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On the Simple Z2-homotopy Types of
Graph Complexes and Their Simple
Z2-universality

Péter Csorba

Abstract. We prove that the neighborhood complex N(G), the box complex B(G), the homomorphism

complex Hom(K2, G) and the Lovász complex L(G) have the same simple Z2-homotopy type in the

sense of Whitehead. We show that these graph complexes are simple Z2-universal.

1 Introduction

The topological method in graph theory was initiated by Lovász [10] to prove

Kneser’s conjecture [9]. He defined the neighborhood complex N(G) and the so
called Lovász complex L(G). For similar reasons other complexes assigned to graphs

were studied such as the box complex B(G) [12] and the homomorphism complex

Hom(K2, G), which was invented by Lovász as well [1]. We will refer to these com-
plexes as graph complexes. The Z2-homotopy equivalence of these complexes have

been studied in several papers [3, 4, 11, 14]. The neighborhood complex does not

admit a free Z2-action. By slightly abusing the notation we will say that it is Z2-
homotopy equivalent to the other graph complexes, meaning only homotopy equiv-

alence.

We will show that something more can be said about these complexes. We prove

that these graph complexes have the same simple Z2-homotopy type in the sense of
Whitehead [13]. It was independently proven by Kozlov [8] that N(G), L(G) and

Hom(K2, G) are simple homotopy equivalent. Here we give simpler and Z2-proofs.

It is known that graph complexes are universal [3]. We extend it into simple Z2-
universality. We show that for any Z2-simplicial complex there is a graph G such that

the given complex and the graph complexes assigned to G are simple Z2-homotopy
equivalent.

2 Preliminaries

In this section we recall some basic facts about graphs, simplicial complexes, and

posets, to fix notation. The interested reader is referred to [11] or [2] for details.

Any graph G considered will be assumed to be finite, simple, connected, and undi-

rected, i.e., G is given by a finite set V (G) of vertices and a set of edges E(G) ⊆
(

V (G)
2

)

.
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The common neighborhood of A ⊆ V (G) is

CN(A) = {v ∈ V (G) : {a, v} ∈ E(G) for all a ∈ A}.

We define CN(∅) := V (G). For two disjoint sets of vertices A, B ⊆ V (G) we define

G[A, B] as the (not necessarily induced) subgraph of G with V (G[A, B]) = A∪B and
E(G[A, B]) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B}.

A simplicial complex K is a finite hereditary set system. We denote its vertex set by
V (K) and its barycentric subdivision by sd(K).

For sets A, B define A ⊎ B := {(a, 1) : a ∈ A} ∪ {(b, 2) : b ∈ B}. An important

construction in the category of simplicial complexes is the join operation. For two
simplicial complexes K and L, the join K ∗ L is defined as K ∗ L := {A ⊎ B |A ∈
K and B ∈ L}.

A Z2-space is a pair (X, ν) where X is a topological space and ν : X → X, called the
Z2-action, is a homeomorphism such that ν2

= ν ◦ ν = idX .

The neighborhood complex [10] is N(G) = {S ⊆ V (G) : CN(S) 6= ∅}.
The Lovász complex [10] is L(G) := CN(sd(N(G))). CN is a free Z2-action on

L(G).

The box complex B(G) of a graph G (the one introduced by Matoušek and Ziegler
[12]) is defined by

B(G) :=
{

A ⊎ B : A, B ⊆ V (G), A ∩ B = ∅,

G[A, B] is complete bipartite, CN(A) 6= ∅ 6= CN(B)
}

The vertices of the box complex are

V1 : = {v ⊎ ∅ : v ∈ V (G)} and

V2 : = {∅ ⊎ v : v ∈ V (G)} .

The subcomplexes of B(G) induced by V1 and V2 are disjoint subcomplexes of B(G)

such that both are isomorphic to the neighborhood complex N(G). We refer to these
two copies as shores of the box complex. The box complex is endowed with a Z2-

action which interchanges the shores.

The shore subdivision [4] of B(G) is the complex obtained by barycentricly subdi-
viding the shores of B(G).

ssd(B(G)) :=
{

sd(σ ∩V1) ∗ sd(σ ∩V2) : σ ∈ B(G)
}

.

