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Non-Existence of Ramanujan Congruences
in Modular Forms of Level Four

Michael Dewar

Abstract. Ramanujan famously found congruences like p(5n+4) ≡ 0 mod 5 for the partition function.

We provide a method to find all simple congruences of this type in the coefficients of the inverse of a

modular form on Γ1(4) that is non-vanishing on the upper half plane. This is applied to answer open

questions about the (non)-existence of congruences in the generating functions for overpartitions,

crank differences, and 2-colored F-partitions.

1 Introduction

Define the partition function p(n) to be the number of ways of writing n as a sum

of non-increasing positive integers. Ramanujan famously found congruences for the

partition function,

(1.1) p(5n + 4) ≡ 0 mod 5, p(7n + 5) ≡ 0 mod 7, p(11n + 6) ≡ 0 mod 11,

and raised the question of whether there are other primes ℓ for which

p(ℓn + b) ≡ 0 mod ℓ

for some b ∈ Z. We refer to congruences of this form as Ramanujan congruences.

Kiming and Olsson ([12]) use the Tate cycles of the Θ operator to show that the

parameters for any such congruence for p(n) must satisfy 24b ≡ 1 mod ℓ. Ahlgren

and Boylan ([1]) build on this result to prove that (1.1) are the only Ramanujan

congruences of the partition function. The existence of non-Ramanujan congruences

of the partition function is shown by Ono in [17], and the existence of Ramanujan

congruences in powers of the partition generating function is studied by Boylan in

[5]. In this paper we provide a general method for investigating sequences related

to modular forms and prove the non-existence of Ramanujan congruences (for large

primes ℓ) in three well-known combinatorial objects.

Andrews ([3]) introduced generalized Frobenius partitions, also called F-partitions,

in which a number n is represented as

n = r +

r
∑

i=1

ai +

r
∑

i=1

bi ,
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where {ai} and {bi} are both strictly decreasing sequences of non-negative integers.

An F-partition is often represented as

(

a1 a2 · · · ar

b1 b2 · · · br

)

.

An F-partition is 2-colored if it is constructed from 2 copies of the non-negative in-

tegers, written ji with j ≥ 0 and i = 1, 2. Say ji < rs if j < r or both j = r

and i < s. Let cφ2(n) denote the number of 2-colored F-partitions of n. Andrews

([3, Corollary 10.1 and Theorem 10.2]) shows

cφ2(2n + 1) ≡ 0 mod 2(1.2)

cφ2(5n + 3) ≡ 0 mod 5.(1.3)

Eichhorn and Sellers ([8]) proved cφ2(5αn + λα) ≡ 0 mod 5α, where λα is the least

positive reciprocal of 12 modulo 5α and α = 1, 2, 3, or 4. Recent work of Paule and

Radu ([19]) settled the situation for all α ≥ 5. Ono [18] and Lovejoy ([13]) used the

theory of modular forms to prove the existence of certain congruences in cφ3(n). We

prove the following.

Theorem 1.1 The only Ramanujan congruences cφ2(ℓn + a) ≡ 0 mod ℓ are (1.2) and

(1.3).

An overpartition of n is a sum of non-increasing positive integers in which the

first occurrence of an integer may be overlined. Let p(n) count the number of such

overpartitions and set P(z) =
∑

p(n)qn. Background information on overpartitions

can be found in Corteel and Lovejoy ([7]). Recently, Mahlburg [15] showed that

the set of integers n with p(n) ≡ 0 mod 64 has arithmetic density 1, and Kim ([11])

has extended this result to modulus 128. For larger primes we have a very different

situation.

Theorem 1.2 There are no Ramanujan congruences p(ℓn+a) ≡ 0 mod ℓwhen ℓ ≥ 3.

If π is a (non-overlined) partition, define the crank by

crank(π) :=

{

π1 if µ(π) = 0,

ν(π) − µ(π) if µ(π) > 0,

where π1 denotes the largest part of π, µ(π) denotes the number of ones in π, and

ν(π) denotes the number of parts of π that are strictly larger than µ(π). The exis-

tence of non-Ramanujan congruences for the crank counting function was proved

by Mahlburg in [14]. Let Me(n) and Mo(n) denote the number of partitions of

n with even and odd crank, respectively. Choi, Kang, and Lovejoy ([6]) studied

the crank difference function (Me − Mo)(n) and found a Ramanujan congruence

at (Me − Mo)(5n + 4) ≡ 0 mod 5. They ask if the methods of [1, 12] may be adapted

to prove there are no other Ramanujan congruences. We give a partial answer to their

question.
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Theorem 1.3 Let ℓ ≥ 5 be prime, δ := ℓ2−1
24

, and a 6≡ −δmod ℓ. The crank difference

function has the Ramanujan congruence (Me − Mo)(ℓn − δ) ≡ 0 mod ℓ if and only if

ℓ = 5. If (Me − Mo)(ℓn + a) ≡ 0 mod ℓ, then for all b satisfying
(

a+δ
ℓ

)

=
(

b+δ
ℓ

)

,

(Me − Mo)(ℓn + b) ≡ 0 mod ℓ.

Theorems 1.1, 1.2, and 1.3 follow from a more general method of proving the non-

existence of congruences for level four modular forms and their inverses. Whereas in

[20] Sinick generalizes [12] to prove that sequences of the form

∞
∏

n=1

2 j
∏

i=1

1

1 − qai n
=

∞
∑

n=0

c(n)qn, where ai , j ∈ Z>0,

admit only finitely many Ramanujan congruences; the extension to reciprocals of

half-integral weight forms requires a generalization of [1]. Let Mλ(Γ1(4)) (respec-

tively Sλ(Γ1(4))) denote the holomorphic modular (resp. cusp) forms of weight λ on

Γ1(4).

Theorem 1.4 Let λ ∈ 1
2

Z be positive. If f ∈ Mλ(Γ1(4)) ∩ Z[[q]] has no zeros in

the upper half plane, then there are only finitely many primes ℓ for which the series

f −1 =
∑

a(n)qn ∈ Z[[q]] has a Ramanujan congruence a(ℓn + b) ≡ 0 mod ℓ.

Moreover, we provide a method to find all of the Ramanujan congruences. We

provide two examples of Theorem 1.4. Let η(z) = q1/24
∏∞

n=1(1 − qn), where q =

e2πiz.

Theorem 1.5 Define f := η6(z)η6(4z)
η3(2z)

∈ S9/2(Γ1(4)), and let f −1 =
∑

a(n)qn. The

Ramanujan congruences of f −1 are exactly

a(2n + 0) ≡ 0 mod 2, a(3n + 0) ≡ 0 mod 3, a(3n + 1) ≡ 0 mod 3

a(5n + 2) ≡ 0 mod 5, a(5n + 3) ≡ 0 mod 5.

Theorem 1.6 Define f := η14(z)η6(4z)
η7(2z)

∈ S13/2(Γ1(4)), and let f −1 =
∑

b(n)qn. The

Ramanujan congruences of f −1 are exactly

b(2n + 0) ≡ 0 mod 2, b(7n + 1) ≡ 0 mod 7,

b(7n + 2) ≡ 0 mod 7, b(7n + 4) ≡ 0 mod 7.

Given f ∈ Mλ(Γ1(4)) ∩ Z[[q]] with 0 < λ ∈ 1
2

Z, one may seek Ramanujan con-

gruences for either f or f −1. Each of these questions breaks into two cases depending

on whether or not λ is an integer. We deal with three of the four cases below:

λ ∈ Z λ ∈ 1
2

Z − Z

Find congruences for f Open Corollary 6.5

Find congruences for f −1 Corollary 6.6 Section 7
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Corollaries 6.5 and 6.6 provide explicit bounds on the possible primes ℓ for which

there could be Ramanujan congruences. Section 7 provides a method to find all of the

possible primes ℓ for which there could be such congruences. One may then simply

check the finitely many possibilities to generate a list of all Ramanujan congruences

for the power series in question. Seeking Ramanujan congruences in integral weight

modular forms includes hard problems such as determining when Ramanujan’s τ (n)

function satisfies τ (ℓ) ≡ 0 mod ℓ. We leave such problems open.

