {Δ13, Δ11} where the first simulation is MD and the second is no-MD. One sees
on figure 16(a) that the converged diameters, indicated by the solid vertical lines, decrease
and tend to approach the critical sheet thickness hc for MD breakup, represented by the
dashed vertical line. We now show the droplet-size distribution and converged region for
a smaller critical sheet thickness hc = 3Δ13. In figure 16(b) we see similar results but with
only two instead of three levels, l = 14 and 15. Since a simulation at Δ15 is already quite
expensive (it implies an equivalent of 35 trillion cells for a uniform grid with Δ15), we did

1009 A35-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218


Y. Kulkarni, C. Pairetti, R. Villiers, S. Popinet and S. Zaleski

Figure 14. The (14, 13) jet at t = 3.1 with MD applied. The basilisk level 	 = 14 and MD level is 13. The
insets and the boxes indicate droplets that are near the maximum size of the distribution in the converged

region.

not perform a third simulation at l = 16 in that case. A zoomed-in view for the converged
region dc for each consecutive pair is shown in Appendix E.

The closely packed peaks around log(d) = −3 in figure 16(a), mostly visible for
(	, m) = (15, 12), are related to a process that produces a narrow spectrum of small
droplets of size d̄ with Δ15 < d̄ < hc. These small droplets coalesce at least two or three
times to produce additional small droplets of size 2d̄, 3d̄ , etc. We are unsure of the
mechanism producing these initial droplets of well-defined diameter d̄ and why it appears
most clearly for the pair (15, 12).

The variation of the converged diameter dc as a function of hc and Δ	 is shown explicitly
in figure 17. Figure 17(a) illustrates schematically how the converged diameter approaches
hc as Δ	 is reduced. Figure 17(b) shows the data in the dc/hc, hc plane. Each data point in
that plane corresponds to a simulation pair discussed above such as {Δ14 − Δ13}, and to
a vertical line in figure 16. Following a vertical line in figure 17(b), one can see dc tending
to hc as the grid is refined for a fixed hc.
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Figure 15. The probability density function at various times t for the droplet-size distribution when MD is
applied. The PDF has converged in time at t = 2.5. (a) The PDF at maximum level 	 = 13 and MD level
m = 12 and (b) the PDF at maximum level 	 = 14 and MD level m = 12. The critical hole punching thickness
hc = 3Δm=12 is shown as the black dashed line and is the same for both plots.

Figure 18 shows a zoom in at a hole expansion that was initiated by the MD method.
The phase modification region is a cube but in less than 5–10 time steps the hole takes
a rounded shape due to surface tension and starts expanding. When these holes expand,
we do not see the noisy curvature ripples that resulted in grid-dependent droplets in the
no-MD simulation of figure 11. This qualitative improvement in sheet collapse helps to
obtain grid convergence.

The MD procedure we use is tuned to a relatively large frequency of hole formation.
This results in features such as those shown in figure 19. We see that once we detect a
thin sheet and the MD process generates holes, these expand. However, it often happens
that before the holes have expanded over the entire sheet more holes are punched just
outside the rim. These kind of holes are identified as black circles in figure 19. This effect
is also seen in supplementary movie 4 that shows the evolution of thin sheets with MD.
Experimental photographs and the reasoning in Appendix A point to a smaller number of
holes. This smaller number could be achieved by an improved MD algorithm that would
involve a more realistic model of the physical process of hole formation.

The final result of our manifold-death-enhanced study of droplet sizes is summarised
on figure 20. In this figure we select two distributions of droplet sizes at two MD levels,
m = 12 and m = 13, and we keep the ratio of the grid size to the MD threshold hc/Δ	

constant so the level difference is always 	 − m = 2. The two obtained distributions are
similar to each other, with a sudden increase in droplet number at the edge of the converged
region. Moreover, these plots show that a sufficiently thin grid produces a bump-shaped
distribution with a clear maximum (this is the case at m = 13 but not at m = 12). This
maximum is located at dmax/D = 4.3 10−2 in our case. It is interesting to try to understand
the origin of this bump. By dimensional analysis the maximum should be expressed as

dmax = D f (hc/D, N1, . . . , Nn), (3.5)

where the Ni are the dimensionless numbers of the problem other than hc/D. It is quite
tempting to assume that in some range of hc/D and of the dimensionless numbers a
proportionality relation holds. From the existing data it would be

dmax = 4.3 hc. (3.6)

1009 A35-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218
https://doi.org/10.1017/jfm.2025.218


Y. Kulkarni, C. Pairetti, R. Villiers, S. Popinet and S. Zaleski

N

N

103

Δ13 – ΔMD = 12

Δ14 – ΔMD = 13

Δ15 – ΔMD = 13

Δ12

Δ14 – ΔMD = 12

Δ15 – ΔMD = 12

hc = 3ΔMD = 12

hc = 3ΔMD = 13

Δ11
102

101

100

–4 –3 –2 –1

103

102

101

100

–4 –3 –2

B

B

A

A

–1

log10 d

log10 d

(a)

(b)

Figure 16. The droplet-size distribution from simulations using the MD method. Each curve is labelled
Δ	 − ΔM D=m , where 	 is the grid level and m is the MD level. The dashed black vertical line represents
hc = 3Δm , that is, the critical thickness of punching holes. The solid vertical lines indicate the values of the
converged diameter dc, corresponding to the smallest diameter above which the difference between subsequent
distributions is not significant. All curves in (a) have fixed hc = 3Δ12 and all curves in (b) have fixed hc = 3Δ13.
Note that the Δ11 curve in (a) and the Δ12 curve in (b) indicate the no-MD method and roughly correspond to
respectively hc = 3ΔM D=12 and hc = 3ΔM D=13, given the breakup due to a lack of sheet resolution in VOF
simulations. The shading highlights the departure from the converged region. We see that dc approaches hc as
the grid size is reduced. The inset shows the important change in the typical sizes of droplets in the first peak
above hc as MD is applied. Peak A corresponds to peak 2 in the no-MD distributions of figure 7 while peak B,
with much smaller droplets, corresponds to droplets seen in the MD figure 14.
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Figure 17. (a) Schematic of the comparison of two simulations and how it allows us to define the ‘converged
diameter’ dc. It is seen that dc approaches hc as the simulations are refined. (b) Plot of dc/hc versus hc
corresponding to the dc values of figure 16. Along a fixed hc, the dc/hc points move closer to unity as the
maximum level is increased. The black squares corresponds to the no-MD case, while all circles are for the
cases with MD.

