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ON CONTINUITY AND SELECTIONS OF MULTIFUNCTIONS

PANDELIS DODOS

The notions of a Baire-l and a weak Baire-l multifunction are defined and a striking
analogy between Baire-l multifunctions and classical Baire-l functions is established.
A selection theorem is presented which asserts that if X is a metrisable space, Y a
Polish space and F : X -> 2y\{0} a closed-valued, weak Baire-l multifunction, then
F admits a Baire-l selection. Using the machinery developed we prove that if X is
a Banach space with separable dual, then every weak* usco, defined on a completely
metrisable space Z, which values are weakly* compact subsets of the dual, is norm
lower semicontinuous on a dense Gg set.

1. INTRODUCTION

The purposes of this paper are two:

(i) to indicate that certain facts about generic continuity of multifunctions can
be derived from the theory of Baire-l functions;

(ii) to demonstrate that a large class of multifunctions (which includes the
upper semicontinuous and lower semicontinuous ones) admit a Baire-l se-
lection. It is organised as follows.

In Section (2) some necessary mathematical background is presented. We also give
a number of technical lemmas, which concern the behaviour of the weak and the strong
inverse image of a multifunction, and are crucial for our future considerations.

In Section (3) the notions of Baire-l and weak Baire-l multifunction are defined
in the context of metrisable spaces, via complexity of weak and strong inverse images of
open sets (both definitions are equivalent to the classical definition of Baire-l functions for
single-valued multifunctions). We show that every upper semicontinuous multifunction is
a Baire-l multifunction and every lower semicontinuous is a weak Baire-l multifunction.
When Y is a separable metrisable space, we prove that a compact-valued multifunction
is a Baire-l multifunction if and only if it is a Baire-l function, viewed as a single-valued
function which takes values in the Vietoris hyperspace topology of compact subsets of
Y. This is a key result which permits us to derive standard facts about continuity of
multifunctions almost directly.
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408 P. Dodos [2]

In Section 4 we turn our attention to the possibility of finding "good" selections of
Baire-1 multifunctions. The main theorem of this section states that if X is a metrisable
space, Y a Polish space and F a weak Baire-1 closed-valued multifunction, then F admits
a Baire-1 selection. It is modelled after the Kuratowski-Ryll Nardzewski selection theorem
and it is based upon the generalised reduction property of Fa sets. We should point out
that there exist a large number of papers in the literature dealing with approximate or
generically continuous selections of multifunctions. We do not intend to survey all of
them. We refer to [2] or to [5] for more information. However we should notice that our
selection theorem is general enough for three reasons:

(i) it is valid for a large class of multifunctions (which essentially includes the

upper and lower semicontinuous ones);

(ii) it unifies the approach;

(iii) it does not require linear structure on the range space (so it can be applied
at the lack of convexity).

In Section 5 we consider weak* uscos (weak* cuscos) defined on a completely metris-
able space Z and taking values in the weakly* compact (convex) subsets of the dual of
a Banach space. We prove that if X is a Banach space with a separable dual X* and
F : Z -» Pwk{X^m) a weak* usco, then F is norm lower semicontinuous on a dense G$ set.
If in addition F has strongly compact .values, then we show that F is norm continuous
on a dense Gs set. Our proofs are essentially based upon the technics developed in the
previous two sections, and especially on the results of Section 3.

In the last section we show that our selection theorem is sharp in the following sense:
it is essentially equivalent to the generalised reduction property of Fa sets. Specifically
we prove the following: let X be a metrisable space. If for any Polish space Y, any weak
Baire-1 multifunction F : X —> P/(Y) admits a Baire-1 selection, then the class of FB

subsets of X has the generalised reduction property.

2. MATHEMATICAL PRELIMINARIES

For any topological space X, Pj{X) and Pk{X) denote the collections of all nonempty
closed and nonempty compact subsets of X respectively. As usual, by N(x) we denote
the filter of neighbourhoods of x € X.

Let us recall some definitions from multivalued analysis. Let X and Y be HausdorfT
topological spaces. For any multifunction (set-valued map) F : X —> 2Y\{$} and any
set A C Y one defines the weak inverse image of A under F by F~(A) = [x € X :
F(x) f) A ^ 0}. Similarly the strong inverse image of A under F is defined by F+(A) —

{x £ X : F(x) C A}. It is easy to see that for any A C Y it holds that F~(A) =

(F+(AC))C. In addition if {Ai}ieI C Y we have that:

(0 ^-(U -4.) = U F-{*i), F-{f) Ai) C 0 F-(Ai);
i€I i€/ 16/ «6/
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(ii) F+(U Ai) D U F+(A{), F+(H A) =

The following definitions are standard.

DEFINITION 1: Let F : X —> 2K\{0} be a multifunction.