We use the theory of Tate cycles for the reduction of modular forms mod ℓ. In

Section 2 we recall the basic machinery for reduced modular forms mod ℓ and the Θ

operator. Since a modular form on Γ1(4) is completely determined by its zeros on

X1(4), our guiding principle is to keep track of how the Θ operator changes (that is,

increases) the orders at the cusps. Section 3 presents Jochnowitz’s ([10]) framework

for analyzing Tate cycles. Section 4 extends the work of Kiming and Olsson ([12]) to

the level 4 case. In Section 5 we lift mod ℓ information to characteristic 0. Section

6 works with modular forms that vanish only at the cusps. By limiting our focus

in this way, we ensure that either f or Θ f is a low point of the Tate cycle. Thus, the

filtrations of forms that are non-vanishing on the upper half plane will always provide

a lower bound for the filtrations of the corresponding Tate cycle. This lower bound is

necessary in Section 7 when we generalize the methods of Ahlgren and Boylan ([1])

to prove Theorem 1.4. Finally, Section 8 proves the rest of the theorems.

For the sake of concreteness, we have chosen to work on Γ1(4), but the level is

not an essential barrier. In place of our Section 5, one could instead appeal to the

q-expansion principle and deduce a Sturm-style result by averaging over coset repre-

sentatives for SL2(Z)/Γ1(N) as in, for example, [20].

2 Reductions of Modular Forms and the Θ Operator

A more complete introduction to reductions of modular forms on SL2(Z) is found

in [22]. The Γ1(4) = {
(

a b
c d

)

∈ SL2(Z) : a ≡ d ≡ 1 mod 4, c ≡ 0 mod 4} case is

analogous. Throughout this paper, ℓ ≥ 5 is prime, q = e2πiz, and Mk := Mk(Γ1(4))∩
Z(ℓ)[[q]], where Z(ℓ) is the local ring { a

b
∈ Q : ℓ ∤ b} and 0 ≤ k ∈ Z. The space Mk is

the set of isobaric polynomials in

F(z) :=
∑

n≥0

σ1(2n + 1)q2n+1 ∈ M2,(2.1)

θ2
0(z) :=

(

∑

n∈Z

qn2

) 2

∈ M1.(2.2)

For
(

a b
c d

)

∈ SL2(Z), meromorphic f (z) : H → C, and k ∈ Z, recall the slash operator

f (z) |k

(

a b

c d

)

= (cz + d)−k f
( az + b

cz + d

)

.
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The expansions of F and θ2
0 at the cusps 1

2
and 0 are

F(z) |2

(

1 0

2 1

)

= θ4
0(z) ∈ Z(ℓ)[[q]],

θ2
0(z) |1

(

1 0

2 1

)

= ψ2(z) ∈ Z(ℓ)[[q1/2]],

and

F(z) |2

(

0 −1

1 0

)

= −
1

64

η8(z/4)

η4(z/2)
∈ Z(ℓ)[[q1/4]],

θ2
0(z) |1

(

0 −1

1 0

)

= −
i

2
θ2

0(z/4) ∈ iZ(ℓ)[[q1/4]],

where ψ(z) =
∑∞

j=0 q( j+1/2)2

and η(z) := q1/24
∏∞

n=1(1 − qn).

Remark 2.1 Let f ∈ Mk be non-zero, where k ∈ Z. Then f ∈ Mk(Γ1(4)) =

Mk(Γ0(4), χk
−1) and the valence formula for Γ0(4) shows that the total number of

zeros of f is (k/12)[Γ0(1) : Γ0(4)] = k/2. In particular ord0 f + ord1/2 f + ord∞ f ≤
k/2 with equality exactly when f is non-vanishing on the upper half plane.

If f ∈ Mk, then denote its coefficient-wise reduction modulo ℓ by f := f mod ℓ ∈
Fℓ[[q]] and the set of all such reduced forms by Mk = { f : f ∈ Mk}. For f =
∑∞

n=0 a(n)qn ∈ Mk with k ∈ Z, we define the filtration

ω( f ) = ω( f ) := inf
{

k ′ : f ∈ Mk ′

}

and the order at the infinite cusp

ord∞( f ) := inf{n : a(n) 6≡ 0 mod ℓ}.

For k ≥ 4 even, let Ek be the weight k normalized Eisenstein series on SL2(Z). It is

well known that Eℓ−1, Eℓ+1 ∈ Mk, Eℓ−1 = 1, and Eℓ+1 = E2, where we let E2 be the

weight 2 quasi-modular Eisenstein series. Define the operator

Θ :=
1

2πi

d

dz
.

Although it does not map modular forms to modular forms, if f ∈ Mk, then 12Θ f −
kE2 f ∈ Mk+2. Along these lines, define

(2.3) R( f ) :=
(

Θ f −
k

12
E2 f
)

Eℓ−1 +
k

12
Eℓ+1 f ∈ Mk+ℓ+1,

so that R( f ) = Θ f . The definition of R( f ) implicitly depends on the weight of f .

We recursively define

R
f
1 := R( f ), R

f
i := R(R

f
i−1) ∈ Mk+i(ℓ+1),
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so that R
f
i = Θi f .

Define Uℓ on power series by
(

∑

a(n)qn
)

∣

∣ Uℓ =

∑

a(ℓn)qn.

Fermat’s Little Theorem easily provides the relation

(2.4) ( f | Uℓ)ℓ = f −Θℓ−1 f .

The action of Θ on Mk is similar to the well-known level 1 case. Using θ0 and F

as defined in (2.1) and (2.2), Tupan ([23]) proves there is a polynomial A(X,Y ) ∈
Z(ℓ)[X,Y ] such that A(θ4

0, F) = Eℓ−1, and further provides an explicit structural iso-

morphism

(2.5)
Fℓ[X,Y ]

A(X4,Y ) − 1
→

∞
⊕

k=0

Mk.

This allows one to prove the following (see, e.g., [2, Proposition 2]).

Lemma 2.2 Let ℓ ≥ 5 be prime, and let f , g be modular forms on Γ1(4) with coeffi-

cients in Z(ℓ).

(i) ω(Θ f ) ≤ ω( f ) + ℓ + 1 with equality if and only if ω( f ) 6≡ 0 mod ℓ.
(ii) If f and g have weights k1 and k2, respectively, and if f ≡ g mod ℓ then k1 ≡

k2 mod ℓ− 1.

(iii) For i ≥ 0, ω( f i) = iω( f ).

For general Γ1(N), N ≥ 4, one could appeal to [9, Section 4] for an analogous

lemma.

One may use isomorphism (2.5) to deduce the direct sum decomposition

(2.6)
∞
⊕

k=1

Mk =
⊕

αmod ℓ−1

Mα

where Mα = ∪k≡αmod ℓ−1Mk.

Remark 2.3 When ω( f ) ≡ 0 mod ℓ the above lemma implies ω(Θ f ) = ω( f ) + ℓ +

1 − s(ℓ− 1) with s ≥ 1.

A Fourier expansion centered at a cusp of width h is expressed naturally in terms of

q1/h = e2πiz/h. The order of a non-zero modular form at a cusp is the least exponent

of q1/h appearing in the Fourier expansion. Recall that on the modular curve X1(4),

the cusp 0 has width 4 and that the cusps ∞ and 1/2 both have width 1. The cusp 1/2

is irregular, and the expansions at 1/2 of odd-weight forms are in terms of q1/2h =

q1/2. For any f ∈ Mk, write f
∣

∣

k

(

1 0
2 1

)

=
∑∞

n=0 b(n/2)qn/2 and f
∣

∣

k

(

0 −1
1 0

)

=

ik
∑∞

n=0 c(n)qn/4 and define

ord1/2( f ) := inf
{

n/2 : b(n/2) 6≡ 0 mod ℓ
}

,

ord0( f ) := inf
{

n : c(n) 6≡ 0 mod ℓ
}

.
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It follows that for any of the cusps s we have

(2.7) ords( f ) ≥ ords( f ).

Remark 2.4 For any cusp s, ords( f ) is well defined in the sense that if a power series
∑

a(n)qn ∈ Fℓ[[q]] is congruent to both f (z) ∈ Mk and g(z) ∈ Mk+m(ℓ−1), then by

Lemma 2.2 (2),

f (z)Em
ℓ−1 = g(z) + ℓh(z)

for some h(z) ∈ Mk+m(ℓ−1). Now

f (z)Em
ℓ−1

∣

∣

k+m(ℓ−1)

(

1 0

2 1

)

= f (z)
∣

∣

k

(

1 0

2 1

)

Em
ℓ−1 ≡ f (z)

∣

∣

k

(

1 0

2 1

)

mod ℓ

and

(g(z) + ℓh(z))
∣

∣

k+m(ℓ−1)

(

1 0

2 1

)

= g(z)
∣

∣

k+m(ℓ−1)

(

1 0

2 1

)

+ ℓh(z)
∣

∣

k+m(ℓ−1)

(

1 0

2 1

)

≡ g(z)
∣

∣

k+m(ℓ−1)

(

1 0

2 1

)

mod ℓ.