t = 3.01

t = 3.02

t = 3.03

t = 3.04

t = 3.02

t = 3.03

t = 3.04

Figure 18. Sheet perforation when the MD method is applied. Unlike figure 11, the holes are not preceded
by large regions containing curvature ripples. Holes are punched at t = 3.01 and expand with time as shown.
The interface in the left part is coloured by curvature and on the right is coloured by the axial velocity. The
simulation shown here corresponds to (	, m) = (14, 13).

We note that this is to our knowledge the only example of a converged bump-shaped
(unimodal) distribution in simulations of jet atomisation at a large Weber number. We
attempt to fit this bump shape to standard distributions in the literature, namely the gamma
and the log-normal. Both distributions are acceptable in the large d range, above 0.005, as
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t = 3.06 t = 3.07 t = 3.075

Figure 19. Further evolution of the holes of figure 18. The image is coloured by axial velocity. We see that
near the rims of the main expanding holes, additional holes are punched, encircled in black. (Manifold death is
applied.)
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Figure 20. Two distributions of droplet sizes at two MD levels, m = 12 and m = 13, with the same ratio of
the grid size to the MD threshold hc/Δ	. We only plot the converged region, that is, d > dc(hc). The most
refined simulation (l, m) = (15, 13) yields a distribution somewhat but not exactly similar to the less refined.
Both distributions show a sudden increase in droplet number (a ‘ridge’) as the droplet size is decreased at
the edge of the converged region. The vertical line shows the limit of convergence dc. Plot (a) shows the un-
rescaled number distribution, while plot (b) shows the PDFs. Plot (a) is clipped to show the PDFs p(d) for
d > dc(m = 12), where dc is the edge of the converged region for m = 12. The Pareto distribution n(d) ∼ d−2

is also plotted.

seen in figure 21. The fitting distributions are defined as follows:

Log-normal: P (x; μ, σ) = 1

xσ
√

2π
exp

[
−1

2

(
ln(x) − μ

σ

)2
]

, (3.7)

Gamma: P (x; α, β) = βα

Γ (α)
xα−1exp (−βx) .

4. Conclusions
We have studied an atomising, pulsed round jet at a succession of grid sizes with
unprecedented resolution. Visual inspection of the resulting interface topology reveals a
new numerical phenomenon preceding hole formation in the VOF method: high-frequency
curvature oscillations followed by the appearance of a small-scale network of ligaments.
While the experimental observation and theoretical analysis of droplet formation by
expansion of holes is not new, this is the first time that these high-frequency oscillations
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Figure 21. Same as figure 20 but with a linear abcissa and a fit to gamma and log-normal distributions.

of curvature are observed in VOF simulations. The inspection of droplet-size frequency
distributions reveals the presence of two large peaks tied to the grid size. It is clear that the
small-d peak and probably the second one are related to the unphysical breakup.

To mitigate this effect, we apply the MD procedure of Chirco et al. (2022). The
procedure forces hole formation when sheets reach a set thickness hc. Number frequency
plots show convergence in a range of droplet sizes starting at a critical diameter dc.
The extent of this converged range increases when either the grid size Δ	 or the critical
thickness hc are decreased. For a fixed hc, when we reduce Δ	, the converged diameter dc
approaches the critical thickness hc. We thus recover the convergence properties observed
by Chirco et al. (2022) and by Tang et al. (2023). We characterise them in the hc–dc
plot of figure 17(b). We note that the statistical accuracy is much stronger in the present
case since our pulsed jet produces three orders of magnitude more droplets than the phase
inversion case of Chirco et al. (2022). We do not have a definite explanation for the lack
of convergence below the diameter hc, that is, we are not sure why dc does not decrease
below hc as Δ	 is decreased. We can however offer several avenues for improvement of
this feature and for future exploration. One is the smoothness of the MD procedure itself
and the choice of its parameters such as the number of holes punched or the punching
frequency 1/τm . For the first time in VOF simulations of atomisation, a bump-shaped,
converged droplet-size distribution is obtained. Even without convergence, bump-shaped
distributions are harder to obtain in VOF simulations than in level-set or diffuse-interface
simulations where they are common (Herrmann 2010; Khanwale et al. 2022; Saurabh
et al. 2023), because these two other methods tend to ‘evaporate’ small droplets, as shown
on figure 1. A scaling relation for the position of the bump is suggested. The bump only
appears at the highest level. Whether the proposed scaling (3.6) for the bump would persist
if yet more refined simulations are performed is an interesting open question.

Beyond the physics of hole formation and expansion, the simulations reveal a rich
spectrum of elementary phenomena that are the building blocks of atomisation. These
include networks of well-resolved ligaments in and around holes, ligaments detached from
the main liquid core and either aligned or at an angle with it, bubbles trapped in liquid
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regions, droplets impacting on sheets, etc. This rich physics is seen in increasing detail
as grid resolution is increased. For example, the sharpness and apparent realism of the
various expanding holes, with attached ligaments or networks of ligaments inside, was not
seen in previous simulations, for example, in Ling et al. (2017). Moreover, a large number
of each type of object or ‘building block’ are visible at each instant of time, leading to
more significant and converged statistics.