(i) F is said to be upper semicontinuous if and only if F+(U) is open in X,

for every U C Y open,

(ii) F is said to be lower semicontinuous if and only if F~(U) is open in X, for

every U CY open,

(iii) F is said to be continuous if and only if both F+(U) and F~(U) are open
in X, for every U C Y open.

We can have local concepts of the above notions. So F is said to be upper semicon-
tinuous at x0 € X if and only if given U CY open such that F(xQ) C U we can find
V € N(x0) such that F(V) C [/ (that is, F+([/) D V). Similarly one defines the local
notions of lower semicontinuity and continuity. For more information about continuity
concepts of multifunctions, one can consult [5].

We widely use the definitions and notations from descriptive set theory. So for a
metrisable space X by £° (X) we denote the open subsets of X, by 11°(X) the closed, by
S § ( ^ ) the Fa, by n§(X) the Gs, et cetera. For more information we refer to [6].

Recall that if X and Y are metrisable spaces, then a function / : X —> Y is said
to be a Baire-1 function if and only if f~l{U) € *£°(X) for every U CY open. Baire-1
functions have been studied extensively and have found remarkable applications (see for
instance [11]). Of course one can go beyond the class of Baire-1 functions and define
higher classes of Baire functions. So recursively, for 1 < £ < wi, we define a function
/ : X —> Y to be a Baire-£ function if and only if / is the pointwise limit of a sequence
{/n}n^i of Baire-£n functions, where £n < £.

Recall that if F is a given class of sets in a metrisable space X, then we say that
a function / : X -)• Y is F-measurable if f~l{U) € F for any U C Y open. So the
l-i\{X)-measurable functions are the continuous ones while the S2 ( -^ )~ m e a s u r a b l e a r e

the Baire-1 functions.

When F is a given class of sets, we say that F has the generalised reduction property

if for any sequence {An}n^i C F there exists a sequence {Bn}n>i Q T such that Bn C An,

Bn n Bm = 0 for n ^ m and \J An — (J Bn. In a metrisable space X, for any £ > 1,

the class ~S°{X) has the generalised reduction property (see [6, p. 172]). This also holds
if £ = 1 for zero-dimensional spaces.

We close this section by presenting some rather technical lemmas which will be useful
for our future considerations. We show that the strong (respectively the weak) inverse
image of a multifunction F : X —¥ 2 V \{0} , behaves well at least with respect to unions
(respectively intersections) of monotone families of sets. Our arguments are based on
compactness, so we restrict ourselves to P*(y)-valued multifunctions.
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LEMMA 2 . Let X, Y be Hausdorff topological spaces and F : X -> Pk(Y) a
multifunction. Let {An}n^i be an increasing sequence of open subsets of Y (that is,

An D Am ifn > m). ThenF+( (J An) = (J F+(An).

PROOF: Let {An}n^\ be an increasing sequence of open subsets of Y. Clearly we

have that F+({J An) 2 U F+{An)- So we only have to check the opposite inclusion.

Let x € F+({J An), which implies that F(x) C | J An. The family {An}n^.x forms

an open cover of F(x). Since the latter is compact, there exists a finite subcover, say

{j4n}*=1. Hence we get F(x) C (J An. By hypothesis {j4n}n^i is an increasing sequence
n=l

of sets, so there exists some Ai £ {An}^=1 such that Ai D An for every n — 1 , . . . , k.

Thus F(x) C Ai, which implies that x 6 F+(Ai) and in particular that x € \J F+(An).

So we conclude that F+( {j An) = \J F+(An), as desired. n > 1 D
n^l nj;l

The following lemma is a variant of Lemma 2.

LEMMA 3 . Let X, Y be Hausdorff topological spaces and F : X -»• Pk(Y) a

multifunction. Let {An}n^i be a sequence of nonempty open subsets of Y such that

An 2 A ^ T for every n ^ l . Then F-(f]An)= f] F~(An).

PROOF: Let {An}n^L be a sequence of nonempty open subsets of Y as described

above. It is clear that F~( f] An) C f] F~(An). Assume that the inclusion was strict.

Then there exists some x £ f) F~(An) such that x £ F~(f) An). This implies that

F(x) n An ^ 0 for every n > 1 and F(x) H (f] An) = 0. For every n ^ 1 define

Cn — F(x) n An+i ^ 0. Note that the sequence {Cn}n>i is a (strictly) decreasing
sequence of closed sets in F(x), the latter equipped with the relative topology. So it has
the finite intersection property. Since F(x) is compact we conclude that f] Cn ^ 0. But

observe that F(x)C\(f\ An) = F(x)n([) Cn) ^ 0, which is clearly a contradiction. So

we conclude that F~( f] An) = f| F~(An). D

REMARK 1. We can have dual versions of Lemma 2 and Lemma 3. So, for instance,
from Lemma 2, we get that if X, Y and F are as above, then for any decreasing sequence
{Cn}n>i of (nonempty) closed subsets of Y it holds that..F-( f| Cn) = f] F-(Cn).