The situation for the cusp 0 is similar.

A short computation (for example [20, Lemma 4.2]) shows that

R( f )|k+ℓ+1γ =
(

Θ( f |kγ) − k
12

E2( f |kγ)
)

Eℓ−1 + k
12

Eℓ+1( f |kγ)

= R( f |kγ).

(2.8)

Lemma 2.5 If f ∈ Mk, k ∈ Z, then for every cusp s ∈ {0, 1/2,∞} and i ≥ 1,

ords(R
f
i ) ≥ ords( f ).

Proof First recall that for k ≥ 2, Ek = 1 + O(q). Hence ord∞Ek = 0. For the cusp

s = ∞, by equation (2.3)

ord∞(R( f )) ≥ min{ord∞(Θ f ), ord∞( f ) + 1} ≥ ord∞( f ).

For the cusp s = 0, set γ =
(

0 −1
1 0

)

. By equation (2.8)

ord0(R( f )) = 4 ord∞(R( f ) |k+ℓ+1 γ)

≥ 4 min
{

ord∞(Θ( f |k γ)), ord∞( f |k γ) + 1
}

≥ 4 ord∞( f |k γ) = ord0( f ).

Similarly ord1/2(R( f )) ≥ ord1/2( f ). For all cusps s, iteration yields ords(R
f
i ) ≥

ords( f ). Equation (2.7) gives the conclusion.

https://doi.org/10.4153/CJM-2011-027-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-027-x


Non-Existence of Ramanujan Congruences in Modular Forms of Level Four 1291

3 The Tate Cycle

The following framework follows Jochnowitz ([10]). Let f ∈ Mk, k ∈ Z be such

that Θ f 6= 0. Clearly, by Fermat’s Little Theorem, Θ f = Θℓ f . The sequence

Θ f ,Θ2 f , . . . ,Θℓ f is called the Tate cycle1 of f . We say that f is in its own Tate

cycle if f = Θℓ−1 f . By Lemma 2.2, the filtration of the forms in the Tate cycle will

naturally rise and fall. Since the increases in filtration are bounded by ℓ+ 1 and since

the cycle is periodic, the aggregate decreases in filtration are bounded. In addition,

unless ω( f ) ≡ 0 mod ℓ, we have ω(Θ f ) ≡ ω( f ) + 1 mod ℓ, and so falls are both pre-

dictable and rare. Call Θi f a high point and Θi+1 f a low point of the Tate cycle when

ω(Θi f ) ≡ 0 mod ℓ. Then by Remark 2.3, ω(Θi+1 f ) = ω(Θi f ) + ℓ + 1 − s(ℓ − 1) ≡
1 + s mod ℓ with s ≥ 1.

Lemma 3.1 Let f ∈ Mk with ω( f ) = k = Aℓ + B, where 1 ≤ B ≤ ℓ. Suppose that

Θ f 6= 0.

(i) If ω( f ) ≡ 1 mod ℓ, then f is not in its Tate cycle.

(ii) A low point of a Tate cycle has filtration 2 mod ℓ if and only if the Tate cycle has

exactly one fall.

(iii) The Tate cycle of f has either one or two low points.

(iv) We never have ω(Θ j+1 f ) = ω(Θ j f ) + 2 with j ≥ 1. That is, the filtration never

rises by two inside a Tate cycle.

(v) Assume f = Θℓ−1 f is in its own Tate cycle, that f is a low point, and that there are

two low points. Let Θi1 f and Θi2 f be the high points with 1 ≤ i1 < i2 = ℓ − 2.

Let s1 and s2 be the sizes of the falls as in Remark 2.3. Then i1 = ℓ − B, i2 =

ℓ− 2, s1 = ℓ−B + 2, s2 = B− 1, and the filtrations of the high and low points are

ω(Θi1 f ) = ω( f ) + i1(ℓ + 1)

ω(Θi1+1 f ) = ω( f ) + (i1 + 1)(ℓ + 1) − s1(ℓ− 1) = ω( f ) + ℓ + 3 − 2B

ω(Θi2 f ) = ω( f ) + i2(ℓ + 1) − s1(ℓ− 1)

ω(Θℓ−1 f ) = ω(Θi2+1 f ) = ω( f ) + (i2 + 1)(ℓ + 1) − (s1 + s2)(ℓ− 1) = ω( f ).

Proof (i) If ω( f ) ≡ 1 mod ℓ, then by Lemma 2.2(i), for 0 ≤ i ≤ ℓ − 1 we have

ω(Θi f ) = ω( f ) + i(ℓ + 1) ≡ 1 + i mod ℓ. That is, ω( f ) < ω(Θ f ) < · · · < ω(Θℓ−1)

and so f 6= Θℓ−1 f .

(ii) If the low point of a Tate cycle, g, has ω(g) ≡ 2 mod ℓ, then by Lemma 2.2(i),

for 0 ≤ i ≤ ℓ−2 we have ω(Θig) = ω(g)+ i(ℓ+1) ≡ 2+ i mod ℓ. Then g, . . . ,Θℓ−2g

are ℓ− 1 distinct elements of the cycle. Hence, the next iteration must be Θℓ−1g = g.

Conversely, if there is only one fall, then there must be ℓ−2 increases in the filtration

before the single fall. Then by Lemma 2.2 the low point must have filtration 2 mod ℓ.
Note that in the case of a single drop in filtration, the s in Remark 2.3 is s = ℓ + 1.

1Some authors define the Tate cycle to be the sequence of filtrations of these forms. However, our
definition captures slightly more information and allows the following conveniences. We may now refer
to the forms themselves as being high (or low) points of the cycle; we may now refer to a form as being
in (or not in) its own cycle, and we may now reformulate statements about Ramanujan congruences as
statements about the elements of the Tate cycle.
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(iii) Assume that f has at least two low points. Label the high points of the Tate

cycle of f by Θi1 f , . . .Θit f , where 1 ≤ i1 < · · · < it ≤ ℓ − 1 and t ≥ 2. In order

to examine the change in filtration between consecutive high points, it is convenient

to let it+1 := i1 + ℓ − 1. By Remark 2.3 and part (ii) above, for each 1 ≤ j ≤ t we

have s j ≥ 2 such that ω(Θi j +1 f ) = ω(Θi j f ) + ℓ + 1 − s j(ℓ− 1) ≡ 1 + s j mod ℓ. Then

i j+1 − i j ≡ −s j mod ℓ. Considering the full Tate cycle

ω(Θ f ) = ω(Θℓ−1 f ) = ω(Θ f ) + (ℓ− 1)(ℓ + 1) −
t
∑

j=1

s j(ℓ− 1)

and so
∑

s j = ℓ + 1. Since t ≥ 2, for 1 ≤ j ≤ t we deduce i j+1 − i j = ℓ − s j from

the previous congruence. Now ℓ− 1 =
∑t

j=1(i j+1 − i j) = tℓ−
∑

s j = tℓ− (ℓ + 1)

which implies t = 2.

(iv) By Lemma 2.2(i), ω(Θ j+1 f ) = ω(Θ j f ) + 2 implies ω(Θ j f ) ≡ 0 mod ℓ. Then

ω(Θ j+1 f ) ≡ 2 mod ℓ. As in the proof of part (ii), the filtration increases for ℓ − 2

more times before falling. Hence ω(Θ j+1+ℓ−2 f ) > ω(Θ j f ) and so Θ j f 6= Θ j+ℓ−1 f ,

which implies Θ j f is not in its Tate cycle and hence j = 0.

(v) This part simply collects what we already know. Since ω( f ) ≡ B mod ℓ, by

Lemma 2.2, i1 = ℓ − B. The values of s j are found by recalling s1 + s2 = ℓ + 1 and

i2 − i1 = ℓ− s1 from the proof of part (iii). Remark 2.3 provides the filtrations.

Remark 3.2 By part (v) of the above lemma, if f is a low point of its Tate cycle, it

will be the lowest of two low points exactly when B ≥ 3 and

ω( f ) + (i1 + 1)(ℓ + 1) − s1(ℓ− 1) > ω( f ),

or equivalently when 3 ≤ B < ℓ+3
2

. If f is a low point with B =
ℓ+3

2
, then s1 =

s2 =
ℓ+1

2
and ω( f ) = ω(Θ(ℓ−1)/2 f ). Thus f and Θ(ℓ−1)/2 f are both low points.

Conversely, if f is one of two low points, each with the same filtration, then B =
ℓ+3

2
.

4 Congruences and Equivalent Properties

We generalize the work of Kiming and Olsson ([12]) to modular forms in Mk(Γ1(4)).