A tantalising question is that of the physical, as opposed to numerical, origin of the
perforations. We attempt some discussion of this issue in Appendix A. Two types of rate
processes for heterogeneous nucleation are postulated, one based on in-sheet germs or
nuclei, such as small bubbles, the other on external perturbations such as floating droplets
or particles. Our simulations do not allow us to decide at present between these two
processes for hole formation. However, they may in the future helpus to understand how
to discriminate between them.

Unlike most of the other round-jet simulations in the literature, ours is bimodal and even
trimodal after the application of MD. It seems however that a single mode emerges in the
converged range of the best resolved MD simulations, indicating that the appearance of
a maximum of droplet size well in the converged region is possible only if the physics
is correctly captured down to scales much smaller than the integral scales such as the jet
diameter D.

Another important characteristic of simulations and experiments are the state of the
fluids at the inlet. The primary mixing-layer instability in our simulations is initiated not by
upstream turbulence, as in most round-jet simulations in the literature, but by a pulsating
flow. In future investigations it would be interesting to compare the visual aspects of the
fragmenting interface as well as number distributions and PDFs, between simulations with
or without noisy/turbulent inflow conditions.

The other perspectives opened by this work are numerous. Clearly, simulations of
comparable quality at a higher Weber number may allow investigation of the ‘fibre-type’
regime observed in many experiments. Currently, our simulations sit on the boundary
between membrane type and fibre type. Simulations of comparable resolution should
also be performed in the planar mixing-layer case investigated experimentally by the
Grenoble group (Ben Rayana et al. 2006; Fuster et al. 2013) and numerically by Jiang
& Ling (2021). The latter authors performed very high resolution simulations with hole
formation and interestingly obtained a bimodal distribution, but they did not apply a
controlled perforation scheme as in this paper. Simulations of secondary atomisation,
that is, the atomisation of a droplet suddenly plunged in a high-speed flow, has already
been performed together with controlled perforation by Tang et al. (2023) achieving
convergence of the PDF. The secondary atomisation case is probably the most promising
for an eventual comparison of the distribution of droplet sizes obtained by simulation with
the rich experimental data reviewed and modelled, for example, by Jackiw & Ashgriz
(2022).

More distant perspectives or more difficult problems remaining to solve are in our
opinion twofold. One is clearly the improvement of the MD procedure, to have a better
control of the number of holes punched in each thin sheet region, and a smoother manner
to ‘cut out’ the initial hole. The breakup frequency and number of attempted breakups
were chosen in a rather arbitrary way. These values are too high as shown above. An
adequate breakup frequency would correspond to smaller values of fb and Nb. A caveat
is however that if the breakup frequency ( fb, Nb) is too low, some bags may escape MD
and breakup numerically. An expensive trial-and-error procedure could be attempted to
tune the breakup frequency. Another avenue of improvement would be to modify the
MD method to perform an analysis of the bag region to identify the connected thin
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sheet regions. Then a controlled number of perforations could be performed in any of
these regions. This controlled number of perforations per thin region could be inspired by
experimental observations or by a theory such as the one in Appendix A. A final, intriguing
possibility is that if a level-set or diffuse-interface method is used in conjunction with MD,
and the frequency is on the low side, numerical breakup will be avoided in the regions that
would not be sufficiently perforated because of the low frequency. There would still be
mass loss because of the evaporation of thin sheets, but no curvature oscillations nor an
excessive number of small droplets scaling with grid size.

Another challenging future task is to use this type of simulation to infer, by careful
matching of simulation results and experiments, the physical mechanisms for weak spots
and sheet perforations. Given the wide variety of such mechanisms that have been
advanced, this is a formidable enterprise for which we hope this paper could provide partial
guidance.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.218.
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Appendix A. A phenomenological theory for hole nucleation and expansion
In what follows we describe hole nucleation and expansion as a random process. Its
consequences on ligament size are given based on the hole nucleation rate in a manner
independent on the exact physical mechanism of nucleation. An analogy between this
description and the Kibble–Zurek theory is made.

In atomisation processes, sheet rupture may have several causes. Without deciding
between these causes, we distinguish two mathematical forms of the hole forming process
(Villermaux 2020). In one it is in-sheet germs or nuclei, such as small bubbles or small
droplets of an immiscible liquid (Vernay et al. 2017) that create the holes. In the other one,
external nuclei such as floating droplets, particles or hot puffs are the cause of perforation.
The probability of punching a hole per unit area of thin sheet can be written to model both
processes as

dP =A(h)dt +B(h)dh. (A.1)

Here A(h)dt is the probability that an external object that would be able to punch a hole
in a sheet of thickness h actually hits the sheet during the time interval dt , while B(h)dh
is the probability that an in-sheet heterogeneity is present that will nucleate a hole while
the sheet thins from h to h − dh. In our present study we do not have external objects
such as solid particles, but we still have holes appearing due to the drop impact. Thus,
in our simulations, the atomisation driven by drop impact is mostly contained in A(h),
while those appearing due to numerical perforation of sheets are contained in B(h). Our
simulation captures an overall picture and it is difficult to isolate the effect of any one of
the two. In the MD method, we focus on tuning the hole appearance due to the in-sheet
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heterogeneity part having a simplistic model for B(h) as a step function with critical size
being hc. However, in fluids, heterogeneities such as bubbles do not have a single size but a
distribution of sizes, and correlations obtained experimentally may be obtained that yield
nb(r) (Brujan 2010) such that nb(r) dr is the number of bubbles with size between r and
r+dr per unit volume. The number of bubbles between r and 2r then scales like nb(r)r
and the average distance between such bubbles is l1 = [rnb(r)]−1/3. A natural requirement
is that this distance between bubbles is much larger than their radius. Then one must have
[rnb(r)]−1/3 	 r . Since we probe the distribution at length scales r ∼ h that are relatively
small, it makes sense to require that nb(r) 
 r−4 in the limit of small r . A simple model
for the distribution of nuclei or number of nuclei per unit volume is

nb(r) ∼ cnr−γ , (A.2)

where γ is an exponent to be determined by measurement and cn is a constant. By the
requirement above the exponent γ < 4 and indeed Gavrilov (1969) found γ � 3.5 while
measurements by Shima & Sakai (1987) give γ between 2 and 4. As a result, the volume
fraction r4nb(r) of bubbles between r and 2r vanishes at small r . Now suppose that
bubbles of radius r are the cause of weak spots in a sheet of thickness r . Then from (A.1)
the probability of ‘in-sheet’ nucleation in a region of extent λ2 while the sheet thickness
decreases from h to h/2 scales like B(h)hλ2. This nucleation is caused by small bubbles
in the volume λ2h then B(h)hλ2 = nb(h)λ2h2, and the ‘in-sheet’ nucleation probability
per unit area is just