The last lemma indicates in which sequence of sets Lemma 3 will be applied.

LEMMA 4 . Let X be a metrisable space. If C is nonempty closed subset of X,

then there exists a decreasing sequence {Un}n^i of open subsets ofX such that Un D Un+\

for every n ^ 1 and C = f] Un.

P R O O F : Let d be a compatible metric for X and C G Ilf (X). For every x € X put
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d(x,C) — inf{d(a;,c) : c € C } . The function x —>• d(x, C) is continuous (see [6, p. 15]).
Define Un = {x € X : d(x,C) < 1/n} for every n ^ 1. Clearly {Un}n%i is the desired
sequence of open subsets of X. D

3. B A I R E - 1 MULTIFUNCTIONS

Unless otherwise stated, through this section X and Y will always be metrisable

spaces.

DEFINITION 5: A multifunction F : X -> 2K\{0} is said to be a "Baire-1 multi-
function" if and only if F~(U) € Sg(X) and F+(U) € £ § ( * ) for any U C Y open. It is
said to be a "weak Baire-1 multifunction" if and only if F~(U) E £ ° W for any U C Y
open.

Obviously each Baire-1 multifunction is a weak Baire-1 multifunction. It is also clear

that if F is single-valued then both definitions are equivalent to the usual definition of

Baire-1 functions.

E X A M P L E 1.

(i) Let F : K -» Pfcc(R) defined by:

( [ 0 , 1 ] : x*0

* ( X ) - \ [ 1 , 2 ] : « = 0

Then F~((3/2,3)) = {0} and F+(( l /2 ,3 ) ) = {0}. So F is neither upper nor lower
semicontinuous. However it is easy to check that it is Baire-1.

(ii) Define F : R ->• Pkc{R) by:

[-2,-1]

Observe that F is Baire-1 and that F can not have a continuous selection,

(iii) Put A = [0,1] D <Q> and define F : [0,1] -»• Pkc(R) by:

Fix)

Observe that F+(( - l , l ) ) = [0,1]\.4 which is Gs but not Fa. So F is not Baire-1

multifunction. But it is weak Baire-1. Indeed, if U C R is open, then F~(U) = [0,1] if

Un{0}^ 0, F~{U) = A if U n [0,1] ^ 0 and U n {0} = 0, and F~(U) = 0 otherwise.

So F~(U) is Fa for every (7 C R open.

From the identity F~{A) = (F+(J4C))C for any A C Y, we have the following.
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PROPOSITION 6 . A multifunction F : X ->• 2y\{0} is a Baire-1 multifunction

if and only ifF~(C) € TL°(X) a n d F + (C) € nij(X) for a n y C c y closed. Respectively

F is a weak Baire-1 multifunction if and only if F+(C) € II^psT) for any C QY closed.

Using Lemma 3 and Lemma 4, we shall show that every upper semicontinuous mul-
tifunction and every P/t(K)-valued lower semicontinuous multifunction is a Baire-1 multi-
function. In general lower semicontinuous multifunctions are weak Baire-1 multifunctions.

P R O P O S I T I O N 7 . We have the following.

(i) If F : X —> 2K\{0} is an upper semicontinuous multifunction, then F is a

Baire-1 multifunction.

(ii) If F : X —> 2 y \{0} is a lower semicontinuous multifunction, then F is a

weak Baire-1 multifunction.

(iii) If F : X —>• Pk(Y) is a lower semicontinuous multifunction, then F is a
Baire-1 multifunction.

PROOF: (i) Assume that F is upper semicontinuous. Let U QY he. open. Then
we have that F+(U) is an open subset of X. Recall that in metrisable spaces open sets
are Fa. Thus F+(U) € S^(X). So we only need to prove that F~(U) is Fa. Since U is
open subset of Y and Y is a metrisable space, we have that U is FCT. Thus U = (J Cn,
where CnQY are closed for any n ^ 1. Observe that: n^1

Since F is upper semicontinuous, F~{C) is closed for any C CY closed. So we conclude

that F~(U) € T,°2(X) as desired.

(ii) It follows immediately from the definition of lower semicontinuity and the fact

that in metrisable spaces open sets are Fa.

(iii) Now assume that F is lower semicontinuous and Pfc(y)-valued. In light of

Proposition 6, we need to prove that both F~(C) and F+{C) are Gs subsets of X for any

C QY closed. From part (ii) it is clear that we only have to prove that F~(C) G Tl\(X).