Definition A power series f =
∑

b(n)qn ∈ Z(ℓ)[[q]] has a congruence at a mod ℓ if

for all integers n, b(ℓn + a) ≡ 0 mod ℓ.

Lemma 4.1 Let f =
∑

b(n)qn and g =
(
∑

c(n)qn
)ℓ

≡
∑

c(n)qℓn 6≡ 0 mod ℓ. The

series f has a congruence at a mod ℓ if and only if f g has a congruence at a mod ℓ.

Proof Write f g =
∑

d(n)qn, where d(n) =
∑

b(n − iℓ)c(i). The result follows.

Remark 4.2 By equation (2.4), f has a congruence at 0 mod ℓ if and only if

f | Uℓ ≡ 0 mod ℓ ⇐⇒ ( f | Uℓ)
ℓ ≡ 0 mod ℓ ⇐⇒ f ≡ Θ

ℓ−1 f mod ℓ.
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Furthermore, f has a congruence at a mod ℓ if and only if q−a f has a congruence at

0 mod ℓ. Equivalently, f has a congruence at a mod ℓ if and only if

(q−a f ) | Uℓ ≡ 0 mod ℓ ⇐⇒ q−a f ≡ Θ
ℓ−1
(

q−a f
)

mod ℓ.

The following wonderful lemma comes Kimming and Olsson in the proof of [12,

Proposition 3].

Lemma 4.3 A modular form f ∈ Mk with Θ f 6= 0 has a congruence at a 6≡ 0 mod ℓ

if and only if Θ
ℓ+1

2 f ≡ −
(

a
ℓ

)

Θ f mod ℓ.

Proof Since Θ satisfies the product rule,

Θ
ℓ−1(q−a f ) ≡

ℓ−1
∑

i=0

(

ℓ− 1

i

)

(−a)ℓ−1−iq−a
Θ

i f mod ℓ ≡

ℓ−1
∑

i=0

aℓ−1−iq−a
Θ

i f mod ℓ

≡ aℓ−1q−a f +

ℓ−1
∑

i=1

aℓ−1−iq−a
Θ

i f mod ℓ.

A congruence at a 6≡ 0 mod ℓ is thus equivalent to 0 ≡
∑ℓ−1

i=1 aℓ−1−iq−aΘi f mod ℓ,

and hence to 0 ≡
∑ℓ−1

i=1 aℓ−1−iΘi f mod ℓ. By Lemma 2.2, for 1 ≤ i ≤ ℓ−1
2

we have

ω(Θi f ) ≡ ω(Θi+ ℓ−1
2 f ) ≡ ω( f ) + 2i mod ℓ− 1.

By Lemma 2.2(ii) and equation (2.6), the only way for the given sum to be zero is if

for all 1 ≤ i ≤ ℓ−1
2

,

aℓ−1−i
Θ

i f + aℓ−1−(i+ ℓ−1
2

)
Θ

i+ ℓ−1
2 f ≡ 0 mod ℓ,

which happens if and only if for each i

Θ
i+ ℓ−1

2 f ≡ −a
ℓ−1

2 Θ
i f ≡ −

(a

ℓ

)

Θ
i f mod ℓ,

which happens if and only if

Θ
ℓ+1

2 f ≡ −
(a

ℓ

)

Θ f mod ℓ.

5 Lifting Data to Characteristic Zero

Recall that we denote Mk := Mk(Γ1(4)) ∩ Z(ℓ)[[q]], with k ∈ Z. Consider the forms

E :=
η8(z)

η4(2z)
∈ M2,

F =
η8(4z)

η4(2z)
=

∑

n≥0

σ1(2n + 1)q2n+1 ∈ M2,

θ2
0 =

η10(2z)

η4(z)η4(4z)
=

(

∑

n∈Z

qn2

) 2

∈ M1.
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Note that ord0(E) = 1, ord∞(F) = 1, and ord1/2(θ2
0) = 1/2, and that these are the

only zeros of these forms. Since dim Mk = 1 + ⌊k/2⌋, one sees

(5.1) M2k = 〈Ek−iFi〉i=0,1,...,k M2k+1 = θ2
0〈E

k−iFi〉i=0,1,...,k

as Z(ℓ)-modules, where the basis vectors Ek−iFi = qi + · · · have rising orders at

∞. The following modification (partially) arranges for ascending orders at the other

cusps as well. Fix non-negative integers m∞,m0,m1/2 such that m∞ +m0 +m1/2 ≤ k,

and set

G := θ4
0 = E + 16F ∈ M2.

Define the following submodules of M2k depending on m = (m∞,m0,m1/2, 2k):

V m := { f ∈ M2k | for all cusps s, ords f ≥ ms}

= Em0 Fm∞Gm1/2 M2(k−m0−m∞−m1/2)

= 〈Ek−m∞−m1/2−iFm∞+iGm1/2〉i=0,1,...,k−m0−m∞−m1/2

W m
∞ := 〈Ek−iFi〉i=0,1,...m∞−1

W m
0 := 〈EiFk−i〉i=0,1,...m0−1

W m
1/2 := 〈Em0 Fk−m0−iGi〉i=0,1,...m1/2−1

(5.2)

so that each W m
s has ms basis forms, each with distinct order at s. In particular W m

s ⊆
{ f ∈ M2k | ords f < ms}. In addition, each form in (5.2) has a different order at ∞.

It follows that (5.2) has k linearly independent basis vectors and

M2k = V m ⊕W m
∞ ⊕W m

0 ⊕W m
1/2

as a Z(ℓ)-module. We have the following lifting result.

Proposition 5.1 Let m∞, m0, m1/2, and k be non-negative integers satisfying m∞ +

m0 + m1/2 ≤ k. Set m = (m∞,m0,m1/2, 2k). Let V m and the W m
s be submodules of

M2k(Γ1(4)) ∩ Z(ℓ)[[q]] as in (5.2).

(i) If f ∈ M2k has ords( f ) ≥ ms for all cusps s, then we can write f = g + ℓh, where

g ∈ V m and h ∈ W m
0 ⊕W m

∞ ⊕W m
1/2.

(ii) If f ′ ∈ M2k+1 has ords( f ′) ≥ ms for all cusps s, then f ′ = θ2
0 f for some f ∈ M2k

with ords( f ) ≥ ms for all cusps s. (Recall m1/2 ∈ Z.) There are g ∈ V m and

h ∈ W m
0 ⊕W m

∞ ⊕W m
1/2 such that f ′ = θ2

0g + ℓθ2
0h.

Proof Write f = g + h∞ + h0 + h1/2, where g ∈ V m and hs ∈ W m
s . We show each

hs = 0. (It is important to do this in the correct order.) If W m
∞ 6= ∅, then let h∞ =

∑m∞−1
i=0 aiE

k−iFi , with ai ∈ Z(ℓ). If any ai 6≡ 0 mod ℓ, then let t be the least such i. In

this case, h∞ ≡ at q
t + · · · mod ℓ has order t . By construction V m ⊕W m

0 ⊕W m
1/2 only

contains forms of order at least m∞ at the infinite cusp. Hence

m∞ ≤ ord∞( f ) = ord∞(h∞) = t < m∞,
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a contradiction. Thus h∞ = 0.

Now consider h0 =
∑m0−1

i=0 biE
iFk−i with bi ∈ Z(ℓ). If any bi 6≡ 0 mod ℓ, then let

t be the least such i. Then ord0(h0) = t ≤ m0 − 1. Since V m ⊕ W m
1/2 only contains

forms with order at least m0 at zero and since h∞ = 0,

m0 ≤ ord0( f ) = ord0(h0) = t < m0,

a contradiction. Thus h0 = 0. An analogous argument shows that if h1/2 6= 0, then

m1/2 ≤ ord1/2( f ) = ord1/2(h1/2) < m1/2,

another contradiction. For part (ii), recall that any f ′ ∈ M2k+1 must have ord1/2 f ′ ∈
Z + 1

2
and hence is divisible by θ2

0 . Apply part (i) to f = f ′/θ2
0 ∈ M2k.

We have the following Sturm-style result.

Corollary 5.2 (i) Let f ∈ M2k and ord0( f ) + ord∞( f ) + ord1/2( f ) > k. Then for

all cusps s, ords( f ) = +∞ and f = 0.

(ii) Let f ∈ M2k+1 and ord0( f ) + ord∞( f ) + ord1/2( f ) > k + 1/2. Then for all cusps

s, ords( f ) = +∞ and f = 0.

