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Abstract

Several pairwise concepts have been studied for bitopological spaces. In this note an attempt
has been made to see how much 'bitopological' these pairwise concepts are. For example pairwise
T, is purely a topological concept whereas pairwise normality is very much 'bitopological'.
Several questions pertaining to this theme are dealt with.

Subject classification (Amer. Math. Soc. (MOS) 1970): 54E55, 54G20.

1. Introduction

The idea of bitopological spaces was introduced by Kelly (1963). Since
then several topological notions have been generalised to the setting of
bitopological spaces under the name 'pairwise P\ These concepts have been
defined in such a fashion that for the 'trivial' bitopological space they become
the corresponding topological concepts. In an attempt to have this require-
ment several concepts are defined in such a way that they become just the
topological concepts. For example a bitopological space (X, 9>, St) is pairwise
T, (Reilly, 1972) if both the topological spaces (X, 0>) and (X, St) are 7V
Similarly pairwise compactness (Swart, 1971) of (X, 9>, St) is nothing but the
compactness of the space (X, 0* + 3.), where 9* + St is the coarsest topology
finer than both 0* and St. Contrary to this, pairwise normality of (X, 0>, SI) is
independent of the normality of (X, 0> + SI) or the normality of (X, 0>) and
(X, Si). Thus pairwise normality is very much 'bitopological'. In this note we
are interested in investigating the 'topologicalness' of various bitopological
concepts. In brief we are interested in the following questions: Given a
pairwise P bitopological space (X, &>, SI) what can be said about the situations
(i) both (X, 0>) and (X,St) have property P, (ii) (X, &> + St) has property P and
vice-versa?
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2. Preliminaries

Let (X, 0>,2.) be a bitopological space. Then there are associated
(a) a pair of topological spaces (X, 9>) and (X, Si);
(b) a topological space (X, ^ + Si), where 3> + Si denotes the coarsest

topology finer than both *3> and St. Given a topological property P we say that
{X,&,2L) is

(i) p-P if (X,&,2L) is pairwise P;
(ii) bi-P if both (X, &) and (X, Si) have property P; and
(iii) sup-P if (X, & + SI) has property P.

In this note we are interested in the following possible implications

sup-P?±p-P*±bi-P.

We study these implications for various topological properties. The implica-
tions which hold are shown by an arrow -> and those which do not hold by -/*.
The implications about which we are not certain are not shown in the figures.
Proofs of most of the implications are simple and therefore omitted. As such
the note is mainly concerned with counter examples. These are described in
Section 6. Throughout this note 'space' means a bitopological space and
implication means one of the four implications listed above.

R denotes the set of reals, i£ the topology generated by {] - °°, a [: a G R}
and °U the topology generated by {]a, + » [ : a e R } . For ACX, 9>-c\A
denotes the closure of A in (X, *3>).

3. Separation Axioms

DEFINITION (Murdeshwar and Naimpally, 1966). A space (X, 9, Si) is said
to be p-T0 if for each pair of distinct points of X, there is a ^-open set or a
SI -open set containing one of the points, but not the other.

THEOREM 1. (X,2P,2.) is p-T0 if and only if it is sup-T0. Also if it is bi-T0

(even if one of 3f and Si is To) then (X, 0\ Si) is p- To. The fourth implication does
not hold.

PROOF. It is shown in Singal and Jain (unpublished) that (X, 9, Si) is p-T0

if and only if it is sup-T0. Bi-T0 implies p-T0 is obvious. For the fourth
implication l(a) is a counter example. Thus for P = To,

sup-P ?± p-P ?s bi-P

DEFINITION (Reilly, 1972). A space (X, 9>, Si) is said to be p-T, if for each
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pair of distinct points x, y, there exist U G SP, V G Si such that x G U, y £ V
and x£ U, y G V.

THEOREM 2. (X, 8P, Si) is p-Ti // and only if it is bi-Ti and only if it is
sup-Ti. The fourth implication does not hold.