Let C C Y closed. Apply Lemma 4 and get a decreasing sequence {K}n^i of open

subsets of Y such that Vn 3 Vn+\ for every n ^ 1 and C = C\Vn. Invoking Lemma 3 we

have that:

Since F is lower semicontinuous, F~(U) is open for any U QY open. So we conclude

that F~(C) e n§(X) and this completes the proof. D

Now assume that Y is a separable metrisable space. Recall that Pt(Y) equipped
with the Vietoris hyperspace topology (still denoted by (Pk(Y),rv)) is also separable
metrisable and in particular second countable (see for instance [5, p. 15] or [6, p. 25]).
The following proposition demonstrates that for the case of Pjt(F)-valued multifunctions.
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there is a strong relationship between Baire-1 multifunctions and Baire-1 functions from
X into (Pk(Y),rv).

PROPOSITION 8. Let Y be a separable metrisable space and F : X ->• Pk(Y).
Then F is a Baire-1 multifunction if and only if F is a Baire-1 function, viewed as a
single-valued function from X into (Pk(Y),Tv)-

PROOF: Let F be a Baire-1 multifunction. We need to prove that F~X(W) 6 E§(X)

for any open set W of (Pk(Y), rv). Recall that basic open sets in (Pk(Y), TV) are of the

form:

B(U,V1,...,Vk) = {AePll(Y) : A CU,AnVn^ <D, n = l , . . . ,*}

for some U, V\,..., Vk C Y open. We have that:

u . . . t V k ) ) = { x z X : F ( x ) C U , F ( x ) n Vn ? 0 , n = 1 , . . . , k }

= F+(U) n F-(Vi) n . . . n F~(vk) e

Since (Pk(Y), TV) is second countable, any open set W of (Pk(Y), TV) can be written as a
countable union of basic open sets. So we conclude that F~l(W) € S^A"), which implies
that F is a Baire-1 function from X into (Pk(Y),rv).

Conversely, assume that F is a Baire-1 function from X into (Pk(Y), TV). Let U C Y
open. The set B{U, Y) = {A e Pk(Y) : A C U, AnY ^ 0} is clearly open in (P*(K), TV).
We have that:

F~l (B(U, Y)) € E§(JC) « { i £ l : F(x) C C/, F(x) n y # 0} G

Similarly, by taking ^ ( y , U), we conclude that F-(C/) e S§(X). Thus F is a Baire-1
multifunction. 0

Recall that if X is Polish and Y is separable metrisable, then a function / : X —> Y

is Baire-1 if and only if f\c has a point of continuity for every nonempty closed set
C C. X (see [6, pp. 193-194]). So from Proposition 8 we have that if X is Polish then
F : X —> Pk{Y) is a Baire-1 multifunction if and only if F\c has a point of continuity for
every C C X closed. It is also well-known that if / : X —» Y is a Baire-1 function, X is
completely metrisable and Y is separable metrisable, then / is continuous on a dense Gs

set (see [6, p. 193]). Since a multifunction F : X -> Pk(Y) is continuous if and only if F
is continuous viewed as a single-valued function from X into (Pk(Y), ry) (see for instance
[1, p. 531]), we immediately have the following.

COROLLARY 9 . If X is completely metrisable, Y is separable metrisable and
F : X —i Pk(Y) is a Baire-1 multifunction, then F is continuous on a dense Gg set.

Combining the above corollary with Proposition 7, we get the following well-known

fact from multivalued analysis (see [5, p. 73]).
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COROLLARY 10 . If X is completely metrisable, Y is separable metrisable and
F : X —» Pk(Y) 'S a lower semicontinuous or upper semicontinuous multifunction, then
F is continuous on a dense Gs set.

Besides the case of Pk(Y)-valued multifunctions, Baire-1 and weak Baire-1 multi-
functions still behave well, at least with respect to lower semicontinuity, as the following
proposition illustrates.

PROPOSITION 1 1 . IfX is completely metrisable, Y is separable metrisable and
F : X —>• 2y/\{0} is a weak Baire-1 multifunction, then F is lower semicontinuous on a
dense Gs set.

PROOF: Clearly Y is second countable. Let {Un}n^\ be a countable base for Y.
Put Cn = F~(Un). Since F is a weak Baire-1 multifunction, Cn is Fa for every n > 1.
Put D - U (Cn\intCn). Observe that since Cn £ £ ° P 0 so is Cn\intCn. Thus we

have that Cn\intCn = |J Fn, where Fn are closed, nowhere dense subsets of X. So we

conclude that Dc is a dense Gs set.
We claim that F is lower semicontinuous on Dc. Indeed let x e Dc and U C Y open

be such that F(x) f]U ^ 0. Then there exists a Un basic open such that F(x) f|f/n / 0
which implies that x € Cn. Since x € Dc we have that x S int Cn. Thus for any y € int Cn

we have that i?(y) H ^ 7̂  ®i which implies that F is lower semicontinuous at x. u

As before, combining Proposition 11 with Proposition 7, we get the following result,
due to Fort (see [4]).

