Canad. Math. Bull. Vol. 51 (4), 2008 pp. 535-544

On the Simple \mathbb{Z}_2 -homotopy Types of Graph Complexes and Their Simple \mathbb{Z}_2 -universality

Péter Csorba

Abstract. We prove that the neighborhood complex N(G), the box complex B(G), the homomorphism complex $Hom(K_2, G)$ and the Lovász complex L(G) have the same simple \mathbb{Z}_2 -homotopy type in the sense of Whitehead. We show that these graph complexes are simple \mathbb{Z}_2 -universal.

1 Introduction

The topological method in graph theory was initiated by Lovász [10] to prove Kneser's conjecture [9]. He defined the neighborhood complex N(G) and the so called Lovász complex L(G). For similar reasons other complexes assigned to graphs were studied such as the box complex B(G) [12] and the homomorphism complex Hom(K_2 , G), which was invented by Lovász as well [1]. We will refer to these complexes as *graph complexes*. The \mathbb{Z}_2 -homotopy equivalence of these complexes have been studied in several papers [3, 4, 11, 14]. The neighborhood complex does not admit a free \mathbb{Z}_2 -action. By slightly abusing the notation we will say that it is \mathbb{Z}_2 -homotopy equivalence.

We will show that something more can be said about these complexes. We prove that these graph complexes have the same simple \mathbb{Z}_2 -homotopy type in the sense of Whitehead [13]. It was independently proven by Kozlov [8] that N(*G*), L(*G*) and Hom(K_2 , *G*) are simple homotopy equivalent. Here we give simpler and \mathbb{Z}_2 -proofs. It is known that graph complexes are universal [3]. We extend it into simple \mathbb{Z}_2 universality. We show that for any \mathbb{Z}_2 -simplicial complex there is a graph *G* such that the given complex and the graph complexes assigned to *G* are simple \mathbb{Z}_2 -homotopy equivalent.

2 Preliminaries

In this section we recall some basic facts about graphs, simplicial complexes, and posets, to fix notation. The interested reader is referred to [11] or [2] for details.

Any graph *G* considered will be assumed to be finite, simple, connected, and undirected, *i.e.*, *G* is given by a finite set V(G) of *vertices* and a set of *edges* $E(G) \subseteq \binom{V(G)}{2}$.

Supported by grants from NSERC and the Canada Research Chairs program.

Received by the editors May 26, 2006; revised February 6, 2007.

AMS subject classification: Primary: 57Q10; secondary: 05C10, 55P10.

Keywords: graph complexes, simple \mathbb{Z}_2 -homotopy, universality.

[©]Canadian Mathematical Society 2008.

The common neighborhood of $A \subseteq V(G)$ is

$$CN(A) = \{ v \in V(G) \colon \{a, v\} \in E(G) \text{ for all } a \in A \}.$$

We define $CN(\emptyset) := V(G)$. For two disjoint sets of vertices $A, B \subseteq V(G)$ we define G[A, B] as the (not necessarily induced) subgraph of G with $V(G[A, B]) = A \cup B$ and $E(G[A, B]) = \{\{a, b\} \in E(G) : a \in A, b \in B\}$.

A *simplicial complex* K is a finite hereditary set system. We denote its vertex set by V(K) and its barycentric subdivision by sd(K).

For sets *A*, *B* define $A \uplus B := \{(a, 1): a \in A\} \cup \{(b, 2): b \in B\}$. An important construction in the category of simplicial complexes is the *join operation*. For two simplicial complexes K and L, the join K * L is defined as K * L := $\{A \uplus B | A \in K \text{ and } B \in L\}$.

A \mathbb{Z}_2 -space is a pair (X, ν) where X is a topological space and $\nu: X \to X$, called the \mathbb{Z}_2 -action, is a homeomorphism such that $\nu^2 = \nu \circ \nu = id_X$.

The neighborhood complex [10] is $N(G) = \{S \subseteq V(G) : CN(S) \neq \emptyset\}.$

The Lovász complex [10] is L(G) := CN(sd(N(G))). CN is a free \mathbb{Z}_2 -action on L(G).