B(h) = nb(h)h. (A.3)

The typical distance λ between weak spots in a sheet of size h thinning to h/2 is given by
the condition that the expected number of weak spots in area λ2 is one, which reads

nb(h)λ2h2 ∼ 1. (A.4)

Then
λ

h
∼ (nb(h)h4)−1/2 ∼ h−2+γ /2, (A.5)

so for 2 < γ < 4, one has λ	 h, while λ still tends to vanish at small h. The distance
between holes λ is much larger than the thickness of the sheet but is still small compared
with the total size of the sheet. We shall call L the total size of the sheet so the above reads
L 	 λ. In other words, the holes are rather numerous in each sheet.

This is not what is observed in experiments, for example, by Kant et al. (2023), and one
instead seems to see one or two holes per sheet. To resolve this contradiction, one must take
into account the speed of expansion of the holes that form during sheet thinning. Indeed,
expansion of the holes brings the process of hole formation to a halt after a short time τ1
that we determine below. We can now give a physical meaning to the critical thickness hc
in the MD algorithm. The expected value of the number of nucleations in a thin sheet of
area L2 while the sheet retracts from hc to hc/2 is

N0(hc) = L2
∫ hc

hc/2
B(h)dh ∼ h2−γ

c . (A.6)

The critical thickness hc is then that for which

N0(hc) ∼ 1 (A.7)

is of order unity. Independently of the above prediction for B(h), and only on the basis of a
model where the nucleation probability increases as h(t) decreases, it is possible to predict
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the effective number of holes that will be observed. First consider the typical size L(t) of
an expanding bag. Experimental observations (Opfer et al. 2014; Kant et al. 2023) show
that bags inflate exponentially. We consider only large-scale bags governed by the large-
scale properties of the flow that thus inflate at a rate ω = 1/(2τc). Then L(t) ∼ L0 exp(ωt)
and the bag thickness decreases as

h(t) ∼ h0e−t/τc . (A.8)

Theory and experimental observations (Villermaux & Bossa 2009; Opfer et al. 2014;
Marcotte & Zaleski 2019; Kant et al. 2023) indicate the scaling

τc ∼ D

U

(
ρl

ρg

)1/2

. (A.9)

Once weak spots are activated in such a bag they expand at the Taylor–Culick velocity
(Taylor 1959; Culick 1960)

VT =
(

2σ

ρlhc

)1/2

. (A.10)

If N holes are activated in a typical bag of size L , the average distance between hole nuclei
positions scales like λ= L N−1/2. This distance is covered by the expanding hole edges in
a time τ1 = λ/VT and

τ1(N , h) = L N−1/2
(

2σ

ρlh

)−1/2

. (A.11)

We now distinguish between two extreme cases. In the first case τ1(1, hc) 
 τc. This
means that after the first hole has formed, it will expand to the whole bag size before
the sheet has significantly thinned. During the expansion of that first hole, h will vary
from the initial thickness noted h0 to h0e−τ1/τc � h0 − h0τ1/τc and the expected number
of other holes that could form during that time is

N1(hc) = L2
∫ h0

h0−h0τ1/τc

B(h)dh � N0(hc)τ1/τc, (A.12)

and from (A.7) we obtain N1(hc) 
 1, that is, the expected number of additional holes is
much less than one, which means that in practice typically a single hole will be observed.
Another way of deriving this result is to say that the hole expansion time is much shorter
than the hole nucleation time. In the opposite extreme, the hole expansion time for a
single hole is much longer than the hole nucleation time. One then needs to consider the
expansion time τ1(N ) for a large number of holes N . At this point it is useful to borrow
an argument from the theory of bifurcations or instabilities in time-varying environments.
The Kibble–Zurek theory (Kibble 1976; Zurek 1985) argues that the time scale of the
environment variation is equal to the time scale of the growth of the instability. We thus
argue that the multi-hole expansion time τ1(N ) scales like the characteristic bag expansion
time τc, that is,

τ1(N ) = τc. (A.13)

To obtain this rule, consider how nucleation occurs as time progresses from the first
perforation at time t0 to a time where most of the surface is covered by expanded holes. At
first the nucleation rate is near the threshold given by (A.7). As time progresses, previously
nucleated holes expand and the thickness decreases. The decrease in thickness implies a
higher nucleation rate since B(h) increases as h decreases. Hole density increases and the
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typical distance λ(t) between holes decreases. When λ(t) becomes of the same magnitude
as the distance covered by the expanding rims, one has λ(t) ∼ VT (t − t0) and the process
stops with t − t0 ∼ τ1(N ). Since we are in the second extreme case N 	 1, the hole density
and nucleation rate have increased considerably from that at t0, which means that the sheet
thickness has decreased significantly. A significant decrease of the sheet thickness requires
a time of order t − t0 ∼ τc, hence, (A.13). Then from the balance of time scales (A.13) the
number of holes in a bag of size L can be obtained as

N1(hc) ∼ hcρg L2U 2

D2σ
. (A.14)

There is a degree of uncertainty for the ratio L/D, however, L and D are both integral
scales of the turbulent flow and can be considered of the same order of magnitude.
(We disregard the possible case where eddies of smaller scale than the integral scale of
turbulence are sufficiently energetic to generate smaller-scale bags.) The number of holes
per bag in this mechanism is then the ratio of two typically large numbers, D/hc and
Weg . Equation (A.14) is valid in the second extreme case when the right-hand side is much
larger than unity. A very rough extrapolation between the two extreme cases is then

N (hc) ∼ Max [1, N1(hc)] . (A.15)

In most cases one expects L to be of the same order of magnitude as D, which leads to the
simplified prediction

N1(hc) = W ehc , (A.16)

where W el = ρglU 2/σ . Table 2 gives some typical values for W ehc and W eΔ, allowing a
prediction of the expected number of holes in the corresponding simulations. We note that
the estimate above is only based on the assumption that B(h) increases as h decreases and
does not depend on a specific model such as the distribution of bubbles (A.2).