COROLLARY 12 . If X is completely metrisable, Y is separable metrisable and
F : X —> 2y\{0} is an upper semicontinuous multifunction, then F is continuous on a
dense Gs set.

We close this section by presenting two lemmas concerning weak Baire-1 multifunc-
tions. As usual for any multifunction F : X —> 2^\{0}, by F we denote the multifunction
defined by F(x) = F(x) for every x 6 A'.

LEMMA 13 . A multifunction F : X —> 2r\{0} is a weak Baire-1 multifunction if
and only if F is.

PROOF: Recall that for any U C Y open, we have that A D U ^ 0 if and only if

Ar\U?V>. 0

LEMMA 1 4 . Let F : X -> 2V\{0} be a weaJc Baire-1 multifunction. Let V C V

open and C C X closed be such that F(x) nV / 0 for every x e C. Define F : A' ->
2y\{0} by:

f F ( , ) n v : xec
[F(x) : xiC

Then F is a weak Baire-1 multifunction.
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P R O O F : Let U C Y open and observe that F~{U) = F~(U) if U D V ± 0 and
that F~(U) = F~(U)\C = F~(U) n Cc otherwise. Since C is closed, Cc is open and in
particular Fa. Thus F~(U) 6 E ° W f o r any £/ C K open, as desired. D

4. SELECTIONS O F B A I R E - 1 MULTIFUNCTIONS

It is well-known that an upper semicontinuous multifunction does not admit contin-
uous selections. In fact if a multifunction F : X -¥ 2 y \ {0} is locally selectionable then
F is actually lower semicontinuous (recall that a multifunction F is said to be locally
selectionable if for every [x, y] G GrF there exists U € N(x) and / a continuous selection
of F\u such that f(x) = y, see [5, p. 89]). So we have to abandon any hope for obtaining
continuous selections for upper semicontinuous multifunctions.

However, as we show in Corollary 12, upper semicontinuous multifunctions actually
have "many" points of continuity (and obviously of lower semicontinuity). It is natu-
ral then to expect that under some additional hypotheses, upper semicontinuous multi-
functions have selections which are continuous on a dense G$ set. Among all possible
candidates, Baire-1 functions are the most prominent ones.

In this section we prove that this is the case. In fact we show much more. Specifically
we prove that if X is a metrisable space, Y a Polish space and F : X -» P/(Y) a weak
Baire-1 multifunction, then F admits a Baire-1 selection. That is there exists a Baire-
1 function / : X —> Y such that f(x) 6 F(x) for every x € X. So according to
Proposition 7, our selection theorem is applied to both lower semicontinuous and upper
semicontinuous, closed-valued multifunctions.

It is worth mentioning that even if we are actually looking for generically continuous
selections, our proof is modelled after the Kuratowski-Ryll Nardzewski selection theorem
which provides measurable selections. As usual, we say that a function / : X -4 Y is
AiJ (^-measurable if and only if f~l{U) € A§(X) for every U C Y open, where A g ( ^ )
is the ambiguous class (that is, A%(X) = Eg(X) f~l ng(A")).

THEOREM 1 5 . Let X be a metrisable space, Y a Polish space and F : X -> Pf(Y)

a weak Baire-1 multifunction. Then F admits a Baire-1 selection.

PROOF: Let d be a compatible metric for Y with respect to which the d-diameter

of Y is strictly less than 1/2. Fix D = {yi}i^i a countable dense subset of Y. Define

/ i : X -> Y by fi(x) = yi for every x £ X, where yx is an arbitrary element of D.

Clearly fi is continuous.

For every n ^ 1, we shall construct inductively a sequence {fn}n^i of A°(X)-

measurable functions such that:

(i) d(fn(x), F(x)) < 1/2", for every x € X;

(ii) d(fn(x), /B_i(x)) < l / 2 " - \ for every x € X.

Obviously / i is AjfXJ-measurable and satisfies hypothesis (i). Suppose that / i ,
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/ 2 , . . . , / n - i have been constructed. Now for every i ^ 1 define:

A? = [x e X : d(yu F(x)) < 1/2"} = F~ (B(Vi, 1/2"))

and

C?={xeX: dfaj^ix)) < 1/2"-1} = f~\ (B(Vi, 1/2""1))
where yt 6 D. Since F is weak Baire-1 multifunction, we have that A" € £§(^0 for
every i ^ 1. On the other hand, since /„_! is A2(X)-measurable, we get that C" €
A°(X) C E§(A"). Put W71 = ,4? n C? G Sg(A") for every i ^ 1. As in the proof of
the Kuratowski-Ryll Nardzewski selection theorem (see for instance [5, p. 155]), using
an argument based on the density of the set D, we can see that X = |J W". So by

the generalised reduction property of SiJPO sets> w e c a n find a sequence {V"}^ of
Eg(X) sets, such that Vf C Wf, V̂ B n V," = 0 if i ^ j and X = \JV?. Observe that
V{

n = (U Vp)c and so VJ" G A°2(X) for every i ^ 1. m

Define /„ : X —¥ Y by fn(x) = yi it x £ V". It is clear that fn satisfies (i) and
(ii). It remains to check that /„ is A§(X)-measurable. Clearly it is enough to show that
f-l{U) e T,l{X) for any U C Y open and that f~\C) € Sg(X) for any C CY closed.
Let U C. Y open. Put Dv = D D U, which is at most countable (it might be empty of
course). Then we have:

fnl(U)=

Similarly if C C y is closed, put Dc — DDC and observe that:

So /„ is A°(X)-measurable and the induction is complete.