The *box complex* B(G) of a graph G (the one introduced by Matoušek and Ziegler [12]) is defined by

$$\mathbf{B}(G) := \left\{ A \uplus B : A, B \subseteq V(G), \ A \cap B = \emptyset, \right.$$

G[A, B] is complete bipartite, $CN(A) \neq \emptyset \neq CN(B)$

The vertices of the box complex are

$$V_1 := \{ v \uplus \emptyset : v \in V(G) \} \text{ and}$$
$$V_2 := \{ \emptyset \uplus v : v \in V(G) \}.$$

The subcomplexes of B(G) induced by V_1 and V_2 are disjoint subcomplexes of B(G) such that both are isomorphic to the neighborhood complex N(G). We refer to these two copies as *shores* of the box complex. The box complex is endowed with a \mathbb{Z}_2 -action which interchanges the shores.

The *shore subdivision* [4] of B(G) is the complex obtained by barycentricly subdividing the shores of B(G).

$$\mathrm{ssd}(\mathrm{B}(G)) := \left\{ \mathrm{sd}(\sigma \cap V_1) \ast \mathrm{sd}(\sigma \cap V_2) \colon \sigma \in \mathrm{B}(G) \right\}.$$

The *homomorphism complex* Hom(K_2 , G), or actually its barycentric subdivision sd(Hom(K_2 , G)), can be defined as a subcomplex of sd(B(G)) induced by the vertices $A \uplus B$ such that $A \neq \emptyset \neq B$. This definition gives the barycentric subdivision of the original definition of the homomorphism complex Hom(K_2 , G) (see [1]).

Examples For the complete graph K_n , its neighborhood complex $N(K_n)$ is the boundary complex of the n-1 dimensional simplex. $L(K_n)$ is the barycentric subdivision of the n-1 dimensional simplex. Its box complex $B(K_n)$ is the boundary complex of the *n*-dimensional cross polytope with two opposite facets removed.

Definition 1 Let K be a simplicial complex. Let $\sigma, \tau \in K$ such that

(i) $\tau \subset \sigma$,

(ii) σ is a maximal simplex, and no other maximal simplex contains τ .

A (simplicial) *collapse* of K is the removal of all simplices γ , such that $\tau \subseteq \gamma \subseteq \sigma$. If in addition dim $\tau = \dim \sigma - 1$, then this is called an *elementary* collapse.

When Y is a simplicial subcomplex of X, we say that X *collapses* onto Y if there exists a sequence of elementary collapses leading from X to Y. The reverse of an elementary collapse is called an elementary *expansion*. A sequence of elementary collapses and elementary expansions leading from a complex X to the complex Y is called a *formal deformation*. If such a sequence exists, then the simplicial complexes X and Y are said to have the same *simple homotopy type*, see [13].

The definition of the \mathbb{Z}_2 -collapse and simple \mathbb{Z}_2 -homotopy type is self-evident. Since we are dealing with free \mathbb{Z}_2 -complexes, it just means that the collapses can be performed in pairs equivariantly.

It is well known, see *e.g.*, [8], that for a simplicial complex X the subdivisions sd(X) and ssd(X) have the same simple homotopy type as X, since they can be obtained by repeating stellar subdivision. This extends to simple \mathbb{Z}_2 -homotopy type for free \mathbb{Z}_2 -complexes. In the \mathbb{Z}_2 case, collapses and expansions corresponding to the stellar subdivision can be performed equivariantly.

We recall that a *partially ordered set*, or *poset* for short, is a pair (P, \leq) , where *P* is a set and \leq is a binary relation on *P* that is reflexive $(x \leq x)$, transitive $(x \leq y \text{ and } y \leq z \text{ imply that } x \leq z)$, and weakly antisymmetric $(x \leq y \text{ and } y \leq x \text{ imply } x = y)$. When the order relation \leq is understood, we say only "a poset *P*." The *order complex* of a poset *P* is the simplicial complex $\Delta(P)$ whose vertices are the elements of *P* and whose simplices are all chains $(i.e., x_1 \prec x_2 \prec \cdots \prec x_k)$ in *P*.

We need the following theorem of Kozlov to prove collapsibility.

Theorem 2 ([7, Theorem 2.1]) Let P be a poset, and let ϕ be a descending closure operator. Then $\Delta(P)$ collapses onto $\Delta(\phi(P))$. By symmetry the same is true for an ascending closure operator.