Proof (i) Suppose that f 6= 0. For each cusp s, choose integers 0 ≤ ms ≤ ords( f )

such that m0 + m∞ + m1/2 = k. Set m = (m∞,m0,m1/2, 2k) and apply Proposition

5.1. Write f = g + ℓh, with g ∈ V m and h ∈ W m
0 ⊕ W m

∞ ⊕ W m
1/2. For the param-

eters in m, dim V m = 1. Therefore, g = cEm0 Fm∞Gm1/2 ∈ M2k, c ∈ Z(ℓ). We now

have a contradiction since for any cusp s, ords( f ) = ords(g) = ms, contrary to our

assumption that
∑

ords( f ) > k.

(ii) Apply part (i) to f /θ2
0 ∈ M2k.

In the next section we use the following proposition to lift a low point of a Tate

cycle — a mod ℓ object — to a characteristic zero modular form with high orders of

vanishing at the cusps.

Proposition 5.3 Let k ′ and i be positive integers.

(i) Given f ∈ M2k ′ , let 2k = ω(Θi f ) and ms = ords f for each cusp s. Set m =

(m∞,m0,m1/2, 2k). Then there is g ∈ V m such that Θi f = g.

(ii) Given f ∈ M2k ′+1, let 2k + 1 = ω(Θi f ) and ms = ⌊ords f ⌋ for each cusp s. Set

m = (m∞,m0,m1/2, 2k). Then there is g ∈ V m such that Θi f = θ2
0g.

Proof Lemma 2.5 implies for each cusp s, ords(R
f
i ) ≥ ords( f ) ≥ ms. In the even

weight case, apply Proposition 5.1(i) to deduce Θi f ≡ R
f
i ≡ g mod ℓ for some g ∈

V m. In the odd weight case use Proposition 5.1(ii).

6 Congruences in Forms that Vanish only at the Cusps

This section considers modular forms which vanish only at the cusps. This condition

implies a lot about the Tate cycle. To begin with, if f ∈ Mk, Θ f 6= 0, and f vanishes

only at the cusps but is not congruent to a cusp form, then f | Uℓ 6= 0. This follows

from the more general proposition below.
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Proposition 6.1 Let k ∈ Z, let f ∈ Mk be non-zero, and suppose that for some cusp s,

ords( f ) ≡ 0 mod ℓ. Then f | Uℓ 6= 0.

Proof Since ords( f ) ≡ 0 mod ℓ, we have that ords(Θ f ) > ords( f ) because Θ

kills the leading term in the Fourier expansion at s. To be more precise, let γ =
(

1 0
0 1

)

,
(

0 −1
1 0

)

, or
(

1 0
2 1

)

depending on whether s = ∞, 0, or 1/2, respectively. Set

c = 4 if s = 0 and c = 1 otherwise. (Thus c is the width of the cusp s.) By examining

the orders of the summands in (2.8), we have

ords(R
f
1 ) = c · ord∞

(

R
f
1 |k+ℓ+1 γ

)

≥ 1 + ords f .

By the proof of Lemma 2.5, ords(R
f
ℓ−1) ≥ ords(R

f
1 ) ≥ 1 + ords f . Thus by Re-

mark 2.4 it is impossible for R
f
ℓ−1 = f . That is, ( f | Uℓ)ℓ = f −Θℓ−1 f 6= 0.

Proposition 6.2 Suppose that k ∈ Z, f ∈ Mk, f vanishes only at the cusps, and

Θ f 6= 0. Then for i ≥ 0, we have ω(Θi f ) ≥ ω( f ) = k. In particular, if f is a member

of its own Tate cycle, then f is a low point. If f is not a member of its own Tate cycle,

then Θ f is a low point.

Proof Since f ∈ Mk, obviously ω( f ) ≤ k. By Remark 2.1 and Corollary 5.2,

ω( f ) ≥ k and equality follows. For any i ≥ 1 and for all cusps s, by Lemma 2.5,

ords(R
f
i ) ≥ ords( f ). Hence

ord0(R
f
i ) + ord∞(R

f
i ) + ord1/2(R

f
i ) ≥ k/2.

By Corollary 5.2 we must have ω(Θi f ) ≥ k.

Suppose that f is not a member of its own Tate cycle and, for the sake of con-

tradiction, that Θ f = Θℓ f is not a low point. There are two possibilities: either

ω( f ) ≡ 0 mod ℓ or ω( f ) 6≡ 0 mod ℓ.
If ω( f ) ≡ 0 mod ℓ, then we have ω(Θ f ) = ω( f ) + ℓ + 1 − s(ℓ − 1) with s ≥ 1.

Since ω(Θ f ) ≥ ω( f ), we deduce that s = 1 and ω(Θ f ) = ω( f ) + 2 ≡ 2 mod ℓ. By

Lemma 3.1(ii) the Tate cycle has a single low point with filtration 2 mod ℓ, and the

low point must then be Θ f .

On the other hand, if ω( f ) 6≡ 0 mod ℓ, then since Θℓ f is not a low point, we have

ω( f ) + ℓ + 1 = ω(Θ f ) = ω(Θℓ f ) = ω(Θℓ−1 f ) + ℓ + 1.

In particular ω(Θℓ−1 f ) = ω( f ) = k. However, in this case dim V m = 1. Therefore,

Θℓ−1 f is a constant multiple of f , which contradicts the assumption that f is not in

its Tate cycle (since Θ commutes with scalar multiplication).

The following two corollaries show the differences between congruences at a 6≡
0 mod ℓ and at 0 mod ℓ.

Corollary 6.3 Suppose that k ∈ Z, f ∈ Mk, and f vanishes only at the cusps. Suppose

further that Θ f 6= 0 and ω( f ) = Aℓ + B, with 1 ≤ B ≤ ℓ. If f has a congruence at

a 6≡ 0 mod ℓ, then either
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(i) B =
ℓ+1

2
and f does not have a congruence at 0 mod ℓ, or

(ii) B =
ℓ+3

2
and f does have a congruence at 0 mod ℓ.

Proof If f does not have a congruence at 0 mod ℓ, then by Remark 4.2, f is not a

member of its Tate cycle. If B 6= ℓ, then by Proposition 6.2, Θ f is a low point and

ω(Θ f ) ≡ B + 1 mod ℓ. By Lemma 4.3,

(6.1) Θ
ℓ+1

2 f ≡ ±Θ f mod ℓ,

and ω(Θ
ℓ+1

2 f ) = ω(Θ f ) ≡ B + 1 mod ℓ. Now Θℓ−1 f is a high point since Θℓ f ≡
Θ f mod ℓ is a low point. By (6.1), we have

Θ
ℓ−1 f ≡ ±Θ

ℓ−1
2 f mod ℓ,

and so Θ
ℓ+1

2 f is also a low point. Since it has the same filtration as the other low

point Θ f , by Remark 3.2, B + 1 ≡ ℓ+3
2

mod ℓ. From the restrictions on B, we deduce

B =
ℓ+1

2
.

If B = ℓ, then ω(Θ f ) = ω( f )+ℓ+1−s(ℓ−1) for s ≥ 1. But by Proposition 6.2 we

deduce s = 1 andω(Θ f ) ≡ 2 mod ℓ is a low point. Hence by Lemma 3.1 the filtration

has exactly one low point. This contradicts Lemma 4.3, which implies ω(Θ
ℓ+1

2 f ) =

ω(Θ f ).

Similarly, if f does have a congruence at 0 mod ℓ, it is a low point of its Tate cycle

by Proposition 6.2. Remark 3.2 and Lemma 4.3 show there are two equally low low

points and B =
ℓ+3

2
.

Corollary 6.4 Suppose that k ∈ Z, f ∈ Mk, f vanishes only at the cusps, and Θ f 6= 0.

Suppose further that ω( f ) = Aℓ + B, where 1 ≤ B ≤ ℓ. If B ≥ ℓ+5
2

, then f | Uℓ 6= 0.

Proof If f | Uℓ = 0, then f is a member of its Tate cycle. Proposition 6.2 implies f

is the lowest low point of its cycle, but Remark 3.2 shows that the lowest low point

must have 1 ≤ B ≤ ℓ+3
2

.

The following two corollaries eliminate the chance for Ramanujan congruences

at all but finitely many primes ℓ in half-integral weight forms vanishing only at the

cusps, and in the inverses of integral-weight forms vanishing only at the cusps, re-

spectively.

Corollary 6.5 Let λ ∈ N, let f ∈ Mλ+1/2, and suppose that f vanishes only at the

cusps. If λ ≥ 1, then f has no congruences for ℓ > 2λ + 1. If λ = 0, then f is a scalar

multiple of θ0 =
∑

qn2

and clearly has congruences at a mod ℓ, where
(

a
ℓ

)

= −1.