Now define / : X —> Y by f(x) = lim/n(a;) for every x € X. From property (ii) we
know that this limit exists (Y is complete), in fact uniformly in x € X. Need to prove
that / is Baire-1 function. For this purpose it is enough to show that f~l(C) € H°{X)

for every C CY closed. So let C C Y closed. From the fact that /„ —> / uniformly, for
every k ^ 1, there exists no(fc) £ N such that d(fn(x),f(x)) < \/k for every n ^ no(k)

and x £ X. Put Uk = {y £ Y : d(y,C) < l/k} for every A; > 1. Clearly each Uk is an
open subset of Y. Using an argument which is rather folklore in measure theory (see for
instance [1, p. 139, Lemma 4.28]) we can easily see that f~x(C) = f) f~^k)(Uk)- Since

each /„ is Ag(A')-measurable and Ag(X) C n°2(X), we get that fl{C) £ Tl\(X) as

desired. So / is indeed Baire-1. Finally from property (i), we have that d(f(x), F(x)) = 0

for every x £ X. Since F is closed-valued, we conclude that f(x) £ F(x) for all x € X

and this completes the proof. D
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REMARK 2. It is easy to see that Theorem 15 is still valid if Y is separable metrisable
and F : X —> Pk{Y) a weak Baire-1 multifunction. Indeed let d be a compatible metric
for Y with respect to which (Y, d) is totally bounded. Denote by Y the completion of Y,
which is compact metrisable and hence Polish. Observe that F(x) 6 Pk(Y) C Pj(Y) for
every x € X and apply Theorem 15.

The next proposition gives an equivalent characterisation of weak Baire-1, closed-
valued multifunctions.

PROPOSITION 1 6 . Let X be a metrisable space, Y a Polish space and F :
X —> P/{Y) a multifunction. Then the following are equivalent.

(i) F is a weak Baire-1 multifunction.

(ii) There exists a sequence {/n}n^i of Baire-1 selections of F such that

F(X) = {/»(*)}„>!for every x^x-
PROOF: (i)=> (ii) Let D be as in Theorem 15. For every i ^ 1 and n ^ 1 put

Cin = F-(B{yi,2-n)). Since F is a weak Baire-1 multifunction Cin € E§(X). So it can
be written as Cin = \J Cmk, where Cjnk are closed subsets of X for every i,n,k ^ 1.

Define Fink : X -> Pf(Y) by:

2-») : x £ Cink

F(x) : i

From Lemma 13 and Lemma 14 we get that Fink is a weak Baire-1, closed-valued multi-
function for every i,n, k ^ 1. Apply Theorem 15 and get a Baire-1 selection /ink of Fjnk
for every i,n, k ^ 1. We claim that {/ink}t,n,*^i is the desired dense sequence. Indeed
fix x € X and let y 6 F(x) and e > 0. Let n ^ 1 be such that e > 2~n+l and y{ € D

such that d{y,yi) < 2~n. Then since x € F~(B(yit2~n)) we have that x € Cjnk for some
k ^ 1. Let /nk be the selection of Fink. Obviously /ink(a;) S B(yt, 2~"). So we have that:

1 1 1
d(y, /inkM) < d(y, t/i) + d(yit fink(x)) < ^ + o" ~ 2"-^ K £

and we are done.
(ii)=> (i) Observe that for any U C.Y open, we have that:

F~(U) = {xeX: F{x) nU^<i} = \J{xeX: fn(x) € U)
n i l

So F is a weak Baire-1 multifunction and the proof is completed. D

REMARK 3. We can easily see (as in Remark 2) that Proposition 16 is still valid if Y

is a separable metrisable space and F : X -> Pk(Y) a weak Baire-1 multifunction.
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Recall the following fundamental fact, due to Kuratowski. Its proof can be found in

[6, p. 173].

THEOREM 1 7 . Let (X,T) be a Polish space and {An}n^i a sequence of A^(X)

sets. Then there exists a Polish topology r ' on X such that r' D T, T' C S^(X, T) and

An is clopen in (X, r ') for every n ^ 1.

Now assume that X is also Polish. In this case, using Theorem 17, we can have an

improved version of Proposition 16.