The homomorphism complex Hom(K2, G), or actually its barycentric subdivision
sd(Hom(K2, G)), can be defined as a subcomplex of sd(B(G)) induced by the vertices

A ⊎ B such that A 6= ∅ 6= B. This definition gives the barycentric subdivision of the
original definition of the homomorphism complex Hom(K2, G) (see [1]).

Examples For the complete graph Kn, its neighborhood complex N(Kn) is the
boundary complex of the n−1 dimensional simplex. L(Kn) is the barycentric sub-

division of the n−1 dimensional simplex. Its box complex B(Kn) is the boundary

complex of the n-dimensional cross polytope with two opposite facets removed.
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Definition 1 Let K be a simplicial complex. Let σ, τ ∈ K such that

(i) τ ⊂ σ,

(ii) σ is a maximal simplex, and no other maximal simplex contains τ .

A (simplicial) collapse of K is the removal of all simplices γ, such that τ ⊆ γ ⊆ σ. If

in addition dim τ = dim σ − 1, then this is called an elementary collapse.

When Y is a simplicial subcomplex of X, we say that X collapses onto Y if there
exists a sequence of elementary collapses leading from X to Y. The reverse of an

elementary collapse is called an elementary expansion. A sequence of elementary
collapses and elementary expansions leading from a complex X to the complex Y is

called a formal deformation. If such a sequence exists, then the simplicial complexes

X and Y are said to have the same simple homotopy type, see [13].
The definition of the Z2-collapse and simple Z2-homotopy type is self-evident. Since

we are dealing with free Z2-complexes, it just means that the collapses can be per-

formed in pairs equivariantly.
It is well known, see e.g., [8], that for a simplicial complex X the subdivisions sd(X)

and ssd(X) have the same simple homotopy type as X, since they can be obtained
by repeating stellar subdivision. This extends to simple Z2-homotopy type for free

Z2-complexes. In the Z2 case, collapses and expansions corresponding to the stellar

subdivision can be performed equivariantly.
We recall that a partially ordered set, or poset for short, is a pair (P,�), where P is

a set and � is a binary relation on P that is reflexive (x � x), transitive (x � y and

y � z imply that x � z), and weakly antisymmetric (x � y and y � x imply x = y).
When the order relation � is understood, we say only “a poset P.” The order complex

of a poset P is the simplicial complex ∆(P) whose vertices are the elements of P and
whose simplices are all chains (i.e., x1 ≺ x2 ≺ · · · ≺ xk) in P.

We need the following theorem of Kozlov to prove collapsibility.

Theorem 2 ( [7, Theorem 2.1] ) Let P be a poset, and let φ be a descending closure

operator. Then ∆(P) collapses onto ∆(φ(P)). By symmetry the same is true for an

ascending closure operator.

Actually we need the Z2-modification of this theorem.

Definition 3 A poset (P,�) is involutive if it is equipped with an involution ϕ : P →
P which is either monotone or antimonotone and ϕ2

= idP. Instead of involutive we

also say that (P,�) admits a Z2-action or that (P,�) is a Z2-poset. We will call a

Z2-poset (P,�, ϕ) free if ϕ is a free Z2-action on its order complex.

Theorem 4 Let P be a poset with a free involution, and let a Z2-map φ be a descending

closure operator. Then ∆(P) Z2-collapses onto ∆(φ(P)). By symmetry the same is true

for a Z2-ascending closure operator.

Proof The same argument works as in [7, Theorem 2.1].

We introduce the basics of Discrete Morse Theory, which was invented by For-

man [5]. It provides a convenient language for describing sequences of elementary

collapses.
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Definition 5 Let P be a poset with the order relation ≻.

• We define a partial matching on P to be a set Σ ⊆ P, and an injective map µ : Σ →
P \ Σ, such that µ(x) ≻ x, for all x ∈ Σ.

• The elements of P \ (Σ ∪ µ(Σ)) are called critical.
• Additionally, such a partial matching µ is called acyclic if there exists no sequence

of distinct elements x1, . . . , xt ∈ Σ with t ≥ 2 satisfying µ(x1) ≻ x2, µ(x2) ≻ x3,

. . . , µ(xt) ≻ x1.

The partial acyclic matchings and elementary collapses are closely related, as the

next proposition shows.

Proposition 6 ( [6, Proposition 5.4] ) Let ∆ be a regular CW complex and ∆
′ a sub-

complex of ∆. Then the following are equivalent:

(a) there is a sequence of elementary collapses leading from ∆ to ∆
′;

(b) there is a partial acyclic matching on the face poset of ∆ with the set of critical cells

being exactly the simplices of ∆
′.

