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LOCAL MINIMA OF THE GAUSS CURVATURE
OF A MINIMAL SURFACE

SHINJI YAMASHITA

Let D be a domain in the complex in-plane and let as: D —• R3 be a regular
minimal surface. Let M(K) be the set of points tu<j 6 D where the Gauss curvature
K attains local minima: K(wo) ^ K{w) for \w — tuo| < 6(wo), S(wo) > 0. The
components of M(K) are of three types: isolated points; simple analytic arcs
terminating nowhere in D; analytic Jordan curves in D. Components of the third
type are related to the Gauss map.

1. INTRODUCTION AND RESULTS

Our purpose is to study the set of parameter points where the Gauss curvature of
a minimal surface in the Euclidean space R3 attains local minima. A nonconstant map
x from a domain D in the complex to-plane C{w = u + iv) into the Euclidean space
R3, in notation, x: D —» R3, is said to determine a regular minimal surface, or, simply,
a; is a regular minimal surface defined in D, if the following three conditions hold:

(HA) Each component Xk of x = (xi, Z2> £3) is harmonic in D.
(IS) The real parameters u and v are isothermal in the sense that

in D, where

dxk .dxk dxk
<Pk = - 5 i~z— = 2 - K — , k-1,2, 3.

ou ov aw
3

(RE) The function X) 1̂ *1 never vanishes in D.
*=i

Suppose that the surface x is not contained in any plane in R.3. Then f — <f>i —i</>2

is analytic and g — ^ 3 / / is meromorphic in D. The Gauss map T of x is the map
from x into the unit sphere S in R3 defined by
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398 S. Yamashita [2]

this is the unit normal at x(w) with the standard orientation, together with T(w) =
(0, 0, 1), if w is a pole of g. Then F is identified with g via the stereographic projection
from S onto C U {oo}. The Gauss curvature at the point x(w) is then

K(w) = -

where the spherical derivative h&(w) at w of h meromorphic in D is defined by

(\h'(w)\/(l+\h(w)\2) if/*(«,) ^oo,
hw(w) = i K '

I |(l//i)'H| if h{w) = oo.

Condition (RE) is valid if and only if the function

I/I (i + Isl2) =
\ J b = l

never vanishes in D. Thus, if x is not contained in any plane, then K(w) ^ 0 if and
only if g&(w) ^ 0. This is the case if and only if w is a simple pole of g or g(w) ^ oo
and g'(w) ^ 0. Therefore, —oo < K ^ 0 everywhere in D. For the basic properties of
minimal surfaces, see [1, 2].

Let M(K) be the set of points WQ £ D where K has local minima: K(wo) ^ K(w)

for w in a disk {|u> — tool < ^} with 6 depending on K and wo-

THEOREM 1 . Let x : D —» K3 be a regular minimal surface contained in no plane
and with nonempty M(K). Then the connected components of M(K) are at most
countable and each component is one of the following:

(1) An isolated point.

(2) A simple analytic arc terminating nowhere in D.
(3) A simple closed analytic curve.

All the cases of (1), (2) and (3) actually happen; see the next section. We let

M^K), M2{K), and M3{K) be the set of components of M{K) of type (1), (2), and

(3), respectively.

Let D\ be a subdomain of D. The total curvature of the subsurface i : Bi - t K1

is defined by

k=i

Then

g&2dudv,g
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[3] Local minima 399

the area of the image of D\ by g covering over S.

THEOREM 2 . Let x: D —* Rs be a regular minimal surface contained in no plane.
Suppose that c £ Ms (if) exists and suppose further that the Jordan domain A bounded
by c is contained in D. Then,

(4) -T(A) = n(Z'A+PA-n),

where Z'A is the sum of all orders of all the distinct zeros of g' in A, while PA is the
sum of all orders of all the distinct n poles of g in A.

In particular, if g& never vanishes in D, then the right-hand side of (4) is zero.
Thus, either Ms{K) is empty or else each Jordan domain bounded by c 6 Ms(K) is
not contained in D.

There does exist x for which A C D actually happens as described in Theorem 2;
see TYPE 3 in the next section.

2. EXAMPLES

Suppose that D C C is simply connected and g is nonconstant and analytic in D.
With the aid of g we can construct a minimal surface x: D —* R3 as follows:

= Re [
Ja

where a is a fixed point of D. The Gauss map is just g; see [2, p.64]. Therefore,

\g'M\
;,weD.

TYPE 1. Let D = C and g{w) =w. Then M(K) = {0}. (Enneper's surface)

TYPE 2. Let D = C and g(w) = ew. Then M(iiQ = {Rew = - ( l /2) log3}.

TYPE 3. Let D = C and g(w) = w2. Then M{K) = {\w\ = 7- 1 / 4 } .

The restriction of the above surfaces to {|u;| > 1} yields M(K) = 0. A problem

is to find x: D —» K3 for which two or three types appear at the same time for M(iif).

It would be interesting to consider the typical minimal surfaces given in the non-

parametric form, namely:
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The helicoid:

The catenoid:

See [2, pp.17-18] and [3, pp.34 and 47]. When (xi, x2) = (0, 0) in the helicoid we
interpret this to express the X3-axis.

A parametric form of the helicoid is then given by x: C —» Rs, where,

x\{w) = sinhucosu,

X2(w) = sinh u sin v,

z3(u>) = v.

Thus, f(v)) = e~w and g(w) = —iew, so that a calculation shows that M(K) is the

imaginary axis in C, which corresponds to the xa-axis lying on the surface.

A parametric form of the catenoid is given by x: C \ {0} —» R s , where

2 V H /

2 V l»l /
x3(w) = log |w|.

Thus, f(w) = —1 and g(w) = —I/to, so that a calculation shows that M(K) is the
unit circle, which corresponds to the unit circle on the surface.