PROPOSITION 18 . Let {X, T) be a Polish space. Let also Y be a Polish space

and F : X —> P/(Y) a multifunction. Then the following are equivalent.

(i) F is a weak Baire-1 multifunction.

(ii) There exist a Polish topology r' on X, such that r ' C T,\(X,T), and

a sequence {/n}n^i of T'-continuous selections of F such that F(x) —

{f"(x))n2ifor everyx 6 x-
P R O O F : (i)=> (ii) Apply Proposition 16 and get a sequence {fn}n^i of Baire-1 se-

lections of F such that F(x) = {/n(z)}n>1 f°r every x E X. Let { V i } ^ be a countable

base for Y. For every n,i > 1, let Ani — fnl(Vi) € T,\{X). By definition, each Ani

can be written as Ani = | J Cnim, where Cnjm £ n J (X) C A2,{X) for every n, i ,m ^ 1.

Apply Theorem 17 to the sequence {Cnim}n)jjTn^i C A | (X) and get a Polish topology r '

on X, with T' C S ^ X , T) , such that Cn\m is r'-clopen for every n,i,m ^ 1. Observe that

Ani € T'. SO each fn is r'-continuous, and we are done.

(ii)=> (i) Since r' C Z%(X, T) and each /„ is r'-continuous, we get that f~l(U) € S§(A', r)

for any U C Y open. Thus each /„ is a Baire-1 function for the r topology of X. So

from Proposition 16, we conclude that F is a weak Baire-1 multifunction. D

In contrast to the remarks at the beginning of this section, combining Proposition

18 with Proposition 7, we get the following interesting corollary.

COROLLARY 19 . Let (X, r ) be a Polish space. Let also Y be a Polish space and

F : X —> Pj(Y) an upper semicontinuous or lower semicontinuous multifunction. Then

there exist a Polish topology T' C S " ^ , T ) on X and a sequence {fn}n^\ of T'-continuous

selections of F such that F(x) = {/n(^)}n>1 for every x € X.

5. W E A K * U S C O AND CUSCO MULTIFUNCTIONS

Let X be an infinite dimensional Banach space. By X' we denote the topological

dual of X. The norms of X and X* and the duality brackets for the pair (X, X*) will

be denoted by || • ||, || • ||x- and (•, •) respectively. Finally by Pfc{X) we denote the

collection of all nonempty, closed, convex subsets of X, while by Pwk(X^,) (respectively

by Pwkc(X^,)) the collection of all nonempty, weakly* compact (respectively and convex)

subsets of X*.
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Let Z be a completely metrisable space. An upper semicontinuous multifunction
F : Z -> PWk{X^,) (on X* we consider the weak* topology) is called a weak* usco. If in
addition F(x) is convex (that is if F(x) 6 Pwkc(X^,,)) for any x € X, then F is said to
be a weak* cusco. Note that in the general definition of a weak* usco, Z is only assumed
to be a Hausdorff topological space. We make the complete metrisability assumption on
Z in order to apply our previous results. However we should point out that this does
not reduce the range of applications. Many important multifunctions (such as maximal
monotone operators, subdifferentials of locally Lipschitz functionals) are weak* cuscos.

In the following theorem we shall show that if X* is separable, weak* uscos possess
strong continuity properties. Our proof is essentially based on the techniques developed
in the previous two sections.

THEOREM 2 0 . Let Z be a completely metrisable space, X be a Banach space

such that X* is separable and F : Z —» PWk(X^,) be a weak* usco. Then F is norm

lower semicontinuous on a dense G{ set.

PROOF: Observe that our hypothesis on X entails that X* equipped with the strong
topology (still denoted by A"*) has the structure of a Polish space. Note that F can be
viewed as a multifunction from Z into Pj{X*). We claim that F, viewed this way, is a
weak Baire-1 multifunction. Indeed let U C X* be strongly open. Then U can be written
as U = \J Bn, where Bn are closed balls in X*. We have that:

n>\

njsl

Since F is a weak* usco and each Bn is weakly* closed, we get that F~(Bn) is closed in
Z for every n ^ 1. So we conclude that F~{U) 6 T^{Z), which implies that F is indeed
a weak Baire-1 multifunction. Then from Proposition 11 we get that F is norm lower
semicontinuous on a dense Gg subset of Z. D

REMARK 4. We shall give an alternative proof of Theorem 20 based on Proposition 16.
Indeed since F is a weak Baire-1, closed-valued multifunction, pick a sequence {/n}nji °f
Baire-1 selections of F such that F{x) = {fn(x)}n>l for every x € X. Denote by Cn the
set of points of continuity of each /„ . Since Z is completely metrisable and /„ is Baire-1,
Cn is a dense G$ set for every n > 1. Put C — f] Cn, which is dense Gj. We claim

that F is norm lower semicontinuous on C. Indeed let z € C and U C X* strongly open,
such that F(z) n U ^ 0. Then there exists n ^ 1 such that fn(z) C U. From the norm
continuity of /„ at z, we may find V G N(z) such that /n(V) C U. But then observe
that F~(U) 3 V, which implies that F is norm lower semicontinuous at z.