A more sophisticated model of the number of holes can be obtained as follows.
Considering the time τ2(N ) taken by the rate of nucleation B(h) to increase from the
initial rate, producing a single hole N0 ∼ 1, to the final nucleation rate, producing a large
density of holes, the final number of holes N (h f ) is given by

N (h f ) = L2
∫ hc

h f

B(h)dh. (A.17)

Then

N (h f ) ∼ L2[(h/hc)
2−γ ]hc

h f
(A.18)

and

N (h f ) ∼ L2(h f /hc)
2−γ . (A.19)

On the other hand, using (A.8),

h f = hce−τ2(N )/τc , (A.20)

where, for simplicity, we write N for N (h f ). Hence,

N ∼ L2e−τ2(N )(2−γ )/τc , (A.21)

and thus,

τ2(N ) = τc ln N

γ − 2
. (A.22)

1009 A35-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218


Journal of Fluid Mechanics

Figure 22. A schematic view of how expanding holes in a thin sheet merge into ligaments.

Here we use again an equality of time scales assumption so that τ1 ∼ τ2 and (A.13)
becomes

τ1(N ) = τc ln N

γ − 2
. (A.23)

This brings a γ -dependent and logarithmic correction to the prediction (A.13) and, hence,
to (A.14).

Beyond the number of holes, another interesting prediction is that of the final size
of ligaments obtained from hole expansion. There are at least two possible regimes for
hole expansion, either unsteady fragmentation or smooth expansion. In the unsteady
fragmentation regime the advancing rims bordering the expanding hole continuously
shed small droplets (Wang & Bourouiba 2018). In the smooth expansion regime, the rim
advances without shedding droplets and volume is conserved. At the end of expansion
a network of ligaments of diameter δ is formed, as schematised in figure 22 and shown
numerically by Agbaglah (2021). The number of ligaments is of the same order as the
number of holes N and their length is of order of the diameter of the hole at the end of
expansion λ. The volume of ligaments is equal to the initial sheet volume so that equating
the initial and final volumes

Nπλ2hc/4 ∼ Nπ2λδ2/4, (A.24)

from which we can deduce the ligament diameter

δ ∼√
hcλ. (A.25)

On the other hand, the number of holes is related to λ by

N1 = L2

λ2 . (A.26)

Then using (A.14) and (A.26) we obtain

δ ∼ h3/4
c L1/4. (A.27)

It is possible, although this is a purely heuristic guess, that the second peak observed in the
simulations with uncontrolled sheet perforation is caused by the breakup of this type of
ligament into droplets. To obtain a simple scaling, we consider L � D and hc � Δ when
sheet perforation is uncontrolled. The Rayleigh–Plateau instability of the ligament will
yield d2 ∼ δ for the second peak. One then obtains

d2

Δ
∼ Δ−1/4. (A.28)

When plotted alongside our numerical data (figure 8b), a fair agreement is obtained.
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 Before rupture 

 After rupture 

Figure 23. Thin structure detection and MD perforation in an example 2-D case. The cells tagged as a thin
structure at the MD level are filled with a red colour. The upper image corresponds to the fluid structure right
before perforation when a thin sheet is detected and the lower part shows the fluid structure after perforation.
Note that the images are atthe same time stamp to explicitly show the perforation process. The image is done
for case (	, m) = (9, 8). Adaptive mesh refinement can be seen inthe background.

Appendix B. Grid adaptation
As discussed in the main text, the mesh is adapted dynamically, by splitting the parent
cells whenever the local discretisation error estimated by a wavelet approximation exceeds
a threshold. This threshold is set at εc = 0.01 for the error on the volume fraction variable
c and to εu = 0.1 for the error on the velocity field. To investigate the influence of the
relatively large error level on the velocity, we plot the histograms of droplet sizes at
various error thresholds in figure 24. In that figure it is seen that although the total number
of droplets changes significantly when εu decreases from 0.1 to 0.01, the position of the
relative maxima and, hence, the typical droplet sizes vary relatively little. It is interesting
to illustrate how grid adaptation interacts with ligament detection and perforation in the
signature and MD methods. The signature method (Chirco et al. 2022) typifies the phase
distribution with an index is . This index is is determined by the signature of the quadratic
form of Chirco et al. (2022). In summary, is can take four values. The index is = −1
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Figure 24. The droplet-size frequency for maximum level 	 = 13 and no MD at various error thresholds for
the velocity.

designates a gas phase, the index is = 2 designates a liquid phase while the index is = 0
designates an interface. The fourth value that the index takes is is = 1, which designates
a thin film region. Note that this detection is performed at the MD level and is later
prolonged to the maximum level. Moreover, the thin structure detection procedure acts
without affecting the existing mesh refinement. Hence, the mesh refinement is controlled
only by the thresholds on the volume fraction and velocity field and in no way depends on
the thinsheet detection procedure. We illustrate the process of controlled sheet perforation
using the MD method in figure 23. We see that we have detected a thin region (red) in the
upper image and a part of this region is eventually punctured in the lower image.