PROOF. A simple proof of the first part is given in Reilly (1972). The
second part is trivial. 2(a) is a counter example.

DEFINITION (Kelly, 1963). A space (X, §",2.) is said to be p-T2 if given
distinct points x, y G X there exist U G 0», V E.3. such that x G U, y G V,
unv = 0.

THEOREM 3. If (X, &,Si) is p-T2, then it is sup-T2. No other implication
holds.

PROOF. This is easy to establish. For counter examples see 3, 4 and 5(a).

DEFINITION (Kelly, 1963). In a space (X, ®,2L), 9 is said to be regular
with respect to Si if for each x G X and a 0*-closed set F such that x G F
there exist a 0>-open set U and a .2-open set V such that x G U, F C Vand
U D V = 0 . (X, 9, SI) is said to be p-regular if 0>-is regular with respect to SI
and SI is regular with respect to 9.

DEFINITION (Lane, 1967). In a space (X, 9, Si), SP is said to be completely
regular with respect to Si if for each x G X and a £?-closed F such that x£ F
there exists a 0* -upper semi continuous and Si -lower semi continuous
function /:X->[0,1] such that f(x) = 0, f(F) = {l}. (X,&,2L) is said to be
p-completely regular if 9 is completely regular with respect to Si and Si is
completely regular with respect to 0>.

THEOREM 4. // (X, &, SI) is p-(completely) regular, then it is sup-
(completely) regular. None of the other implications holds.

PROOF. Let A be 2P + Si -closed and xf£ A. If A is 0*-closed or Si -closed,
then we are done. Otherwise A = F U G, where F is ^-closed and G is
Si -closed. If (X, 9>, Si) is p-regular, x0. F imples the existence of disjoint sets
UiEP, V,G^ such that x G [/,, FCV, . Similarly xgG implies the
existence of disjoint sets t/2G 9, V2E.Si such that G CU2, x G V2. Now
U = I/, n V2 and V = U2 U V, are 0> + 3 open sets such that x E U, A C V
and U n V = 0 .

If (X, £?, 3) is p-completely regular, then there exists a 0* + .2 -continuous
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function f:X-*[0,1] such that f(x)= 1,/(F) = {0}. Similarly there exists
9 + SL-continuous function g:X-»[0,1] such that g(x)=l, g(G) = {0}.
Clearly h = min{/, g} is a 0* + S-continuous function separating x and A.

Examples 2(b), l(c) and l(b) are the required counter examples. Thus for
P = regular, completely regular, we have the diagram

sup-P«i* p-P;£bi-P

DEFINITION (Kelly, 1963). A space (X, 0*, 2.) is said to be p-normal if
given a SP-closed set F and a St -closed G with F C\ G = 0 , there exist a
3?-open set 1/ and a .2-open set V such that F C V, G C U, U C\ V = 0.

DEFINITION (Patty, 1967). A space (X, 9>,2.) is said to be p-completely
normal if whenever A and B are subsets of X such that 0*-cl A D B = 0 =
,2-clB fl A then there exist 3-open set U and ^-open set V such that
ACU, BCV, U n V = 0.

Normality and complete normality have entirely different behaviour. In
fact for these two properties none of the four implications holds as is shown
by examples 2(c), 6, 7 and 11. Thus for P normal, completely normal we have

REMARKS. Several authors introduced the pairwise concepts in their own
way keeping different aspects in mind. For example p-7i and p-T0 have been
defined in Murdeshwar and Naimpally (1966) and in Reilly (1972) also. Here
we took one definition from Murdeshwar and Naimpally (1966) and one from
Reilly (1972). Similar investigations may be made adopting the definitions of
Murdeshwar and Naimpally (1966) and Reilly (1972). Next, several other
separation axioms like TD, Eo, Eu Ro, RD, almost regular, almost completely
regular, mildly normal and so on have been generalized to the setting of
bitopological spaces. It should be interesting to study the above implications
for these properties also.