Remark 7. We will use the Z2-version of this theorem. In our settings ∆ ⊃ ∆
′ are

free Z2-simplicial complexes, and the acyclic matching µ respects the Z2-action ν (i.e.,

ν(µ(x)) = µ(ν(x))). In this case we only use that ∆ Z2-collapses to ∆
′ (the critical

cells of this Z2 symmetric matching are the simplices of ∆
′). The same argument as

in [6, Proposition 5.4] proves this Z2 variation.

3 Simple Z2-homotopy Equivalences of Graph Complexes

In this section we will prove that B(G) collapses to N(G), sd(B(G)) Z2-collapses to

sd(Hom(K2, G)), and ssd(B(G)) Z2-collapses to L(G).

Theorem 8 B(G) collapses to N(G).

Proof We will collapse B(G) to its first shore, which is isomorphic to N(G). Let
σ ∈ B(G) be a simplex such that it has a vertex from the second shore. Then σ =

{v1 ⊎∅, . . . , vl ⊎∅; ∅⊎w1, . . . , ∅⊎wk}. The set ∅ 6= {w1, . . . , wk} has a common
neighbor by the properties of the box complex. We denote the smallest1 common

neighbor by xσ . We define the matching µ by

µ(σ) :=

{

σ \ (xσ ⊎ ∅) if (xσ ⊎ ∅) ∈ σ,

σ ∪ (xσ ⊎ ∅) if (xσ ⊎ ∅) 6∈ σ.

This matching is well defined since σ and µ(σ) have the same vertex set from the

second shore, so xµ(σ) = xσ. We show that µ is acyclic. If we go up by the matching

(σ ⊂ µ(σ)) then we should delete a vertex v ⊎ ∅ from the first shore (we can never
add a vertex to the second shore). If we do not delete xσ ⊎ ∅, then µ(σ) \ (v ⊎ ∅)

is matched down. The critical cells of µ are the simplices of the first shore, which

completes the proof.

1Now we have to fix a linear order on V (G) to be consistent with our choices.
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Theorem 9 sd(B(G)) Z2-collapses to sd(Hom(K2, G)).

Proof sd(Hom(K2, G)) is a subcomplex of sd(B(G)). The extra vertices are vertices

on the shores of the box complex sd(B(G)). (They are in the form ∅⊎A and B⊎∅.)
We work only with the first shore: the B ⊎ ∅ part of sd(B(G)). On the other shore

every collapse Z2-pair is done. We describe an acyclic matching on the face poset of
sd(B(G)). Let σ ∈ sd(B(G)) be a simplex. We assume that σ has a vertex from the

first shore. Its vertices form a chain

A1 ⊎ ∅ ⊂ · · · ⊂ An ⊎ ∅ ⊂ An+1 ⊎ B1 ⊂ · · · ⊂ An+m ⊎ Bm,

where n ≥ 1 and B1 6= ∅. We set B0 = ∅ and consider the vertex CN2(An)⊎CN(An).

Let i be the maximal index such that An+i ⊎ Bi ⊆ CN2(An) ⊎ CN(An). We note that
An ⊎ B0 ⊆ CN2(An) ⊎ CN(An), so such an i exists.

If i = m, then we can have An+m⊎Bm = CN2(An)⊎CN(An). In this case we match
σ with σ\(CN2(An)⊎CN(An)). Otherwise, we match σ with σ∪(CN2(An)⊎CN(An)).

If i 6= m, then we consider X ⊎ Y := An+i+1 ⊎ Bi+1 ∩ CN2(An) ⊎ CN(An). If
(X ⊎ Y ) ∈ σ, then we match σ with σ \ (X ⊎ Y ). If (X ⊎ Y ) 6∈ σ, then we match σ

with σ ∪ (X ⊎ Y ).

Next we show that the obtained matching µ is acyclic. Assume that there exists

a sequence σ0, . . . , σt ∈ sd(B(G)) such that all σi are different, with the exception

σ0 = σt , and such that µ(σi) ≻ σi+1 for 0 ≤ i ≤ t−1. Assume that µ(σ0) = A1⊎∅ ⊂
· · · ⊂ An ⊎∅ ⊂ An+1 ⊎ B1 ⊂ · · · ⊂ An+m ⊎ Bm. If σ0 were µ(σ0) \ (An+m ⊎ Bm), then

since σ0 6= σ1 it would be not possible to match σ1 upwards unless we delete An ⊎∅.