Appendix C. Estimates of the mass loss due to the MD
In the MD method we artificially punch holes in thin structures. This results in some fluid
disappearance and, hence, mass loss. Here we give an estimate of the mass loss for the
case (l, m) = (14, 13), that is, the simulation corresponding to the red line in figure 16(b).
Figure 25(a) shows how the total mass behaves as a function of time. It is a linear rise in
time with a tiny sinusoidal pulsation caused by the injection condition. Since we punch
holes in these structures every t+=0.01, a tiny decrease from this linear rise is expected
every +=0.01 interval. The inset zoomed at t = 1.35 shows this decrease in mass. The
decrease is so small that it is not visible on the scale of the outer plot. To quantify this
decrease, we calculate two quantities illustrated in the schematic of figure 25(b). The

M is the difference in the total mass at the time stamp just before punching a hole
and the time stamp just after punching the hole. The plot as a function of time is shown
in figure 25(c), where the 
M values are indicated every t+=0.01. Note that as mass
is constantly being injected, this implies that the number of thin structures will increase
with time and, hence, the 
M is seen increasing with an oscillating behaviour. To get a
non-dimensional estimate, we calculate the DIFF defined as

DI F F = 2M(i) − M(i − 1) − M(i + 1) (C.1)

(see also the sketch in figure 25b) and calculate the percentage mass loss as

Mass loss (%) = DI F F

M[i] × 100. (C.2)
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Figure 25. Estimates of the mass loss with MD performed at levels (	, m) = (14, 13). (a) Total mass as a
function of time. Inset shows the tiny droplet at time t = 1.35 due to artificial punching of thin structures every
t+=0.01. (b) Schematic of the data points and the procedure to estimate the mass loss. The value at i represents
the mass just before punching the holes and the value at i + 1 represents the value just after punching the holes.
Here 
M and DIFF are used to do mass loss estimates. Panel (c) shows 
M at every t+=0.01. (d) Mass loss
in percentage calculated as (DIFF/M[i]) × 100 and the red line is the best fit line done for t ∈ (0.8, 1.4).

The rationale of using DIFF over 
M is that since we are injecting some liquid
constantly, we want to estimate how the mass differs not only from the value just before
punching holes but from the expected value that it was supposed to have. The percentage
loss is shown in figure 22(d), where we can see a decrease in time. We fit an exponential
power law of mass loss percentage as a exp (−bt) and in the steady-state time interval,
we see that b ∼O(1). The mass loss relative to the total mass is going to zero as the jet
advances. The question of the effect of the mass loss on the PDF also arises. Since the mass
loss occurs in very thin sheets, it affects the very small-scale droplets produced in these
sheets and has a negligible effect on the part of the PDF above the converged radius dc.

Appendix D. Evolving initial mushroom: MD in action
Figure 26 shows the evolution of the initial mushroom jet and the first sheet rupture.
Figure 26(a) shows the no-MD case at 	 = 14. We can see in the inset at t = 0.15,
numerical sheet rupture happens in the flap connecting the rolled-up mushroom rim with
the mushroom head. The inset shows how a spectrum of tiny droplets forms along with
a circular ligament rim at t = 0.17. Figure 26(b) shows the first sheet rupture for the case
with MD method applied, corresponding to (	, m) = (15, 13), and the one corresponding
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t = 0.14 t = 0.15 t = 0.16 t = 0.17 t = 0.10

t = 0.17

(a) (b)

Figure 26. Evolution of the initial mushroom and the first breakup in (a) no MD and (b) with MD. The
interface is coloured by the curvature field in both cases. Image (a) shows a detailed view of the first numerical
sheet rupture for an 	 = 14 simulation. Image (b) corresponds to the simulation withthe MD method applied
corresponding to (	, m) = (15, 13). The images shown in (b) are at time t = 0.1, 0.11, 0.12, . . . , 0.17. The
detachment of a circular ligament rim is seen in both cases at t = 0.17.

to the blue line in figure 16(b). One can see the sheet rupture at t = 0.11 is much more clear
now and the curvature oscillations are not present. In this case too we see detachment of
the rolled-up tip in forming a circular ligament at t = 0.17. Simple analysis suggests that
sheet thickness near the tip at the moment of rim formation should scale as D/ W eg (see,
for example, Marcotte & Zaleski 2019). The condition D/ W eg 	 Δ is then necessary
for proper resolution of the sheet. This condition is equivalent to W eΔ 	 1, which is
verified only for 	 = 15 and perhaps 14 according to table 2. At lower levels, it is clear
that numerical breakup may appear soon behind the rim in no-MD simulations.

Appendix E. Determination of dc for MD statistics
The determination of dc, that is, the diameter marking the lower bound of the converged
region is done by visual inspection of the histogram showing the droplet-size distribution.
Figure 27 shows a zoom in explaining how we determine dc for each consecutive level.
Note that the black curve in the no-MD case is not overlapping in the converged region of
the various MD simulations. This is an important fact since it means that an MD simulation
is not ‘equivalent’ to a no-MD simulation with a similar ‘effective’ critical thickness hc.
Hence, it makes more sense to compare the MD plots to each other and treat the black no-
MD curves only for the purpose of analysing the properties of classical non-converging
simulations.

