Proof.-Draw $\mathrm{F}^{\prime} \mathrm{M}^{\prime}$ perpendicular to OB , draw through \mathbf{F} a parallel CP to $\mathrm{C}^{\prime} \mathrm{P}^{\prime}$, and join OP', producing it to cut CF in \mathbf{P}.

Then LQ:QS::OL :FM : : OK : GH:: C'O : $\mathrm{C}^{\prime} \mathrm{G}$: : $\mathbf{C}^{\prime} \mathrm{O}: \mathbf{C}^{\prime} \mathrm{P}^{\prime}$
\therefore the \triangle 's LQS and $O C^{\prime} P^{\prime}$ have an angle common and the sides about that angle proportional.
$\therefore \quad \angle \mathrm{SLQ}=\angle \mathrm{P}^{\prime} \mathrm{OC}^{\prime}$
$\therefore \quad$ LF is parallel to OP.
Hence
OL : FP : : CL : CF
$:: Q L: Q S$, since the \triangle 's QSL, CFL
are similar
: : OL : FM
$\therefore \quad F P=F M$.
But $\quad \mathrm{F}^{\prime} \mathrm{P}^{\prime}: \mathrm{FP}:: \mathrm{OF}^{\prime}$: OF
:: $\mathrm{F}^{\prime} \mathrm{M}^{\prime}: \mathrm{FM}$
But $\quad \mathbf{F P}=\mathbf{F M}$
$\therefore \quad \mathbf{F}^{\prime} \mathbf{P}^{\prime}=\mathbf{F}^{\prime} \mathbf{M}^{\prime}$
and C^{\prime} is the centre of circle AGB
\therefore a circle with centre F^{\prime} and radius $\mathrm{F}^{\prime} \mathrm{M}^{\prime}$ will touch both OE and OB and will touch the circle AGB at P^{\prime}.

The Algebraic Solution of the Cubic and Quartic in x by means of the Substitution

$$
\frac{\lambda x_{1}+\mu}{1+x}
$$

By Cilarles Twerdie, M.A., B.Sc.