4. Compactness like properties

DEFINITION (Swart, 1971). A space (X, 0>, 2.) is said to be p-compact if
each cover 1 / C ^ U S has a finite subcover.

THEOREM 5. (X, 9, SI) is p-compact if and only if it is sup-compact and
only if it is b'\-compact. The fourth implication does not hold.

PROOF. The first part is shown in Swart (1971). The second part is trivial.
For the fourth implication example 5(b) works.

sup-P?±p-P?£bi-P
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DEFINITION (Singal and Singal, 1970). A space (X, &, 2) is said to be
p-countably compact if each proper 2 -closed set is 0>-countably compact and
each proper 0*-closed set is 3-countably compact.

THEOREM 6. (X, 9,2) is p-countably compact if it is sup-countably
compact. No other implication holds. See examples l(d) and 5(c).

sup-P?£p-P#bi-P

DEFINITION (Reilly, 1973). A space (X, Sf>, 2) is said to be p-Lindelof if
each pairwise open cover °U, (i.e., °ll C <3> U 2, °U. n 3P/0,<JU D 2 ^ 0 ) has a
countable subcover.

THEOREM 7. // (X, 3P, 2) is sup-LindeIdf, then it is p-Lindelof. Other
implications do not hold.

For the implications which do not hold see examples l(e) and 5(d). Thus
for P = Lindelof

sup-P?^p-P#bi-P

DEFINITION (Saegrove, 1973). A space (X, 0>, 2) is said to be p-pseudo
compact if each pairwise continuous map /:(X, 9, .2)—»(R, °U, Z£) is
bounded.

THEOREM 8. // (X, *3>, 2) is sup-pseudo compact then it is p-pseudo
compact.

PROOF. Every pairwise continuous / : (X, &, 2 )—* (R, °U, J£) is continuous
from (X, 9> + 2L)^> (R, °U + Z£) and % + if is the usual topology on R.

Example l(f) shows that a p-pseudo compact space need not be bi-
pseudo compact or sup-pseudo compact. We do not know about the fourth
implication, though we strongly suspect that this too does not hold. As such
for P = pseudo-compact we have the following diagram

REMARKS. There are as many as five definitions of p-compactness in
bitopological spaces given by Birsan (1969), Fletcher, Hoyle and Patty (1969),
Kim (1968) Saegrove (1973) and Swart (1971). For P = compactness we
consider Swart's definition, whereas for P = countable compactness we take a
generalization of Kim's definition (Singal and Singal, 1970) and for P =
Lindelof we take FHP-compactness (Reilly, 1973) as a model. However a
close look at the results and examples shows that if we define p-countable
compactness and p-Lindelof following Swarts definition, then for P =
countable compactness or Lindelof we get the same implication diagram as
for P = compactness. Next if for p-compactness we take Kim's definition and
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define p-Lindelof likewise, then for these two properties we get the same
implication diagrams as for P = countable compactness. Similarly if compact-
ness and countable compactness are defined following (Fletcher, Hoyle and
Patty, 1969), and are substituted for Lindelof in the implication diagram
following Theorem 7 the diagram remains unchanged. It may, however, be
noted here that in view of a result of Cooke and Reilly (1975), the two ways of
defining p-countable compactness and p-Lindelof are essentially the same.
Here pseudo-compactness is a part of the definition of compactness due to
Saegrove (1973).

5. Disconnectedness-like properties

DEFINITION (Previn, 1967). A space (X, &, 3) is said to be p-disconnected

if there exist subsets A, B such that A I) B = X and (Sf-dA n B ) U

(A n 3.-dB) = 0.

THEOREM 9. If (X, 9,3) is p-disconnected, then it is sup-disconnected.
None of the other implications holds.

See examples l(g), 2(d) and 8.