Proof In the case λ ≥ 2, by Lemma 4.1 it suffices to show f ℓ+1 ∈ M(λ+1/2)(ℓ+1) has no

congruences. Since f ℓ+1 vanishes only at the cusps and has integer weight, Proposi-

tion 6.2 implies that ω( f ℓ+1) = ( ℓ+1
2

)(2λ+1). It follows that ω( f ℓ+1) ≡ ℓ+2λ+1
2

mod ℓ.

Now if ℓ > 2λ + 1, then it suffices to take B =
ℓ+2λ+1

2
< ℓ in Corollaries 6.3 and 6.4.

If λ = 0 or 1, then f is not a cusp form and Proposition 6.1 precludes congruences

at 0 mod ℓ. By Corollary 6.3, in the subcase λ = 1 there are no congruences at all.

The subcase λ = 0 is obvious.
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Corollary 6.6 Let k ∈ Z, and let f ∈ Mk. If f vanishes only at the cusps, then f −1

has no congruences for any prime ℓ > 2k + 3.

Proof By Lemma 4.1, the power series f −1 has the same congruences as f ℓ−1 ∈
Mk(ℓ−1). Since f ℓ−1 vanishes only at the cusps, Proposition 6.2 guarantees that its

weight and filtration agree. That is, ω( f ℓ−1) = k(ℓ − 1) ≡ ℓ − k mod ℓ. Now if we

assume that ℓ > 2k+3, then we get ℓ+3
2
< ℓ−k < ℓ. Take B = ℓ−k in Corollaries 6.3

and 6.4.

The congruences of the inverse of a half-integral weight modular form are a bit

trickier to find but will always yield to an extension of the Ahlgren–Boylan technique

that we illustrate in the following section.

7 Proof of Theorem 1.4

The case of inverses of integral-weight modular forms is covered by Corollary 6.6.

Thus, let f ∈ Mk/2 with k ≥ 3 odd and vanishing only at the cusps. Such f must be

of the form

f = cEm0 Fm∞θ
4m1/2

0 ,

where c ∈ Z(ℓ), m0,m∞ ∈ Z≥0, m1/2 ∈ 1
4

Z≥0, ords f = ms, and m0 + m∞ + m1/2 =

k/4. Without loss of generality, assume c = 1. We provide a method to find all of

the finitely many possible primes ℓ ≥ 5 for which there may be a Ramanujan con-

gruence of the series f −1 ∈ Z(ℓ)[[q]]. Since modular forms on Γ1(4) are completely

determined by their first few coefficients, it is always a finite computation to check if

any particular prime ℓ has Ramanuajan-type congruences. In this section we elimi-

nate all large ℓ. In fact, we assume ℓ > (k + 1)(k + 3).

By Lemma 4.1 it suffices to find the congruences for f ℓ−1 ∈ Mk(ℓ−1)/2. Since f

vanishes only at the cusps, the same is true for f ℓ−1. By Lemma 2.2 and Proposi-

tion 6.2, ω( f ℓ−1) = k( ℓ−1
2

) ≡ ℓ−k
2

mod ℓ.

Let us dispense with the case when Θ f ℓ−1 = 0. Compute

Θ f ℓ−1 ≡ ΘEm0(ℓ−1)Fm∞(ℓ−1)θ
4m1/2(ℓ−1)

0 mod ℓ

≡ −m∞qm∞(ℓ−1) − (8m1/2 − 8m0)(1 − m∞)qm∞(ℓ−1)+1

+ (32m2
0 + 8m0 − 64m0m1/2 + 8m1/2 + 32m2

1/2)(2 − m∞)qm∞(ℓ−1)+2

+ · · · mod ℓ.

If Θ f ℓ−1 = 0, then ℓ divides m∞ < k < ℓ. Thus m∞ = 0. From the coefficient of

qm∞(ℓ−1)+1 above we deduce m1/2 ≡ m0 mod ℓ. Hence ℓ divides m1/2 − m0 ≤ k < ℓ,
and so we deduce m1/2 = m0. From the coefficient of qm∞(ℓ−1)+2 we now conclude

m0 ≡ 0 mod ℓ and in fact m0 = 0. In particular, f = 1 contrary to the choice of f .

Therefore, Θ f ℓ−1 6= 0.

Suppose that f ℓ−1 has a congruence at a 6≡ 0 mod ℓ. Then by Corollary 6.3,
ℓ−k

2
≡ ℓ+1

2
or ℓ+3

2
mod ℓ. This can only happen for the finitely many prime divisors

of (k + 1)(k + 3).
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Hence, if ℓ > (k + 1)(k + 3), then it is only possible to have a congruence at

0 mod ℓ. Suppose there is such a congruence. That is, f ℓ−1 is a member of its own

Tate cycle, and by Proposition 6.2 f ℓ−1 is a low point. Since ℓ > k, when we write

ω( f ℓ−1) = Aℓ + B, we can take 0 < ℓ−k
2

= B < ℓ. By Lemma 3.1(v), the other low

point has filtration

ω
(

Θ
ℓ+k+2

2 f ℓ−1
)

= ω( f ℓ−1) + k + 3 = k
( ℓ− 1

2

)

+ k + 3.

By Proposition 5.3, there is some g ∈ Mk( ℓ−1
2

)+k+3 such that Θ
ℓ+k+2

2 f ℓ−1 = g and

for each cusp s, ordsg ≥ ords f ℓ−1. In particular, g/ f ℓ−1 ∈ Mk+3. We may use any

convenient basis to represent Mk+3. For example,

Θ
ℓ+k+2

2 f ℓ−1 ≡ g ≡ f ℓ−1(g/ f ℓ−1) mod ℓ ≡ f ℓ−1

( (k+3)/2
∑

i=0

aiE
k+3

2
−iFi

)

mod ℓ,

where a priori ai ∈ Z(ℓ), but working mod ℓ allows one to take ai ∈ Z. By Proposi-

tion 6.1, m∞ = ord∞ f ≥ 1. Since the Θ operator satisfies the product rule,

Θ
ℓ+k+2

2 f ℓ−1 ≡ Θ
ℓ+k+2

2

{

f −1(qℓm∞ + O(qℓ(m∞+1))
}

mod ℓ

≡ qℓm∞Θ
ℓ+k+2

2 f −1 + O(qℓm∞+ℓ−m∞) mod ℓ,

and similarly

f ℓ−1 ≡ qℓm∞ f −1 + O(qℓm∞+ℓ−m∞) mod ℓ,

implying

(7.1) Θ
ℓ+k+2

2 f −1 ≡ f −1

( (k+3)/2
∑

i=0

aiE
k+3

2
−iFi

)

+ O(qℓ−m∞) mod ℓ.

Invert f as a Laurent series with integer coefficients. Write f −1 =
∑∞

i=−m∞

biq
i .

Noticing that Θ(ℓ−1)/2 acts by twisting each coefficient by the Legendre symbol, we

see

(7.2) Θ
ℓ+k+2

2 f −1 ≡
( ·

ℓ

)

⊗Θ
k+3

2 f −1 ≡

ℓ−m∞−1
∑

i=−m∞

(

i

ℓ

)

bi i
k+3

2 qi + O(qℓ−m∞) mod ℓ.

Truncate the series in (7.2) to keep only the first (k + 5)/2 terms. We will solve for the

integers ai in (7.1), but this requires making choices for the (finitely many) Legendre

symbols in this initial segment. For each tuple of possible choices for these Legendre

symbols, solve for the ai , and proceed as follows.

Lemma 7.1 proves there must be some coefficient at which they are not equal, only

congruent. The difference between these two coefficients must be divisible by ℓ. (The

prime ℓ must also satisfy the choices for the Legendre symbol.)
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To summarize, for any half-integer weight modular form f , we can always com-

plete these calculations to arrive at a finite list of possible primes ℓ for which there is

a Ramanujan congruence. After checking each of these primes individually, one will

have found all of the Ramanujan congruences.

Lemma 7.1 Let k ≥ 3 be odd, and let ℓ > k + 4 be prime. For any non-zero f ∈
Mk(ℓ−1)/2 and non-zero g ∈ Mk(ℓ−1)/2+k+3, Θ(ℓ+k+2)/2 f 6= g.

Proof We adapt [4, Proposition 3.3] to suit our specific needs. The quasi-modular

form Θ(ℓ+k+2)/2 f is of the form

Θ
(ℓ+k+2)/2 f (τ ) =

ℓ+k+2
2
∑

j=0

f j(τ )E
j
2(τ ),

where f j ∈ Mk(ℓ−1)/2+ℓ+k+2−2 j . Assume g(τ ) =
∑

f j(τ )E
j
2(τ ) and apply τ 7→ τ

4τ+1
.