Actually we need the \mathbb{Z}_2 -modification of this theorem.

Definition 3 A poset (P, \preceq) is *involutive* if it is equipped with an involution $\varphi: P \rightarrow P$ which is either monotone or antimonotone and $\varphi^2 = id_P$. Instead of involutive we also say that (P, \preceq) admits a \mathbb{Z}_2 -action or that (P, \preceq) is a \mathbb{Z}_2 -poset. We will call a \mathbb{Z}_2 -poset (P, \preceq, φ) free if φ is a free \mathbb{Z}_2 -action on its order complex.

Theorem 4 Let P be a poset with a free involution, and let a \mathbb{Z}_2 -map ϕ be a descending closure operator. Then $\Delta(P) \mathbb{Z}_2$ -collapses onto $\Delta(\phi(P))$. By symmetry the same is true for a \mathbb{Z}_2 -ascending closure operator.

Proof The same argument works as in [7, Theorem 2.1].

We introduce the basics of Discrete Morse Theory, which was invented by Forman [5]. It provides a convenient language for describing sequences of elementary collapses. **Definition 5** Let *P* be a poset with the order relation \succ .

- We define a *partial matching* on *P* to be a set $\Sigma \subseteq P$, and an injective map $\mu \colon \Sigma \to P \setminus \Sigma$, such that $\mu(x) \succ x$, for all $x \in \Sigma$.
- The elements of $P \setminus (\Sigma \cup \mu(\Sigma))$ are called *critical*.
- Additionally, such a partial matching μ is called *acyclic* if there exists no sequence of distinct elements $x_1, \ldots, x_t \in \Sigma$ with $t \ge 2$ satisfying $\mu(x_1) \succ x_2, \mu(x_2) \succ x_3, \ldots, \mu(x_t) \succ x_1$.

The partial acyclic matchings and elementary collapses are closely related, as the next proposition shows.

Proposition 6 ([6, Proposition 5.4]) Let Δ be a regular CW complex and Δ' a subcomplex of Δ . Then the following are equivalent:

- (a) there is a sequence of elementary collapses leading from Δ to Δ' ;
- (b) there is a partial acyclic matching on the face poset of Δ with the set of critical cells being exactly the simplices of Δ'.

Remark 7. We will use the \mathbb{Z}_2 -version of this theorem. In our settings $\Delta \supset \Delta'$ are free \mathbb{Z}_2 -simplicial complexes, and the acyclic matching μ respects the \mathbb{Z}_2 -action ν (*i.e.*, $\nu(\mu(x)) = \mu(\nu(x))$). In this case we only use that $\Delta \mathbb{Z}_2$ -collapses to Δ' (the critical cells of this \mathbb{Z}_2 symmetric matching are the simplices of Δ'). The same argument as in [6, Proposition 5.4] proves this \mathbb{Z}_2 variation.

3 Simple Z₂-homotopy Equivalences of Graph Complexes

In this section we will prove that B(G) collapses to N(G), $sd(B(G)) \mathbb{Z}_2$ -collapses to $sd(Hom(K_2, G))$, and $ssd(B(G)) \mathbb{Z}_2$ -collapses to L(G).

Theorem 8 B(G) collapses to N(G).

Proof We will collapse B(*G*) to its first shore, which is isomorphic to N(*G*). Let $\sigma \in B(G)$ be a simplex such that it has a vertex from the second shore. Then $\sigma = \{v_1 \uplus \emptyset, \ldots, v_l \uplus \emptyset; \emptyset \uplus w_1, \ldots, \emptyset \uplus w_k\}$. The set $\emptyset \neq \{w_1, \ldots, w_k\}$ has a common neighbor by the properties of the box complex. We denote the smallest¹ common neighbor by x_{σ} . We define the matching μ by

$$\mu(\sigma) := \begin{cases} \sigma \setminus (x_{\sigma} \uplus \varnothing) & \text{ if } (x_{\sigma} \uplus \varnothing) \in \sigma, \\ \sigma \cup (x_{\sigma} \uplus \varnothing) & \text{ if } (x_{\sigma} \uplus \varnothing) \notin \sigma. \end{cases}$$

This matching is well defined since σ and $\mu(\sigma)$ have the same vertex set from the second shore, so $x_{\mu(\sigma)} = x_{\sigma}$. We show that μ is acyclic. If we go up by the matching $(\sigma \subset \mu(\sigma))$ then we should delete a vertex $v \uplus \emptyset$ from the first shore (we can never add a vertex to the second shore). If we do not delete $x_{\sigma} \uplus \emptyset$, then $\mu(\sigma) \setminus (v \uplus \emptyset)$ is matched down. The critical cells of μ are the simplices of the first shore, which completes the proof.