DEFINITION (Swart, 1971). A space (X, &, 3) is said to be p-totally
disconnected if given x ^ y there exist A, B with x G A, y (E B (or
xGB, y GA) such that A LIB = X, (9>-dA D B) U (A n 3-c\B) = 0.

DEFINITION (Dutta, 1971). A space (X, <&, 3) is said to be p-zero dimen-
sional if 9 has a base of 3-closed sets and 3 has a base of 0*-closed sets.

THEOREM 10. // (X, $P, 3) is p-totally desconnected (p-zero dimen-
sional), then it is sup-totally disconnected (sup-zero dimensional).

PROOF. For total disconnectedness the proof is trivial. For zero dimen-
sional if 58 is a base for 9 consisting of 3 -closed sets and <# is a base for 3
consisting of & -closed sets, then S3 fl « = { B fl C : B G i , C G « } is base
for 9 + 3 consisting of 9 + 3 -closed sets.

For any of these two properties none of the three remaining implications
holds, as is shown by examples l(g), 2(d), 10, 12 and 13. Summarizing for
P = totally disconnected or zero dimensional we have

DEFINITION. A space (X, 9>, 3) is said to be p-extremally disconnected if
0*-closure of each 3 -open set is 3 -open and 3 -closure of each £P-open set is
0>-open or equivalently given SP-open set U and 3 -open set V with
U n V = 0 we have 3-d U n 0>-cl V = 0 .
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With respect to the three implications

sup-P-> p-P <=± bi-P

this property behaves in a similar manner as the other three properties in this
section. See examples 2(e) and 9. However about the remaining implication
we are not certain. May be it is true and its behaviour is same as that of the
preceding properties, but we suspect that this implication is also false and this
property behaves in a different manner from the other properties discussed in
this section.

REMARKS. AS we see above out of the four implications some hold while
others do not. It would be interesting to find conditions under which the
implications which do not hold in general hold. For example for P =
extremally disconnected bi-P + p-P implies sup-P. We do not know whether
bi-P is a necessary condition for p-P to imply sup-P. It would also be
interesting to see whether these conditions are necessary too. Next, in some of
the examples above in order to show that the space is not bi-P we show that
one of the spaces is not P (e.g., P = To). It whould be of interest to find
examples for such situations where none of the topologies is P.

6. Examples

1. Let X be an infinite set, J be the indiscrete topology and 2 be the
discrete topology. Consider the space (X, S>, 2).

(a) (X, 4, 2) is p-T0, but not bi-T0.
(b) (X, $, 2) is bi-completely regular, but not even p-regular.
(c) (X, $, 2) is sup-completely regular, but not even p-regular.
(d) (X, $, 3) is p-countably compact, but neither bi-countably compact
nor sup-countably compact.
(e) If X is uncountable then (X, J,2) is p-Lindelof, but neither
bi-Lindeldf nor sup-Lindelof.
(f) If X is countable, then (X, 3, 2) is p-pseudo compact, but is neither
sup-pseudo compact nor bi-pseudo compact.
(g) (X, $, 2) is sup-totally disconnected, but not p-disconnected.
2. Let X be an infinite set and let p be a fixed point of X. Let

0> = { l / C X : p G t/}U{0} and SI = { V C X : p £ V}U{X}.
(a) (X, 9>, °L) is sup-T,, but not p-T,.
(b) (X, 0>,<H) is p-completely regular, but not even bi-regular.
(c) (X, 0>, 3.) is p-completely normal, but not even bi-normal.
(d) (X, 9,3.) is p-totally disconnected and p-zero dimensional, but
neither bi-disconnected nor bi-zero dimensional.
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(e) (X, Sf, Si) is p-extremally disconnected, since each proper 0>-open set
is Si -closed and vice-versa. However it is not bi-extremally disconnected,
because St does not have two disjoint closed sets though it has plenty of
disjoint ,2-open sets.
3. (R, % Z£) is sup-T2, but not p-T2.
4. Let X be an infinite set. If 9* be the cofinite topology on X and St be

the discrete topology, then (X, 3P, St) is p-T2, but not bi-T2.
5. Let X be an infinite set and let p ̂  q be two points of X. Let

9> = 2T(p) and St = ST(q) where ST(x) is the topology in which each y^ x is
open and an open neighbourhood of JC is a set containing x and all but finitely
many points of X.