But matched pairs contain the same number of vertices in type A⊎∅, so it can not be
a member of a cycle. Otherwise, σ0 = µ(σ0) \ (An+i ⊎ Bi) for some m > i ≥ 1. Since

σ1 is matched upwards, it is easy to see, that σ1 should be µ(σ0) \ (An+i+1 ⊎ Bi+1).
We see that in σ1 the number of vertices which are subsets of CN2(An) ⊎ CN(An) is

increased by 1 compared to σ0. Repeating this argument, we see that σt has t vertices

more, therefore σ0 6= σt . This leads to the conclusion that µ is acyclic.

The critical simplices form a subcomplex sd(Hom(K2, G)), which completes the

proof.

Theorem 10 ssd(B(G)) Z2-collapses to L(G).

Proof First we show that ssd(B(G)) Z2-collapses onto CN2(ssd(B(G))). This follows

from Theorem 4, since CN2 is a Z2-descending closure operator.

Next we show that CN2(ssd(B(G))) Z2-collapses onto L(G). We will define sim-

plicial complexes

CN2
(

ssd(B(G))
)

=: S0 ⊃ S1 ⊃ · · · ⊃ SN+1 = L(G)

such that Si Z2-collapses to Si+1. Assume that Si is already defined. To define Si+1, we

choose a vertex X ⊎ ∅ ∈ Si such that

(i) ∅ ⊎ CN(X) ∈ Si ,

(ii) |X| ≥ |CN(X)|,
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(iii) there is no Y such that Y ⊎ ∅ ∈ Si , ∅ ⊎ CN(Y ) ∈ Si , |Y | ≥ |CN(Y )| and
|Y | > |X|.

The maximality of X implies that a maximal simplex which contains X ⊎ ∅

(resp. ∅⊎X) also contains ∅⊎CN(X) (resp. CN(X)⊎∅). Now we will just work with

the first shore vertex X ⊎ ∅. In order to obtain a Z2-collapse at each step, a Z2-pair

should be done as well.

We define an acyclic matching on the face poset of Si . Let σ ∈ Si such that X ⊎ ∅

is its vertex. If ∅⊎CN(X) is a vertex of σ, then we match σ with the simplex σ \ (∅⊎
CN(X)). Otherwise, we match σ with σ ∪ (∅ ⊎ CN(X)).

Next we show that the obtained matching µ is acyclic. Assume that there exists a

sequence σ0, . . . , σt ∈ Si such that all σi are different, with the exception σ0 = σt ,

and such that µ(σi) ≻ σi+1 for 0 ≤ i ≤ t − 1. Then µ(σ0) = σ0 ∪ (∅ ⊎ CN(X)).
We must obtain σ1 from µ(σ0) by deleting one vertex in such a way that it matches

upwards. This is possible if and only if we delete the vertex ∅⊎CN(X), and therefore

σ0 = σ1. This leads to the conclusion that µ is acyclic.

The critical simplices always form a subcomplex. At the end of this process we

arrive at a simplicial complex, that is Z2-isomorphic to L(G). This Z2-isomorphism

was proven in [4, Theorem 1]. This completes the proof.

4 Simple Z2-universality of Graph Complexes

It is known that graph complexes are universal up to Z2-homotopy type.

Theorem 11 ([3]) Given a free Z2-simplicial complex (K, ν), there is a graph G such

that its graph complex is Z2-homotopy equivalent to the given complex.

Now we show the simple homotopy type extension. First we start with the neigh-
borhood complex N(G).

Theorem 12 Given a free Z2-simplicial complex (K, ν), there is a graph G such that

its neighborhood complex N(G) is simple homotopy equivalent to the given complex.

We will use the construction from [3].

Construction 13 (K → GK) Let K be a Z2-simplicial complex. The vertices of GK are

the vertices of K, and each vertex is connected to its Z2-pair and the neighbors (neighbors

in the 1-skeleton of K) of the Z2-pair. Thus if x, y ∈ V (GK) = V (K) then there is an

edge between them if and only if ν(x) = y or {x, ν(y)} ∈ K (or {y, ν(x)} ∈ K). See

Figure 1.