Appendix F. Forensics of the Chirco et al. (2022) study
The MD method appeared first in the work of Chirco et al. (2022). Here we revisit this
previous study with the droplet-size distribution comparison method described above. In
Chirco et al. (2022) a region of convergence was identified at 8Δ9, where Δ9 was the grid
size of the coarsest simulation, also used as the MD level. In our study, we have shown
that the region of statistical convergence can be reached up to the critical sheet thickness
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Figure 27. A zoom in for the converged region corresponding to figure 16 showing how dc (indicated by
vertical lines) is obtained. Panels (a) and (b) correspond to a zoom in for figure 16(a) and 16(b), respectively.
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Figure 28. Replotting figure 12 of Chirco et al. (2022) with additional vertical lines showing the critical
thickness for MD sheet perforation threshold hc, along with two vertical lines for dc. The shaded regions
illustrate the departure of the measured distribution from each other below dc.
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of the MD threshold hc, given that the mesh is refined sufficiently. In figure 12 of Chirco
et al. (2022), the authors argue that above dc = 8Δ9, the simulations seem to converge,
where the coarsest mesh had the equivalent of 5123 cells (	 = 9) and the finest mesh was
the equivalent of 20483 cells (	 = 11). The case that the authors simulated was a phase
inversion case that produces a much smaller number of droplets than our pulsed jet case
does. This implies that the number frequencies are affected by a large statistical error.
Hence, the conclusions presented in Chirco et al. (2022) are qualitative: they demonstrate
the rupture of the sheet by MD in a clear manner. To attempt a more quantitative analysis
in line with our analysis of the pulsed jet, we replot figure 12 of Chirco et al. (2022) in our
figure 28. There we mark the MD threshold hc = 3Δ9 and two values of dc. We see that dc
again moves towards hc. This movement is in line with our results. Due to computational
cost, Chirco et al. (2022) stopped at the 20483 mesh and concluded that the boundary
of the converged region lies at dc ∼ 8Δ9. It is likely that the converged region could be
pushed more towards hc with increased resolution.

REFERENCES

AGBAGLAH, G.G. 2021 Breakup of thin liquid sheets through hole–hole and hole–rim merging. J. Fluid Mech.
911, A23.

ANEZ, J., AHMED, A., HECHT, N., DURET, B., REVEILLON, J. & DEMOULIN, F.X. 2019 Eulerian–
Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. Intl J.
Multiphase Flow 113, 325–342.

BALACHANDAR, S., ZALESKI, S., SOLDATI, A., AHMADI, G. & BOUROUIBA, L. 2020 Host-to-host airborne
transmission as a multiphase flow problem for science-based social distance guidelines. Intl J. Multiphase
Flow 132, 103439.

BEN RAYANA, F., CARTELLIER, A. & HOPFINGER, E. 2006 Assisted atomization of a liquid layer:
investigation of the parameters affecting the mean drop size prediction. In Proceedings of ICLASS 2006,
August 27- September 1, Kyoto, Japan. Academic Publishings and Printings,

BIANCHI, G.M., MINELLI, F., SCARDOVELLI, R. & ZALESKI, S. 2007 3D large scale simulation of the
high-speed liquid jet atomization. SAE Tech. Pap. 2007-01-0244.

BRUJAN, E. 2010 Cavitation in Non-Newtonian Fluids: with Biomedical and Bioengineering Applications.
Springer Science & Business Media.

CHESNEL, J., MÉNARD, T., RÉVEILLON, J. & DEMOULIN, F.-X. 2011 Subgrid analysis of liquid jet
atomization. Atomiz. Sprays 21 (1), 41–67.

CHIRCO, L., MAAREK, J., POPINET, S. & ZALESKI, S. 2022 Manifold death: a volume of fluid
implementation of controlled topological changes in thin sheets by the signature method. J. Comput. Phys.
467, 111468.

CHORIN, A.J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745–762.
CULICK, F.E.C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 1128–1129.
DEBAR, R. 1974 Fundamentals of the KRAKEN code. Tech. Rep. UCIR-760.LLNL.
DEBRÉGEAS, G.D., DE GENNES, P.-G. & BROCHARD-WYART, F. 1998 The life and death of ‘bare’ viscous

bubbles. Science 279 (5357), 1704–1707.
DUKE, D.J. et al. 2017 Internal and near nozzle measurements of Engine Combustion Network ‘Spray G’

gasoline direct injectors. Expl Therm. Fluid Sci. 88, 608–621.
FUSTER, D., BAGUÉ, A., BOECK, T., LE MOYNE, L., LEBOISSETIER, A., POPINET, S., RAY, P.,

SCARDOVELLI, R. & ZALESKI, S. 2009 Simulation of primary atomization with an octree adaptive mesh
refinement and VOF method. Intl J. Multiphase Flow 35 (6), 550–565.

FUSTER, D., MATAS, J.P., MARTY, S., POPINET, S., HOEPFFNER, J., CARTELLIER, A. & ZALESKI, S. 2013
Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150–176.

GAVRILOV, L.R. 1969 On the size distribution of gas bubbles in water. Sov. Phys. Acoust. 15 (1), 22–24.
GOROKHOVSKI, M. & HERRMANN, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40 (1),

343–366.
HERRMANN, M. 2010 A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling

procedure. J. Comput. Phys. 229 (3), 745–759.
HERRMANN, M. 2011 On simulating primary atomization using the refined level set grid method. Atomiz.

Sprays 21 (4), 283–301.

1009 A35-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218


Y. Kulkarni, C. Pairetti, R. Villiers, S. Popinet and S. Zaleski

HIRT, C.W. & NICHOLS, B.D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries.
J. Comput. Phys. 39 (1), 201–225.

JACKIW, I.M. & ASHGRIZ, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup.
J. Fluid Mech. 940, A17.

JARRAHBASHI, D. & SIRIGNANO, W.A. 2014 Vorticity dynamics for transient high-pressure liquid injection.
Phys. Fluids 26 (10).

JARRAHBASHI, D., SIRIGNANO, W.A., POPOV, P.P. & HUSSAIN, F. 2016 Early spray development at high
gas density: hole, ligament and bridge formations. J. Fluid Mech. 792, 186–231.

JIANG, D. & LING, Y. 2021 Impact of inlet gas turbulence on the formation, development and breakup of
interfacial waves in a two-phase mixing layer. J. Fluid Mech. 921, A15.

KANT, P., PAIRETTI, C., SAADE, Y., POPINET, S., ZALESKI, S. & LOHSE, D. 2023 Bag-mediated film
atomization in a cough machine. Phys. Rev. Fluids 8 (7), 074802.