Recall that for any function / : X -> Y and any set A C Y we have that f~x(A)

= f~(A) = f+(A). So an immediate corollary of Theorem 20 is the following.
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COROLLARY 2 1 . Let Z be a completely metrisable space, X be a Banach space
such that X* is separable and f : Z —> X* a weakly* continuous function. Then J is
norm continuous on a dense Gs set.

Now assume that F has strongly compact values. In this case F possesses even
stronger continuity properties.

PROPOSITION 2 2 . Let Z be a completely metrisable space, X be a Banach

space such that X* is separable and F : Z —> Pk(X") a weak* usco. Then F is norm

continuous on a dense Gs set.

P R O O F : We shall show that in this case F is a Baire-1 multifunction. We already
know from the proof of Theorem 20 that F is a weak Baire-1 multifunction. So it is
enough to show that F+(U) £ £°(Z) for every U C X* strongly open. Let U C X' be
strongly open. Write U as U = {J Bn = (J Bn, where each Bn (respectively Bn) is an

open (respectively closed) ball in X*. We have that:

Let {V;}^! be the (countable) collection of all finite unions of Bn
 !s. Then each \'\ is

weakly* closed and:

F+{U) = F+(\J Bn) = F+

We claim that:

It is clear that F+(\J Bn) D \J F+{Vi). So let x 6 F+( [j Bn). Then the sequence

{Bn}n^.\ forms an open cover of F(x). From the strong compactness of F(x), we may
k

find {Bn}n=l such that F(x) C (J Bn. From the definition of V|'s, there exists some
k n=l

i > 1 such that V{ = {J Bn. So x 6 F+{Vi) and the claim is proved. Since each V; is
7l = t

weakly* closed and F is weak* usco, we have that F+(Vi) is closed for every i ^ 1. Thus

we conclude that F+(U) 6 Yi\(Z) for every U C X" strongly open, which implies that

F is indeed a Baire-1 multifunction. From Corollary 9 we get that F is norm continuous

on a dense Gj set. U

6. A FINAL REMARK

It is clear that the generalised reduction property of E°(A') sets is the essential

ingredient of Theorem 15 (as well as of Proposition 18). In this section, we shall show

that Theorem 15 is actually equivalent to the generalised reduction property of S^(.Y)

sets. Let us be precise.
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PROPOSITION 2 3 . Let X be a metrisable space. Then the following are equiv-

alent.

(i) The class E^A') has the generalised reduction property.

(ii) For any Polish space Y and any weak Baire-1 multifunction F : X —>

P/(Y), there exists a Baire-1 function f : X —> Y, such that f(x) G F(x)

for every x G X.

PROOF: Theorem 15 shows (i)=>(ii). To prove (ii)=> (i) let {/ln}n^i be sequence
of E°(X) subsets of X. We shall prove first the case when X = (J An. Denote by Y

the space N+ of all the nonzero integers, equipped with the discrete topology. Then Y is
Polish. A compatible metric is 6(n, m) = 0 if n ^ m and S(n, m) = 1 if n = m (which is
also an ultrametric). Define F : X -> 2y\{0} by F{x) = {n : x G An} for every x £ X.

Obviously F is closed-valued. We claim that F is weak Baire-1 multifunction. Indeed let
/ C N+ and observe that:

iei

So, from hypothesis, there exists a Baire-1 selection / of F. Define Bn = f~l({n}) for
every n ^ 1. Then Bn e S ° W ( s i n c e {"} i s ° P e n i n Y)< Bn Q An, Bn n Bm = 0 if
n ^ m and X = (J S n .

For the general case put Z = (J 4 n . Then Z G S§(A"). Note that An G Eg(Z) for

every n ^ 1. Indeed, write / l n = U Cm, where Cm is closed in X for every m }? 1. Then

we have that >ln = \J (ZC\Cm), where Zf\Cm is closed in Z (the latter equipped with the

relative topology) for every m ^ 1. Obviously Z is metrisable. Define F : Z -» P/(V)
as before and obtain a sequence {5n}n3:i of S°(Z) subsets of Z such that Bn C >ln,
Bn n Bm = 0 if n ^ m and Z = (J Bn. But then observe that Bn G Eg(X) for every

n ^ 1. So we conclude that the class E°(X) has the generalised reduction property, as

desired. D

REMARK 5. One should compare Proposition 23 with the following result due to

Michael (see [10]). Let X be a topological space. If for any Banach space Y, every

lower semicontinuous multifunction F : X —> Pfc{Y) admits a continuous selection, then

A' is paracompact.
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