¹Now we have to fix a linear order on V(G) to be consistent with our choices.

Theorem 9 $\operatorname{sd}(\operatorname{B}(G)) \mathbb{Z}_2$ -collapses to $\operatorname{sd}(\operatorname{Hom}(K_2, G))$.

Proof $sd(Hom(K_2, G))$ is a subcomplex of sd(B(G)). The extra vertices are vertices on the shores of the box complex sd(B(G)). (They are in the form $\emptyset \uplus A$ and $B \uplus \emptyset$.) We work only with the first shore: the $B \uplus \emptyset$ part of sd(B(G)). On the other shore every collapse \mathbb{Z}_2 -pair is done. We describe an acyclic matching on the face poset of sd(B(G)). Let $\sigma \in sd(B(G))$ be a simplex. We assume that σ has a vertex from the first shore. Its vertices form a chain

$$A_1 \uplus \varnothing \subset \cdots \subset A_n \uplus \varnothing \subset A_{n+1} \uplus B_1 \subset \cdots \subset A_{n+m} \uplus B_m$$

where $n \ge 1$ and $B_1 \ne \emptyset$. We set $B_0 = \emptyset$ and consider the vertex $CN^2(A_n) \uplus CN(A_n)$. Let *i* be the maximal index such that $A_{n+i} \uplus B_i \subseteq CN^2(A_n) \uplus CN(A_n)$. We note that $A_n \uplus B_0 \subseteq CN^2(A_n) \uplus CN(A_n)$, so such an *i* exists.

If i = m, then we can have $A_{n+m} \uplus B_m = CN^2(A_n) \uplus CN(A_n)$. In this case we match σ with $\sigma \setminus (CN^2(A_n) \uplus CN(A_n))$. Otherwise, we match σ with $\sigma \cup (CN^2(A_n) \uplus CN(A_n))$.

If $i \neq m$, then we consider $X \uplus Y := A_{n+i+1} \uplus B_{i+1} \cap CN^2(A_n) \uplus CN(A_n)$. If $(X \uplus Y) \in \sigma$, then we match σ with $\sigma \setminus (X \uplus Y)$. If $(X \uplus Y) \notin \sigma$, then we match σ with $\sigma \cup (X \uplus Y)$.

Next we show that the obtained matching μ is acyclic. Assume that there exists a sequence $\sigma_0, \ldots, \sigma_t \in \operatorname{sd}(\operatorname{B}(G))$ such that all σ_i are different, with the exception $\sigma_0 = \sigma_t$, and such that $\mu(\sigma_i) \succ \sigma_{i+1}$ for $0 \le i \le t-1$. Assume that $\mu(\sigma_0) = A_1 \uplus \varnothing \subset \cdots \subset A_n \uplus \varnothing \subset A_{n+1} \uplus B_1 \subset \cdots \subset A_{n+m} \uplus B_m$. If σ_0 were $\mu(\sigma_0) \setminus (A_{n+m} \uplus B_m)$, then since $\sigma_0 \ne \sigma_1$ it would be not possible to match σ_1 upwards unless we delete $A_n \uplus \varnothing$. But matched pairs contain the same number of vertices in type $A \uplus \varnothing$, so it can not be a member of a cycle. Otherwise, $\sigma_0 = \mu(\sigma_0) \setminus (A_{n+i} \uplus B_i)$ for some $m > i \ge 1$. Since σ_1 is matched upwards, it is easy to see, that σ_1 should be $\mu(\sigma_0) \setminus (A_{n+i+1} \uplus B_{i+1})$. We see that in σ_1 the number of vertices which are subsets of $\operatorname{CN}^2(A_n) \uplus \operatorname{CN}(A_n)$ is increased by 1 compared to σ_0 . Repeating this argument, we see that σ_t has t vertices more, therefore $\sigma_0 \ne \sigma_t$. This leads to the conclusion that μ is acyclic.