Note that, in all examples in this section, K actually attains the global minimum
at each point of M(K).

3. PROOF OF THEOREM 1

It suffices to prove the following proposition:

( I ) . Let a G M(K) be an accumulation point of M(K). Then there exists S > 0
such that M(K) fl {\w — a\ < 6} is a simple analytic arc with both terminal points on
the circle {\w — a\ =6}.

LEMMA 1. Let G be analytic and H be meromorphic in a domain D\ C C.
Suppose that

L(G, H) = {we £>i;GH = H(w)}
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[5] Local minima 401

has an accumulation point a €E D\ and G'(a) / 0. Then there exists an open disk
U(a) of centre a such that U(a)C\L(G, H) is a simple, analytic arc passing through a
with both terminal points on the circle dU(o).

The proof of this lemma is the same as that of [3, Lemma 1] (see also [4]) in case
G(w) = w. In the general case, let V(a) be an open disk with centre a where G is
univalent. Regarding G(V(a)) as D\, G(w) as w, and H as H o G"1, we can reduce
this case to the case specified in the above.

We are ready to prove (I). Set

We first note that g#(a) ^ 0 for a G M(K).
Suppose the case where g(a) ^ oo and ff'(o) ^ 0. Then there exists Si > 0 such

that g is analytic and univalent in A\ = {\w — a\ < Si} and $(10) ^ $(«) for each
w G Ai. Hence at each w G Ai (1 M(K) we have

Consequently

A! n M(if) C L(g, H),

where L(g, H) is considered in Ai with

H Q o - l ( 9 " f'

It follows from Lemma 1 that there exists U(a) such that L\ = U(a) D L(g, H) is a
simple analytic arc described there. Let L\: w = w{i) be an analytic expression with
a real parameter t. Then,

on L\. Hence $ is constant on L\. Furthermore, L\ = U(a)r\M(K). This proves (I)
for the present case.

Suppose the case where a is a simple pole of g. Then there exists 62 > 0 such
that G = 1/g is analytic and univalent in A2 = {\w — o| < £2} and $(w) ^ $(<*) in
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A 2 . Consequently, at each w G (A2 \ {a}) D M(K), we have

(3.2) I *{*>) ^ ) +
G,{w) f{w)

because

=

+ \G(w)\2)

Hence

where L(G, Hi) is considered in A2 with

a- = Ql o -
1 2G ' -QiG* V l

Thus, a is an accumulation point of L(G, Hi) and G'(a) ^ 0. It follows from Lemma 1
that there exists U(a) such that

L2 = U(a)r\L{G,H1)

is a simple analytic arc described there. On the other hand, $ is constant on L2 \ {a},

so that $(iw) = $(a), w G Li, by the continuity of $ at a. Accordingly

Li = E/(a) n

and this completes the proof of (I). D

R E M A R K . We let M*{K) be the set of points w0 G D where K has the (global)
minimum: K{WQ) ^ K(w), w G £>. Suppose that a E ^ is an accumulation point of
M*{K)(C M(K)). Then there exists c 6 M2(A")UMs(ii:) such that a G c. Since A" is
constant on c, it follows that c C M*(A"). Hence we have the analogous classification:
M£(K), Jfc = 1, 2, 3 , of components of M*(K).

4. P R O O F OF THEOREM 2

First of all </# never vanishes on c = 9A because this is the case at each point of
M(K). Let a/c, 1 ^ fc ^ p , be all the simple poles of g on c, and let 7* be all the
distinct poles of g in A of orders i/k, 1 ^ k Sj n, so that
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Set A — {a i , . . . , a p , 71, . . . , 7 n } . For e > 0 and a G A we set

S(a,e) = {z;\z-a\ ^ e},

c(a, e) = {z 6 A; \z - a\ — e).

Then, from sufficiently small e on,

A(e) = A \ (J 6{a, e)

is a domain bounded by Jordan curves. Set

A = 5- and u — tA.
1 + \9\2

Then the Green formula

/ / (A*U ~ \v)dudv = I (\du + fidv)

can be rewritten as

(4.1) 4 / / g*{wfdudv = -2t / \{w)dw,

where the line integral is in the positive sense with respect to A(e).

Now, the Laurent expansion of g about a 6 A yields

g(w) = (w - a)~Nh(w) in 5(a, e) \ {a},

where h is analytic and zero-free in S(a, e) and N = 1 if a = a*, while N = i/* if
a = 7^. The differentiation yields that

(4.2) g'(w) = {w- a)"""1^™) in S(a, e) \ {a},

where

tf («J) = -Nh(w) + (w- a)h'{w).

Since

ee"A(ee" + a) = — ^—i 5 -̂ -> -N as e -+ 0
V ' e2JV + |fc(ee** + a ) | a

uniformly for real t, it follows that

TTt if Q = Ok,
/ A(io)dto
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as e —» 0, where the integral is in the clockwise sense. Letting e —* 0 in (4.1), we now
have

(4.3) 4 IJ g*(w)2dudv = -2i I \{w)dw + 2irp + 4TTPA

by d$(w)/dw - 0 on c.

We remember that / vanishes precisely at the poles of g. Thus, 7 is a zero of
order 2v of / if and only if 7 is a pole of order u of g. Hence,

where
p

A0(e) = A\ \JS{ak,e).
k=l

We have in 6(a, e) \ {a}, a = Q^ ,

= +

g'(w) f{w) w — a X{w) '
where X is analytic and zero-free in 6(a, e) for small e > 0. Consequently, letting
e —* 0 in the left-hand side of (4.4) we have the identity

( 4 . 5 )

Combining (4.3) and (4.5) we have (4).
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