Recall E2( τ
4τ+1

) = (4τ + 1)2E2(τ ) − 24i
π (4τ + 1). Letting α := − 24i

π , we have for all

τ ∈ H,

(4τ + 1)k( ℓ−1
2 )+k+3g(τ ) =

ℓ+k+2
2
∑

j=0

(4τ + 1)k( ℓ−1
2 )+ℓ+k+2−2 j f j(τ )

(

(4τ + 1)2E2(τ ) + α(4τ + 1)
) j
,

and hence for all τ ∈ H,

0 = (4τ + 1)k+3g(τ ) −

ℓ+k+2
∑

m=
ℓ+k+2

2

(4τ + 1)m

(

∑

0≤ j≤ ℓ+k+2
2

0≤s≤ j
j=ℓ+k+2+s−m

(

j

s

)

α j−s f j(τ )Es
2(τ )

)

Since g(τ ), f j(τ ) and E2(τ ) are all invariant under τ 7→ τ + 1, the polynomial

zk+3g(τ ) −

ℓ+k+2
∑

m=
ℓ+k+2

2

zm

(

∑

0≤ j≤ ℓ+k+2
2

0≤s≤ j
j=ℓ+k+2+s−m

(

j

s

)

α j−s f j(τ )Es
2(τ )

)

has infinitely many zeros z = 4τ + 1, 4τ + 5, 4τ + 9, . . . . Therefore the coefficients

must be zero. By the assumption ℓ > k+3, the index m is never k+2. Hence g(τ ) = 0,

contrary to assumption.

8 Proofs of Theorems

Proof of Theorem 1.5 The cusp forms of least weight on Γ1(4) are generated by

f := θ0FE ∈ S9/2(Γ1(4)).
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By Lemma 4.1 the series f −1 will have a congruence at a mod ℓ if and only if f ℓ−1 has

one at a mod ℓ. Since ω( f ℓ−1) =
9
2
(ℓ − 1) ≡ ℓ−9

2
mod ℓ, by Corollary 6.3 there can

be congruences at a 6≡ 0 mod ℓ only if ℓ = 3 or 5.

In the first case, the Sturm bound ([21]) implies that only a short computation is

needed to see that f 2 ≡ −Θ f 2 mod 3 and so f 2 ≡ Θ2 f 2 mod 3. By Lemma 4.3, f −1

has congruences at 0 mod 3 and 1 mod 3. In the second case, a finite computation

shows that f −1 only has congruences for ℓ = 5 at 2 mod 5 and 3 mod 5. Although our

machinery does not apply for ℓ = 2, a short calculation shows f −1 has a congruence

at 0 mod 2. An inspection of the coefficients of q7, q13, and q22 in f −1 shows there are

no congruences for ℓ = 7, 11, 13. We now move on to ℓ ≥ 17.

Suppose that f ℓ−1 has a congruence at 0 mod ℓ. The rest of this proof follows

Section 7, so we only provide the explicit calculations. Now f ℓ−1 is a low point of its

Tate cycle, and the other low point is ω(Θ
ℓ+11

2 f ℓ−1) = ω( f ℓ−1) + 12. Hence

Θ
ℓ+11

2 f ℓ−1 ≡ f ℓ−1

( 6
∑

i=0

aiE
6−iFi

)

mod ℓ,

implying

(8.1) Θ
ℓ+11

2 f −1 ≡ f −1

( 6
∑

i=0

aiE
6−iFi

)

+ O(qℓ−1) mod ℓ.

Invert f as a power series with integer coefficients to get

f −1
= q−1+6+24q+80q2+240q3+660q4+1696q5+4128q6+9615q7+21560q8+O(q9).

We compute

Θ
ℓ+11

2 f −1 ≡
( ·

ℓ

)

⊗Θ
6 f −1 mod ℓ

≡

(

−1

ℓ

)

q−1 + 24q +

(

2

ℓ

)

5120q2 +

(

3

ℓ

)

174960q3 + 2703360q4

+

(

5

ℓ

)

26500000q5 + O(q6) mod ℓ.

(8.2)

For each of the 24 choices of signs for the Legendre symbols, a computer can easily

compute the integers ai in equation (8.1). Comparing the coefficients of q6, q8, and q9

in equation (8.1) leads to a contradiction. For example, suppose ℓ satisfies
(

−1
ℓ

)

=
(

2
ℓ

)

= −
(

3
ℓ

)

= −
(

5
ℓ

)

= 1. One computes that a0 = 1, a1 = 42, a2 = 612,

a3 = 8656, a4 = −76608, a5 = 1074912, and a6 = −15155584. Hence the right side

of equation (8.1) is

q−1 + 24q + 5120q2 − 174960q3 + 2703360q4 − 26500000q5 − 29891712q6

− 911605665q7 − 2744268800q8 − 18190442184q9 − 59662291200q10

− 254616837584q11 + O(q12),
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whereas the left side may be computed as in equation (8.2):

q−1 + 24q + 5120q2 − 174960q3 + 2703360q4 − 26500000q5 − 192595968q6

± 1131195135q7 + 5651824640q8 + 24858684216q9 − 98592000000q10

± 358875741136q11 + O(q12).

The ± come from
(

7
ℓ

)

and
(

11
ℓ

)

. Since these power series are congruent mod ℓ, so

are the coefficients of q6 and q8. But −29891712 ≡ −192595968 mod ℓ implies ℓ =
2, 3, 11, 13 or 2963, while −2744268800 ≡ 5651824640 mod ℓ implies ℓ = 2, 5, 7 or

117133. Since we have assumed ℓ ≥ 17, we have reached a contradiction.

Proof of Theorem 1.6 Let g = θ0E2F ∈ S13/2(4). Now g−1 will have a congru-

ence if and only if gℓ−1 does. Since ω(gℓ−1) ≡ ℓ−13
2

mod ℓ, Corollary 6.3 implies

there can only be congruences with a 6≡ 0 mod ℓ if ℓ = 2 or 7. For ℓ = 7, one

checks that Θ4g6 ≡ −Θg6 and by Lemma 4.3, g6 and hence g−1 have congruences at

1, 2, 4 mod 7.

Elementary calculations show no congruences for 0 mod ℓ when 3 ≤ ℓ ≤ 13. For

ℓ ≥ 17, if gℓ−1 has a congruence at 0 mod ℓ, then it is the lowest low point of its

Tate cycle and the other low point is ω(Θ
ℓ+15

2 gℓ−1) = ω(gℓ−1) + 16. Analogously to

Theorem 1.5,

Θ
ℓ+15

2 g−1 ≡ g−1

( 8
∑

i=0

biE
8−iFi

)

+ O(qℓ) mod ℓ.

In the case where
(

−1
ℓ

)

=
(

2
ℓ

)

=
(

3
ℓ

)

=
(

5
ℓ

)

=
(

7
ℓ

)

= −1, solving for the bi

yields b0 = −1, b1 = −50, b2 = −788, b3 = −175024, b4 = −26446064, b5 =

539142592, b6 = −13397175040, b7 = 271206416128, and b8 = −5171059369600.

Examining the coefficients of q8, . . . , q12 in both sides of the previous equivalence

precludes all possible primes ℓ ≥ 17. The situation for each of the 25 choices for the

Legendre symbols is similar.

The proofs of the remaining theorems all require the same essential tool. For

d = 1, 2, 4, although η(dz) 6∈ M1/2, by [16, Theorems 1.64 and 1.65] we have

η(dz)24 ∈ M12. Since 24 | ℓ2 − 1 when ℓ ≥ 5, the strategy in the following proofs is

to use Lemma 4.1 to replace occurrences of η(dz)−1 with η(dz)ℓ
2−1 and occurrences

of η(dz) with η(dz)(ℓ2−1)(ℓ−1). This does not change the filtration mod ℓ. Set

δ = δℓ :=
ℓ2 − 1

24
.

Proof of Theorem 1.2 The overpartition generating function is

P(z) =
∑

p(n)qn
=

∞
∏

n=1

(

1 + qn

1 − qn

)

=
η(2z)

η(z)2
.
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The prime 3 may be checked by direct computation, so we let ℓ ≥ 5 be prime. By

Lemma 4.1, P(z) has a congruence at a mod ℓ if and only if there is a congruence at

a mod ℓ for

f := η(2z)(ℓ−1)(ℓ2−1)η(z)2(ℓ2−1)
=
(

η(2z)24(ℓ−1)η(z)48
)

ℓ2−1
24 ∈ M (ℓ−1)(ℓ+1)2

2

.