The critical simplices form a subcomplex $sd(Hom(K_2, G))$, which completes the proof.

Theorem 10 ssd(B(G)) \mathbb{Z}_2 -collapses to L(G).

Proof First we show that $ssd(B(G)) \mathbb{Z}_2$ -collapses onto $CN^2(ssd(B(G)))$. This follows from Theorem 4, since CN^2 is a \mathbb{Z}_2 -descending closure operator.

Next we show that $CN^2(ssd(B(G))) \mathbb{Z}_2$ -collapses onto L(G). We will define simplicial complexes

$$\operatorname{CN}^2(\operatorname{ssd}(\operatorname{B}(G))) =: \operatorname{S}_0 \supset \operatorname{S}_1 \supset \cdots \supset \operatorname{S}_{N+1} = \operatorname{L}(G)$$

such that $S_i \mathbb{Z}_2$ -collapses to S_{i+1} . Assume that S_i is already defined. To define S_{i+1} , we choose a vertex $X \uplus \emptyset \in S_i$ such that

- (i) $\emptyset \uplus \operatorname{CN}(X) \in S_i$,
- (ii) $|X| \ge |\operatorname{CN}(X)|$,

(iii) there is no Y such that $Y \uplus \emptyset \in S_i$, $\emptyset \uplus CN(Y) \in S_i$, $|Y| \ge |CN(Y)|$ and |Y| > |X|.

The maximality of *X* implies that a maximal simplex which contains $X \uplus \emptyset$ (resp. $\emptyset \uplus X$) also contains $\emptyset \uplus CN(X)$ (resp. $CN(X) \uplus \emptyset$). Now we will just work with the first shore vertex $X \uplus \emptyset$. In order to obtain a \mathbb{Z}_2 -collapse at each step, a \mathbb{Z}_2 -pair should be done as well.

We define an acyclic matching on the face poset of S_i . Let $\sigma \in S_i$ such that $X \uplus \emptyset$ is its vertex. If $\emptyset \uplus CN(X)$ is a vertex of σ , then we match σ with the simplex $\sigma \setminus (\emptyset \uplus CN(X))$. Otherwise, we match σ with $\sigma \cup (\emptyset \uplus CN(X))$.

Next we show that the obtained matching μ is acyclic. Assume that there exists a sequence $\sigma_0, \ldots, \sigma_t \in S_i$ such that all σ_i are different, with the exception $\sigma_0 = \sigma_t$, and such that $\mu(\sigma_i) \succ \sigma_{i+1}$ for $0 \le i \le t - 1$. Then $\mu(\sigma_0) = \sigma_0 \cup (\emptyset \uplus CN(X))$. We must obtain σ_1 from $\mu(\sigma_0)$ by deleting one vertex in such a way that it matches upwards. This is possible if and only if we delete the vertex $\emptyset \uplus CN(X)$, and therefore $\sigma_0 = \sigma_1$. This leads to the conclusion that μ is acyclic.

The critical simplices always form a subcomplex. At the end of this process we arrive at a simplicial complex, that is \mathbb{Z}_2 -isomorphic to L(*G*). This \mathbb{Z}_2 -isomorphism was proven in [4, Theorem 1]. This completes the proof.

4 Simple **Z**₂-universality of Graph Complexes

It is known that graph complexes are universal up to \mathbb{Z}_2 -homotopy type.

Theorem 11 ([3]) Given a free \mathbb{Z}_2 -simplicial complex (K, ν), there is a graph G such that its graph complex is \mathbb{Z}_2 -homotopy equivalent to the given complex.

Now we show the simple homotopy type extension. First we start with the neighborhood complex N(G).

Theorem 12 Given a free \mathbb{Z}_2 -simplicial complex (K, ν), there is a graph G such that its neighborhood complex N(G) is simple homotopy equivalent to the given complex.

We will use the construction from [3].

Construction 13 ($K \to G_K$) Let K be a \mathbb{Z}_2 -simplicial complex. The vertices of G_K are the vertices of K, and each vertex is connected to its \mathbb{Z}_2 -pair and the neighbors (neighbors in the 1-skeleton of K) of the \mathbb{Z}_2 -pair. Thus if $x, y \in V(G_K) = V(K)$ then there is an edge between them if and only if $\nu(x) = y$ or $\{x, \nu(y)\} \in K$ (or $\{y, \nu(x)\} \in K$). See Figure 1.