KHANWALE, M.A., SAURABH, K., ISHII, M., SUNDAR, H. & GANAPATHYSUBRAMANIAN, B. 2022
Breakup dynamics in primary jet atomization using mesh-and interface-refined Cahn–Cilliard Navier–
Stokes. arXiv e-prints, arXiv-2209.

KIBBLE, T.W.B. 1976 Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9 (8), 1387–1398.
LASHERAS, J.C. & HOPFINGER, E.J. 2000 Liquid jet instability and atomization in a coaxial gas stream.

Annu. Rev. Fluid Mech. 32 (1), 275–308.
LEBAS, R., MENARD, T., BEAU, P.A., BERLEMONT, A. & DEMOULIN, F.X. 2009 Numerical simulation of

primary break-up and atomization: DNS and modelling study. Intl J. Multiphase Flow 35 (3), 247–260.
LING, Y., FUSTER, D., ZALESKI, S. & TRYGGVASON, G. 2017 Spray formation in a quasiplanar gas-liquid

mixing layer at moderate density ratios: A numerical closeup. Phys. Rev. Fluids 2 (1), 014005.
LOHSE, D. & VILLERMAUX, E. 2020 Double threshold behavior for breakup of liquid sheets. Proc. Natl Acad.

Sci. USA 117 (32), 18912–18914.
MARCOTTE, F. & ZALESKI, S. 2019 Density contrast matters for drop fragmentation thresholds at low

Ohnesorge number. Phys. Rev. Fluids 4 (10), 103604.
MÉNARD, T., TANGUY, S. & BERLEMONT, A. 2007 Coupling level set/VOF/ghost fluid methods: validation

and application to 3D simulation of the primary break-up of a liquid jet. Intl J. Multiphase Flow 33 (5),
510–524.

OPFER, L., ROISMAN, I.V., VENZMER, J., KLOSTERMANN, M. & TROPEA, C. 2014 Droplet-air collision
dynamics: evolution of the film thickness. Phys. Rev. E 89 (1), 013023.

PAIRETTI, C., VILLIERS, R. & ZALESKI, S. 2021 On shear layer atomization within closed channels:
Numerical simulations of a cough-replicating experiment. Comput. Fluids 231, 105125.

PAIRETTI, C.I., DAMIAN, S.M., NIGRO, N.M., POPINET, S. & ZALESKI, S. 2020 Mesh resolution effects
on primary atomization simulations. Atomiz. Sprays 30 (12), 913–935.

POPINET, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex
geometries. J. Comput. Phys. 190 (2), 572–600.

POPINET, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.
228 (16), 5838–5866.

POPINET, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (1), 49–75.
SALVADOR, F.J., RUIZ, S., CRIALESI-ESPOSITO, M. & BLANQUER, I. 2018 Analysis on the effects of

turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation.
Intl J. Multiphase Flow 102, 49–63.

SAURABH, K., ISHII, M., KHANWALE, M.A., SUNDAR, H. & GANAPATHYSUBRAMANIAN, B. 2023
Scalable adaptive algorithms for next-generation multiphase flow simulations. In 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 590–601. IEEE.

SAVVA, N. & BUSH, J.W.M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211–240.
SHIMA, A. & SAKAI, I. 1987 On the equation for the size distribution of bubble nuclei in liquids (Report 2).

Rep. Inst. High Speed Mech. Tohoku Univ, 54, 51–59.
SHINJO, J. & UMEMURA, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet

formation. Intl J. Multiphase Flow 36 (7), 513–532.
SONG, M. & TRYGGVASON, G. 1999 The formation of thick borders on an initially stationary fluid sheet.

Phys. Fluids 11 (9), 2487–2493.
TANG, K., ADCOCK, T.A.A. & MOSTERT, W. 2023 Bag film breakup of droplets in uniform airflows. J. Fluid

Mech. 970, A9.
TAYLOR, G.I. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond.

A: Math. Phys. Sci. 253 (1274), 313–321.
TOLFTS, O., DEPLUS, G. & MACHICOANE, N. 2023 Statistics and dynamics of a liquid jet under

fragmentation by a gas jet. Phys. Rev. Fluids 8 (4), 044304.

1009 A35-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218


Journal of Fluid Mechanics

TORREGROSA, A.J., PAYRI, R., SALVADOR, F.J. & CRIALESI-ESPOSITO, M. 2020 Study of turbulence in
atomizing liquid jets. Intl J. Multiphase Flow 129, 103328.

VERNAY, C., RAMOS, L., WÜRGER, A. & LIGOURE, C. 2017 Playing with emulsion formulation to control
the perforation of a freely expanding liquid sheet. Langmuir 33 (14), 3458–3467.

VILLERMAUX, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.
VILLERMAUX, E. & BOSSA, B. 2009 Single-drop fragmentation determines size distribution of raindrops.

Nat. Phys. 5 (9), 697–702.
WANG, Y. & BOUROUIBA, L. 2018 Unsteady sheet fragmentation: droplet sizes and speeds. J. Fluid Mech.

848, 946–967.
WEYMOUTH, G.D. & YUE, D.K.P. 2010 Conservative volume-of-fluid method for free-surface simulations

on Cartesian-grids. J. Comput. Phys. 229 (8), 2853–2865.
ZHANG, B., POPINET, S. & LING, Y. 2020 Modeling and detailed numerical simulation of the primary

breakup of a gasoline surrogate jet under non-evaporative operating conditions. Intl. J. Multiphase Flow
130, 103362.

ZUREK, W.H. 1985 Cosmological experiments in superfluid helium? Nature 317 (6037), 505–508.

1009 A35-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.218

	1. Introduction
	2. Mathematical model and numerical method
	3. Results
	3.1. Uncontrolled perforation: numerical sheet breakup
	3.2. Controlled perforation by the

	4. Conclusions
	References