Proof of Theorem 12 For technical reasons we need the first barycentric subdivision

sd(K) of K. The free simplicial Z2-action on sd(K) will be denoted by ν as well. There
is no free Z2-action on the neighborhood complex N(Gsd(K)) in general. But now

ν acts freely on N(Gsd(K)). Then sd(K) and N(Gsd(K)) have the same vertex set. If
A1 ⊂ A2 ⊂ · · · ⊂ Am is a simplex in sd(K), then in Gsd(K) they have a common

neighbor, e.g., ν(A1), so it is a simplex in N(Gsd(K)) as well. This means that sd(K) is

a (not induced) subcomplex of N(Gsd(K)). In order to show that N(Gsd(K)) collapses
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K sd(K)

Gsd(K) N(Gsd(K))

111
1

22
2

2 1212
12

1̃1̃ 1̃
1̃

2̃2̃ 2̃
2̃

1̃2̃1̃2̃
1̃2̃

12̃12̃ 12̃1̃21̃2 1̃2

Figure 1: Example for K, sd(K), Gsd(K) and N(Gsd(K)). The Z2-action is the antipodal map.

to sd(K) we define an acyclic matching on the face poset of N(Gsd(K)) such that its

critical cells are exactly the simplices of sd(K). (See Figure 1.)

Let σ = {X1, X2, . . . , Xn} be a simplex of N(Gsd(K)) \ sd(K). Since it is not a

simplex of sd(K) we must have at least two vertices Xi , X j , such that Xi 6⊂ X j and
Xi 6⊃ X j . We define a graph Hσ with vertex set {X1, X2, . . . , Xn}. There is an edge

between the two vertices Xi , X j if and only if Xi 6⊂ X j and Xi 6⊃ X j . We take the
non-trivial connected components of Hσ, i.e., those which contain at least an edge,

and denote them by {Xi1
, Xi2

, . . . , Xik
}, {X j1

, X j2
, . . . , X jl

}, . . . . (See Figure 2.)

Since σ is a simplex, there exist Y (common neighbor) such that Y ⊆ Xi or Y ⊇ Xi

for any i. Now for each non-trivial connected component of Hσ we have
⋃k

t=1 Xit

and
⋂k

t=1 Xit
, and we call them special. For each component at least one of the special

...

...

...

Xi1

Xi2

Xi3

X j1
X j2 X j3

Figure 2: The inclusion poset of X1, . . . , Xn.
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vertices must be a vertex of N(Gsd(K)). If Y ⊆ Xit
for any t , then the intersection is

a vertex. If Y ⊇ Xit
for any t , then the union is a vertex. If there exist s and t such

that Xis
⊆ Y ⊆ Xit

, then the vertices of the component above Y and the vertices of
this component below Y were in different connected components. So for a simplex

σ ∈ N(Gsd(K)) \ sd(K) we have the special vertices assigned to σ and we denote the

smallest by Xσ . Now we are ready to define our matching µ:

µ(σ) :=

{

σ \ Xσ if Xσ ∈ σ,

σ ∪ Xσ otherwise.

This matching is well defined since for any i, Xσ ⊆ Xi or Xσ ⊇ Xi . This means the

non-trivial components of Hσ and Hµ(σ) are the same, µ(µ(σ)) = σ.
This matching is acyclic. If µ(σ) ⊃ σ (we went up by the matching), then we have

to delete some vertex of µ(σ) to go down. Hσ and Hµ(σ) have the same number of

edges, so we have to delete a vertex Xσ 6= Xi ∈ σ such that for any j Xi ⊂ X j or
Xi ⊃ X j . But now the connected components of Hσ , Hµ(σ) and Hµ(σ)\Xi

are the same,

which means that µ(σ) \ Xi is matched down so we cannot get back to µ(σ).
The critical cells of µ are the simplices of sd(K), which completes the proof.

Remark 14. Since this matching respects the Z2-action ν, we have actually shown that

(K, ν) and (N(Gsd(K)), ν) are simple Z2-homotopy equivalent.

Theorem 15 Given a free Z2-simplicial complex (K, ν), there is a graph G such that

its graph complex (L(G), B(G), Hom(K2, G)) is simple Z2-homotopy equivalent to the

given complex.