Proof of Theorem 12 For technical reasons we need the first barycentric subdivision sd(K) of K. The free simplicial \mathbb{Z}_2 -action on sd(K) will be denoted by ν as well. There is no free \mathbb{Z}_2 -action on the neighborhood complex $N(G_{sd(K)})$ in general. But now ν acts freely on $N(G_{sd(K)})$. Then sd(K) and $N(G_{sd(K)})$ have the same vertex set. If $A_1 \subset A_2 \subset \cdots \subset A_m$ is a simplex in sd(K), then in $G_{sd(K)}$ they have a common neighbor, *e.g.*, $\nu(A_1)$, so it is a simplex in $N(G_{sd(K)})$ as well. This means that sd(K) is a (not induced) subcomplex of $N(G_{sd(K)})$. In order to show that $N(G_{sd(K)})$ collapses

Figure 1: Example for K, sd(K), $G_{sd(K)}$ and N($G_{sd(K)}$). The \mathbb{Z}_2 -action is the antipodal map.

to sd(K) we define an acyclic matching on the face poset of $N(G_{sd(K)})$ such that its critical cells are exactly the simplices of sd(K). (See Figure 1.)

Let $\sigma = \{X_1, X_2, \ldots, X_n\}$ be a simplex of $N(G_{sd(K)}) \setminus sd(K)$. Since it is not a simplex of sd(K) we must have at least two vertices X_i, X_j , such that $X_i \not\subset X_j$ and $X_i \not\supset X_j$. We define a graph H_{σ} with vertex set $\{X_1, X_2, \ldots, X_n\}$. There is an edge between the two vertices X_i, X_j if and only if $X_i \not\subset X_j$ and $X_i \not\supset X_j$. We take the non-trivial connected components of H_{σ} , *i.e.*, those which contain at least an edge, and denote them by $\{X_{i_1}, X_{i_2}, \ldots, X_{i_k}\}, \{X_{i_1}, X_{i_2}, \ldots, X_{i_k}\}, \dots$ (See Figure 2.)

Since σ is a simplex, there exist Y (common neighbor) such that $Y \subseteq X_i$ or $Y \supseteq X_i$ for any i. Now for each non-trivial connected component of H_{σ} we have $\bigcup_{t=1}^k X_{i_t}$ and $\bigcap_{t=1}^k X_{i_t}$, and we call them *special*. For each component at least one of the special

Figure 2: The inclusion poset of X_1, \ldots, X_n .

vertices must be a vertex of $N(G_{sd(K)})$. If $Y \subseteq X_{i_t}$ for any t, then the intersection is a vertex. If $Y \supseteq X_{i_t}$ for any t, then the union is a vertex. If there exist s and t such that $X_{i_s} \subseteq Y \subseteq X_{i_t}$, then the vertices of the component above Y and the vertices of this component below Y were in different connected components. So for a simplex $\sigma \in N(G_{sd(K)}) \setminus sd(K)$ we have the special vertices assigned to σ and we denote the smallest by X_{σ} . Now we are ready to define our matching μ :

$$\mu(\sigma) := \begin{cases} \sigma \setminus X_{\sigma} & \text{if } X_{\sigma} \in \sigma, \\ \sigma \cup X_{\sigma} & \text{otherwise.} \end{cases}$$

This matching is well defined since for any $i, X_{\sigma} \subseteq X_i$ or $X_{\sigma} \supseteq X_i$. This means the non-trivial components of H_{σ} and $H_{\mu(\sigma)}$ are the same, $\mu(\mu(\sigma)) = \sigma$.

This matching is acyclic. If $\mu(\sigma) \supset \sigma$ (we went up by the matching), then we have to delete some vertex of $\mu(\sigma)$ to go down. H_{σ} and $H_{\mu(\sigma)}$ have the same number of edges, so we have to delete a vertex $X_{\sigma} \neq X_i \in \sigma$ such that for any $j X_i \subset X_j$ or $X_i \supset X_j$. But now the connected components of H_{σ} , $H_{\mu(\sigma)}$ and $H_{\mu(\sigma)\setminus X_i}$ are the same, which means that $\mu(\sigma) \setminus X_i$ is matched down so we cannot get back to $\mu(\sigma)$.