(a) (X, 0>, Si) is bi-T2, but not p-T2.
(b) (X, SP, SI) is bi-compact, but not p-compact, since 9 + Si is the
discrete topology.
(c) (X, 2P, Si) is bi-countably compact, but not p-countably compact.
X-{q} is ^-closed of which {{x}:x^q} is a .2-open cover having no
subcover.
(d) (X, SP,St) is bi-Lindelof, but not p-Lindelof. {{x}: x £ X} is a pairwise
open cover which has no proper subcover.
6. Let X = [ - l , l ] . Let @ = {U:0gU or ] - l , l [Ct /} and Si =

{U:X-U is finite or - 1 £ U}. Then (X, <3>, Si) is a bi-completely normal
space, which is not p-normal. A ={-1} and B ={0,1} are ^-closed and
Si -closed sets respectively such that A D B = 0 . Since the smallest 0>-open
set containing B is ] - 1,1], the only non-empty set disjoint from ] - 1,1] is
{- 1} which is not .2-open.

7. Let X be an infinite set and let p G X Let 9 = {U :p G U} U {0} and
Si = {X,0, {p}}. Then (X, $>, Si) is not sup-normal. However it is p-completely
normal vacuously. That there do not exist A, B C X with (i) A D 2-clB = 0
and (ii) 9>-c\A D B = 0 can be seen as follows: If p E B, then SL-c\B = X
and so (i) is impossible. If p£B, then St-c\B = X - {p} so that (i) implies
A = {p}. Now (ii) is impossible (0>-cl A = X).

8. Let X ^ 0 and let 0 ^ A / B ^ 0 be two subsets of X. If & =
{X,A,X-A,0} and 1 = {X,B,X-B,0\, then (X,0>,2) is a bi-
disconnected space which is not p-disconnected.

9. Let X be an infinite set and p a fixed point of X. Let 9 =
{U:p G t/}U{0} and a be the discrete topology. The space (X, 3>,SL) is
bi-extremally disconnected. It is not p-extremally disconnected, because if
q^p, then {<?} n X - {q} = 0 , but 3-cl {<?} = {q} and 0>-cl (X - {q}) = X and
hence not disjoint. This space is also sup-extremally disconnected, but not
p-extremally disconnected.
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10. Let X be a non-empty set and let p / q be in X. If Sf =

{U:p G t/}U{0} and 2 = {V:q e V}U{0}, then (X, 0>, 3 ) is sup-zero

dimensional. However it is not p-zero dimensional, because the only base for

9 is {{x, p}:x.G X} of which {q, p} is not SI -closed and similarly for the base

{{x,q}:x&X} for ±

11. Consider (X,0\3), where X = {a,6,c,d,}, & = {X,0, {a,b}, {c,d}}

and 2. ={X,0,{a,c}, {b,d}, {a,b,c}, {b}}. Here (X,&,°L) is not p-normal,

though it is easily seen to be sup-completely normal.

12. Let X be the set of real numbers, 9 be the right half-open interval

topology which has as a base the family of all sets of the form [a, b[, where

a,bEX and 3. be the left half-open interval topology (base the family

]a, b], a, bE X). Here (X, 9, 3.) is bi-totally disconnected, but not p-totally

disconnected.

13. Let X and 9 be as in the example 12 above. If 3) is the discrete

topology on X, then (X, 9,3)) is bi-zero dimensional, but not p-zero

dimensional.
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