Proof Using the same construction as before, we will show that (sd(K), ν) and one

of the graph complexes, B(Gsd(K)) are simple Z2-homotopy equivalent, where the Z2-
action is to interchange the shores. First we define a Z2-embedding of sd(K) into

B(Gsd(K)). For each pair of vertices (A, ν(A)) of sd(K) we have a choice. We can map

A into A ⊎ ∅ and ν(A) into ∅ ⊎ A, or we can map A into ∅ ⊎ ν(A) and ν(A) into
ν(A) ⊎ ∅. So it is not a canonical embedding, since we have two choices for each

vertex pair. We show that this map defined on the vertex set is simplicial. A simplex

A1 ⊂ A2 ⊂ · · · ⊂ Am of sd(K) is mapped to a subsimplex of (A1 ⊎ ∅) ⊂ (A2 ⊎ ∅) ⊂
· · · ⊂ (Am ⊎∅), (∅⊎ν(A1)) ⊂ (∅⊎ν(A2)) ⊂ · · · ⊂ (∅⊎ν(Am)) which is a simplex

of B(Gsd(K)). We consider sd(K) as the image of this embedding.
We will collapse B(Gsd(K)) to sd(K) in two steps.

STEP1. We pick a simplex σ ∈ B(Gsd(K)) \ sd(K),

σ = {A1 ⊎ ∅, A2 ⊎ ∅, . . . , Al ⊎ ∅; ∅ ⊎ B1, ∅ ⊎ B2, . . . , ∅ ⊎ Bk}.

We define the following two simplices of (N(Gsd(K))): σ1 = {A1, A2, . . . , Al} and
σ2 = {B1, B2, . . . , Bk}. We will exploit the notations of the proof of Theorem 12. We

use the graphs Hσ1
and Hσ2

and we define the vertex Vσ := Aσ1
⊎ ∅ if Aσ1

exists (the
smallest special vertex assigned to σ1). If it does not exist let Vσ := ∅⊎Bσ2

if it exists.

If that does not exist either, it means that Hσ1
and Hσ2

contain no edge, and thus the

vertices of σ1 and σ2 form a chain, so they are simplices of sd(K) as well. Those will
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be the critical cells of this first matching. Now we are able to define the matching µ.
If Vσ 6= ∅, then

µ(σ) :=

{

σ \Vσ if Vσ ∈ σ,

σ ∪ Xσ otherwise.

This matching is well defined and acyclic as before. Its critical cells form a subcom-

plex C ⊆ B(Gsd(K)).

STEP2. Now we will collapse down C to sd(K). When we constructed the embedding

sd(K) →֒ B(Gsd(K)), we had to choose for every Z2-pair (A, ν(A)) whether to map it to
(A⊎∅, ∅⊎A) or (∅⊎ν(A), ν(A)⊎∅). We will refer to the vertices of B(Gsd(K))\sd(K)

as bad vertices. We pick a simplex σ ∈ C such that it contains a bad vertex. Let
σ = {(A1⊎∅) ⊂ (A2⊎∅) ⊂ · · · ⊂ (Al⊎∅), (∅⊎B1) ⊂ (∅⊎B2) ⊂ · · · ⊂ (∅⊎Bk)}.

Now we define Wσ to be the smallest bad vertex of σ in the form Ai ⊎ ∅. If they are

all good, then we define Wσ to be the smallest bad vertex of σ in the form ∅ ⊎ B j .
Now we can define a matching µ:

µ(σ) :=



















σ \ (∅ ⊎ µ(Ai)) if Wσ = Ai ⊎ ∅ ∈ σ and (∅ ⊎ µ(Ai)) ∈ σ,

σ ∪ (∅ ⊎ µ(Ai)) if Wσ = Ai ⊎ ∅ ∈ σ and (∅ ⊎ µ(Ai)) 6∈ σ,

σ \ (µ(B j) ⊎ ∅) if Wσ = ∅ ⊎ B j ∈ σ and (µ(B j) ⊎ ∅) ∈ σ,

σ ∪ (µ(B j) ⊎ ∅) if Wσ = ∅ ⊎ B j ∈ σ and (µ(B j) ⊎ ∅) 6∈ σ.

Since we add/delete a good vertex Wσ = Wµ(σ), this matching is well defined. The
acyclicity easily follows from the fact that σ and µ(σ) have the same bad vertex set.

The critical cells of this matching are exactly the simplices of sd(K).

Since our matching respects the Z2-actions, we have completed the proof.
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