The critical cells of μ are the simplices of sd(K), which completes the proof.

Remark 14. Since this matching respects the \mathbb{Z}_2 -action ν , we have actually shown that (K, ν) and $(N(G_{sd(K)}), \nu)$ are simple \mathbb{Z}_2 -homotopy equivalent.

Theorem 15 Given a free \mathbb{Z}_2 -simplicial complex (K, ν) , there is a graph G such that its graph complex $(L(G), B(G), Hom(K_2, G))$ is simple \mathbb{Z}_2 -homotopy equivalent to the given complex.

Proof Using the same construction as before, we will show that $(sd(K), \nu)$ and one of the graph complexes, $B(G_{sd(K)})$ are simple \mathbb{Z}_2 -homotopy equivalent, where the \mathbb{Z}_2 -action is to interchange the shores. First we define a \mathbb{Z}_2 -embedding of sd(K) into $B(G_{sd(K)})$. For each pair of vertices $(A, \nu(A))$ of sd(K) we have a choice. We can map A into $A \uplus \emptyset$ and $\nu(A)$ into $\emptyset \uplus A$, or we can map A into $\emptyset \uplus \nu(A)$ and $\nu(A)$ into $\nu(A) \uplus \emptyset$. So it is not a canonical embedding, since we have two choices for each vertex pair. We show that this map defined on the vertex set is simplicial. A simplex $A_1 \subset A_2 \subset \cdots \subset A_m$ of sd(K) is mapped to a subsimplex of $(A_1 \uplus \emptyset) \subset (A_2 \uplus \emptyset) \subset \cdots \subset (A_m \uplus \emptyset), (\emptyset \uplus \nu(A_1)) \subset (\emptyset \uplus \nu(A_2)) \subset \cdots \subset (\emptyset \uplus \nu(A_m))$ which is a simplex of $B(G_{sd(K)})$. We consider sd(K) as the image of this embedding.

We will collapse $B(G_{sd(K)})$ to sd(K) in two steps.

STEP1. We pick a simplex $\sigma \in B(G_{sd(K)}) \setminus sd(K)$,

$$\sigma = \{A_1 \uplus \varnothing, A_2 \uplus \varnothing, \dots, A_l \uplus \varnothing; \varnothing \uplus B_1, \varnothing \uplus B_2, \dots, \varnothing \uplus B_k\}.$$

We define the following two simplices of $(N(G_{sd(K)}))$: $\sigma_1 = \{A_1, A_2, \ldots, A_l\}$ and $\sigma_2 = \{B_1, B_2, \ldots, B_k\}$. We will exploit the notations of the proof of Theorem 12. We use the graphs H_{σ_1} and H_{σ_2} and we define the vertex $V_{\sigma} := A_{\sigma_1} \uplus \emptyset$ if A_{σ_1} exists (the smallest special vertex assigned to σ_1). If it does not exist let $V_{\sigma} := \emptyset \uplus B_{\sigma_2}$ if it exists. If that does not exist either, it means that H_{σ_1} and H_{σ_2} contain no edge, and thus the vertices of σ_1 and σ_2 form a chain, so they are simplices of sd(K) as well. Those will

be the critical cells of this first matching. Now we are able to define the matching μ . If $V_{\sigma} \neq \emptyset$, then

$$\mu(\sigma) := \begin{cases} \sigma \setminus V_{\sigma} & \text{if } V_{\sigma} \in \sigma, \\ \sigma \cup X_{\sigma} & \text{otherwise.} \end{cases}$$

This matching is well defined and acyclic as before. Its critical cells form a subcomplex C \subseteq B($G_{sd(K)}$).