Since ord∞ f =
ℓ(ℓ2−1)

12
, by Proposition 6.1 there is no congruence at 0 mod ℓ. Since

ω( f ) ≡ ℓ−1
2

mod ℓ, by Corollary 6.3 there can only be congruences at a mod ℓ if
ℓ−1

2
≡ ℓ+1

2
mod ℓ, which never happens for ℓ ≥ 5.

Proof of Theorem 1.3 By [6], the crank difference generating function is

∑

n≥0

(

Me(n) − Mo(n)
)

qn
=
∏

n≥1

(1 − qn)3

(1 − q2n)2
= q1/24 η(z)3

η(2z)2
.

By Lemma 4.1, when ℓ ≥ 5 this has a congruence at a mod ℓ if and only if

(

q−1/24η(2z)2η(z)3(ℓ−1)
) ℓ2−1

has a congruence at a mod ℓ. This is equivalent to

f := η(z)3(ℓ−1)(ℓ2−1)η(2z)2(ℓ2−1) ∈ M (ℓ2−1)(3ℓ−1)
2

having a congruence at a + δmod ℓ, where we recall δ := ℓ2−1
24

. Since f vanishes only

at the cusps, by Proposition 6.2, ω( f ) = (ℓ2−1)(3ℓ−1)
2

≡ ℓ+1
2

mod ℓ.

The fact that ω( f ) ≡ ℓ+1
2

mod ℓ is unfortunate. This is the only time that Corol-

lary 6.3 does not rule out congruences at a 6≡ 0 mod ℓ. However, Lemma 4.3 guaran-

tees that if there is a congruence at a mod ℓ, then in fact there is a congruence at all

b mod ℓ such that
(

a+δ
ℓ

)

=
(

b+δ
ℓ

)

.

We now apply the method of Section 7 to find all ℓ such that f has a congruence

at 0 mod ℓ. Assume f | Uℓ ≡ 0 mod ℓ. Then f is a low point of its Tate cycle, and

by Lemma 3.1, the other low point has filtration ω( f ) + 2. Hence by Proposition 5.3,

(Θ
ℓ+1

2 f )/ f ∈ M2. Since

f ≡ q
ℓ3−ℓ

8

(

qδ
∏ (1 − qn)3

(1 − q2n)2

)

+ O
(

qℓ+δ+ ℓ3−ℓ
8

)

mod ℓ,

and since Θ is linear and satisfies the product rule, we obtain

Θ
ℓ+1

2 f ≡ q
ℓ3−ℓ

8 Θ
ℓ+1

2

(

qδ
∏ (1 − qn)3

(1 − q2n)2

)

+ O
(

qℓ+δ+ ℓ3−ℓ
8

)

mod ℓ.

Thus (Θ
ℓ+1

2 f )/ f is congruent to

Θ
ℓ+1

2 (qδ − 3qδ+1 + 2qδ+2 + · · · ) · (qδ − 3qδ+1 + 2qδ+2 + · · · )−1 mod ℓ(8.3)

≡ δ
ℓ+1

2 +
(

3δ
ℓ+1

2 − 3(δ + 1)
ℓ+1

2

)

q+
(

7δ
ℓ+1

2 − 9(δ + 1)
ℓ+1

2 + 2(δ + 2)
ℓ+1

2

)

q2 + · · ·mod ℓ.
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Since this is congruent to a weight two form, and since the basis form F = q+4q3+· · ·

lacks a q2 term, we compare the coefficients of q2 in δ
ℓ+1

2 E = δ
ℓ+1

2 (1 − q + 24q2 + · · · )

and in equation (8.3) to deduce 24δ
ℓ+1

2 ≡ 7δ
ℓ+1

2 − 9(δ + 1)
ℓ+1

2 + 2(δ + 2)
ℓ+1

2 mod ℓ.

Multiplying by 24
ℓ+1

2 , we find

(8.4) −17

(

−1

ℓ

)

≡ −207

(

23

ℓ

)

+ 94

(

47

ℓ

)

mod ℓ.

That is, 17 ≡ ±207 ± 94 mod ℓ. The only possible ℓ ≥ 5 are 5, 13, 53, and 71. How-

ever, only 5 and 53 satisfy (8.4). By the equivalences above, f having a congruence at

0 mod ℓ is equivalent to the crank difference function having a congruence at a mod ℓ
with 24a ≡ 1 mod ℓ. For the primes 5 and 53, this means a = 4 and 42, respectively.

We have recovered the congruence at 4 mod 5 of [6]. Calculations reveal that the

coefficient of q42 precludes a congruence at 42 mod 53.

Proof of Theorem 1.1 Calculations show there is no congruence for ℓ = 3. Thus we

take ℓ ≥ 5 prime. Equation (10.6) of [3] says the generating function of cφ2(n) is

CΦ2(z) =
θ0(z)

q−1/12η(z)2
.

Now CΦ2 will have a congruence at a mod ℓ if and only if (q−1/12θ0(z)ℓ−1η(z)2)ℓ
2−1

has a congruence at a mod ℓ. This happens if and only if

f := θ0(z)(ℓ−1)(ℓ2−1)η(z)2(ℓ2−1) ∈ M(ℓ−1)(ℓ+1)2/2

has a congruence at a + 2δmod ℓ. Since f vanishes only at the cusps, Proposition 6.2

implies ω( f ) =
(ℓ−1)(ℓ+1)2

2
≡ ℓ−1

2
mod ℓ. By Corollary 6.3, there are no congruences

at a 6≡ 0 mod ℓ when ℓ ≥ 5.

Suppose that f has a congruence at 0 mod ℓ. Then by Proposition 6.2, f is a low

point of its Tate cycle, and by Lemma 3.1 the other low point has filtration ω( f ) + 4.

Hence (Θ
ℓ+3

2 f )/ f ∈ M4 by Proposition 5.3. We compute

f ≡ q2δθ0(z)
∏

(1 − q2n)−2 + O(qℓ+2δ) mod ℓ

≡ q2δ + 4q2δ+1 + 9q2δ+2 + 20q2δ+3 + · · · mod ℓ

f −1 ≡ q−2δ − 4q−2δ+1 + 7q−2δ+2 − 12q−2δ+3 + · · · mod ℓ

and

Θ
ℓ+3

2 f ≡ (2δ)
ℓ+3

2 q2δ + 4(2δ + 1)
ℓ+3

2 q2δ+1 + 9(2δ + 2)
ℓ+3

2 q2δ+2

+ 20(2δ + 3)
ℓ+3

2 q2δ+3 + · · · mod ℓ.
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Hence we compute

(

Θ
ℓ+3

2 f
)

f −1 ≡ (2δ)
ℓ+3

2 +
(

−4(2δ)
ℓ+3

2 + 4(2δ + 1)
ℓ+3

2

)

q

+
(

7(2δ)
ℓ+3

2 − 16(2δ + 1)
ℓ+3

2 + 9(2δ + 2)
ℓ+3

2

)

q2

+
(

−12(2δ)
ℓ+3

2 + 28(2δ + 1)
ℓ+3

2 − 36(2δ + 2)
ℓ+3

2 + 20(2δ + 3)
ℓ+3

2

)

q3

+ · · ·mod ℓ.

(8.5)

Recalling our basis (5.1), we conclude

(8.6)
(

Θ
ℓ+3

2 f
)

f −1 ≡ (2δ)
ℓ+3

2 E2 +
(

12(2δ)
ℓ+3

2 + 4(2δ + 1)
ℓ+3

2

)

EF

+
(

−9(2δ)
ℓ+3

2 + 16(2δ + 1)
ℓ+3

2 + 9(2δ + 2)
ℓ+3

2

)

F2.

Multiplying the coefficients of q3 in both (8.5) and (8.6) by 12
ℓ+3

2 leads to

0 ≡ 100(−1)
ℓ+3

2 − 84(11)
ℓ+3

2 − 36(23)
ℓ+3

2 + 20(35)
ℓ+3

2 mod ℓ

≡ 100

(

−1

ℓ

)

− 10164

(

11

ℓ

)

− 19044

(

23

ℓ

)

+ 24500

(

35

ℓ

)

mod ℓ(8.7)

≡ ±100 ± 10164 ± 19044 ± 24500 mod ℓ.(8.8)

The only primes ℓ ≥ 5 satisfying (8.8) are 5, 13, 19, 31, 59, 97, 131, 601, and 6701.

It is easily checked that only ℓ = 5 satisfies (8.7). That is, we have recovered the

congruence (1.3) and proved there are no others.
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