STEP2. Now we will collapse down C to sd(K). When we constructed the embedding $sd(K) \hookrightarrow B(G_{sd(K)})$, we had to choose for every \mathbb{Z}_2 -pair $(A, \nu(A))$ whether to map it to $(A \uplus \emptyset, \emptyset \uplus A)$ or $(\emptyset \uplus \nu(A), \nu(A) \uplus \emptyset)$. We will refer to the vertices of $B(G_{sd(K)}) \setminus sd(K)$ as *bad* vertices. We pick a simplex $\sigma \in C$ such that it contains a bad vertex. Let $\sigma = \{ (A_1 \uplus \varnothing) \subset (A_2 \uplus \varnothing) \subset \cdots \subset (A_l \uplus \varnothing), (\varnothing \uplus B_1) \subset (\varnothing \uplus B_2) \subset \cdots \subset (\varnothing \uplus B_k) \}.$ Now we define W_{σ} to be the smallest bad vertex of σ in the form $A_i \uplus \emptyset$. If they are all good, then we define W_{σ} to be the smallest bad vertex of σ in the form $\emptyset \uplus B_i$. Now we can define a matching μ :

$$\mu(\sigma) := \begin{cases} \sigma \setminus (\varnothing \uplus \mu(A_i)) & \text{if } W_{\sigma} = A_i \uplus \varnothing \in \sigma \text{ and } (\varnothing \uplus \mu(A_i)) \in \sigma, \\ \sigma \cup (\varnothing \uplus \mu(A_i)) & \text{if } W_{\sigma} = A_i \uplus \varnothing \in \sigma \text{ and } (\varnothing \uplus \mu(A_i)) \notin \sigma, \\ \sigma \setminus (\mu(B_j) \uplus \varnothing) & \text{if } W_{\sigma} = \varnothing \uplus B_j \in \sigma \text{ and } (\mu(B_j) \uplus \varnothing) \in \sigma, \\ \sigma \cup (\mu(B_j) \uplus \varnothing) & \text{if } W_{\sigma} = \varnothing \uplus B_j \in \sigma \text{ and } (\mu(B_j) \uplus \varnothing) \notin \sigma. \end{cases}$$

Since we add/delete a good vertex $W_{\sigma} = W_{\mu(\sigma)}$, this matching is well defined. The acyclicity easily follows from the fact that σ and $\mu(\sigma)$ have the same bad vertex set. The critical cells of this matching are exactly the simplices of sd(K).

Since our matching respects the \mathbb{Z}_2 -actions, we have completed the proof.

References

- [1] E. Babson, D. N. Kozlov, Complexes of graph homomorphisms. Israel J. Math. 152(2006), 285-312.
- A. Björner, Topological methods. In: Handbook of Combinatorics Vol. II, Elsevier, Amsterdam, [2] 1995, pp. 1819-1872.
- P. Csorba, Homotopy types of box complexes. Combinatorica 27(2007), no. 6, 669-682. [3]
- P. Csorba, C. Lange, I. Schurr, A. Wassmer, Box complexes, neighborhood complexes, and the [4] chromatic number. J. Combin. Theory Ser. A 108(2004), no. 1, 159-168.
- [5] R. Forman, Morse theory for cell complexes. Adv. Math. 134(1998), no.1, 90-145.
- D. N. Kozlov, Rational homology of spaces of complex monic polynomials with multiple roots. [6] Mathematika 49(2002), no. 1-2, 77-91.
- , A simple proof for folds on both sides in complexes of graph homomorphisms. Proc. [7] Amer. Math. Soc. 134(2006), no. 5, 1265-1270 (electronic).
- , Simple homotopy types of Hom-complexes, neighborhood complexes, Lovász complexes, [8] and atom crosscut complexes. Topology Appl. 153(2006), no. 14, 2445-2454. [9]
 - M. Kneser, Aufgabe 360. Jahresber. Deutsch. Math.-Verein. 58(1955), no. 2, 27.
- [10] L. Lovász, Kneser's conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(1978), 319-324.
- [11] J. Matoušek, Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Berlin, 2003.
- J. Matoušek and G. M. Ziegler, Topological lower bounds for the chromatic number: a hierarchy. [12] Jahresber. Deutsch. Math.-Verein. 106(2004), no. 2, 71-90.

P. Csorba

- [13] J.H.C. Whitehead, *Simplicial spaces, nuclei and m-groups*. Proc. London Math. Soc. **45**(1939), 243–327.
- [14] R. T. Živaljević, WI-posets, graph complexes and Z₂-equivalences. J. Combin. Theory Ser. A 111(2005), no. 2, 204–223.

Department of Mathematics, Middlesex College, The University of Western Ontario, London, Ontario N6A 5B7

e-mail: pcsorba@uwo.ca