
We examine the steady state of turbulent flows in thin layers using direct numerical
simulations. It is shown that when the layer thickness is smaller than a critical height,
an inverse cascade arises which leads to the formation of a steady state condensate
where most of the energy is concentrated in the largest scale of the system. For layers
of thickness smaller than a second critical height, the flow at steady state becomes
exactly two-dimensional. The amplitude of the condensate is studied as a function of
layer thickness and Reynolds number. Bi-stability and intermittent bursts are found
close to the two critical points. The results are interpreted based on a mean-field three-
scale model that reproduces some of the basic features of the numerical results.

Key words: low-dimensional models

1. Introduction
Turbulent flows in geophysical and astrophysical contexts are often subject to

geometrical constraints, such as thinness in a particular direction, that can strongly
affect the behaviour of the flow. This occurs, for instance, in planetary atmospheres
and oceans (Pedlosky 2013) whose behaviour can strongly deviate from the classical
three-dimensional homogeneous and isotropic turbulence. This is related to the
well-known fact that the behaviour of flows at large Reynolds numbers Re depends
on the dimensionality of the system. In three dimensions, vortex stretching transfers
energy to small scales in a direct cascade (Frisch 1995). By contrast, in two
dimensions, the conservation of enstrophy in addition to energy gives rise to an
inverse energy cascade, a transfer of energy to the large scales (Boffetta & Ecke
2012). Flows in thin layers display properties of both systems, with the large scales
behaving like a two-dimensional (2-D) flow and the small scales behaving like a
3-D flow. As a result, such systems are known to cascade energy both to large and
to small scales (Smith, Chasnov & Waleffe 1996). In fact, it has been shown in
(Celani, Musacchio & Vincenzi 2010; Benavides & Alexakis 2017; Musacchio &
Boffetta 2017) that as the height of the layer H is varied, the system transitions from
a state where energy cascades only to the small scales for large H, to a state where
energy cascades to both large and small scales when H is smaller than approximately
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half the size of the forcing length scale `. In particular Benavides & Alexakis
(2017), using a Galerkin truncated model of the full Navier–Stokes equations, were
able to provide strong evidence of the criticality of the transition. In addition, they
observed a second transition to exact two-dimensionalisation for layers of very small
thickness H∝ `Re−1/2. This transition had been predicted theoretically using bounding
techniques by Gallet & Doering (2015). Similar transitions from a strictly forward
cascade to an inverse cascade have been observed in other systems like rotating
turbulence (Deusebio et al. 2014), stratified turbulence (Sozza et al. 2015), rotating
and stratified flows (Marino, Pouquet & Rosenberg 2015), magneto-hydrodynamic
systems (Alexakis 2011; Seshasayanan, Benavides & Alexakis 2014; Seshasayanan
& Alexakis 2016) and helically constrained flows (Sahoo & Biferale 2015; Sahoo,
Alexakis & Biferale 2017), to mention a few (see Alexakis & Biferale (2018) for a
review).

The thin layer, however, remains possibly the simplest model exhibiting such
transitions and it thus deserves a detailed study at the different stages of inverse
cascade evolution. In the presence of an inverse cascade, for finite systems and in the
absence of a large-scale dissipation term, there are two stages in the development of
the flow. In the first stage (at early times), energy is transferred to larger and larger
scales by the inverse cascade. This process stops, however, when scales comparable
to the system size are reached, after which energy starts to pile up at these largest
scales. In the long-time limit, the increase of the large-scale energy saturates and a
condensate is formed, where nearly all energy is found in the first few Fourier modes.
For 2-D Navier–Stokes turbulence, the possibility of such a condensation phenomenon
was first conjectured in the seminal paper of Kraichnan (1967), first seen in direct
numerical simulations by Hossain, Matthaeus & Montgomery (1983), further explored
quantitatively by Smith & Yakhot (1993, 1994) and, more recently, by Chertkov et al.
(2007), Bouchet & Simonnet (2009), Chan, Mitra & Brandenburg (2012), Frishman,
Laurie & Falkovich (2017), Frishman & Herbert (2018). Spectral condensation has
also been studied in other quasi-2-D systems such as quasi-geostrophic flows (see
Vallis & Maltrud 1993; Kukharkin, Orszag & Yakhot 1995; Kukharkin & Orszag
1996; Venaille & Bouchet 2011). In terms of the real space flow field, this spectral
condensation corresponds to coherent system-size vortices or shear layers. In two
dimensions, where the cascade of energy is strictly inverse, a steady state in the
condensate regime is realised when the energy of the condensate is so large that
the dissipation due to viscosity at large scales balances the energy injection due
to the forcing. For split cascading systems, this is not necessarily true due to the
presence of non-vanishing 3-D flow variations associated with the direct cascade.
Therefore, in this case other processes exist that can redirect the energy back to the
small scales where viscous dissipation is more efficient. Such mechanisms have been
demonstrated for rotating turbulence, where a flux-loop mechanism has been identified
(cf. Bartello, Métais & Lesieur 1994; Alexakis 2015; Seshasayanan & Alexakis 2018).
Similar condensates have also been observed in 3-D fast rotating convection (Favier,
Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Rubio et al. 2014; Favier,
Guervilly & Knobloch 2019).

Condensates in thin layers have been observed experimentally: the first study by
Sommeria (1986) was followed by the important contributions of Paret & Tabeling
(1997, 1998) and more recently by Shats, Xia & Punzmann (2005), Shats et al.
(2007), Xia et al. (2008), Xia, Shats & Falkovich (2009), Byrne, Xia & Shats (2011),
Xia et al. (2011). An up-to-date review of relevant experiments is presented in Xia &
Francois (2017). These experiments operate primarily in the long-time limit in which
the condensate is fully developed. This wealth of experimental studies of thin-layer
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condensates is in striking contrast with the existing numerical results which have
focused exclusively on the transient growth of total kinetic energy due to the inverse
cascade. In these numerical simulations, the condensate state reached after long time
in the thin-layer case has not yet been examined due to the long computation time
needed. In this study, we aim to fill this gap and investigate the behaviour of turbulent
flow at the condensate stage for a thin layer forced at intermediate scales, using direct
numerical simulations (DNS) and low-order modelling. The DNS provide a detailed
picture of the behaviour of the full system, while the modelling shines light on the
main physical processes involved in the problem.

The remainder of this article is structured as follows. In § 2, we present the set-up
and define the quantities we will be measuring. In § 3, we present the results of a
large number of direct numerical simulations (DNS) of thin-layer turbulence. Next, in
§ 4, we discuss the behaviour close to the two critical points and in § 5, we present
spectra and spectral fluxes of energy. In § 6, we introduce a low-order model which
captures many features of the DNS results. Finally, in § 7, we discuss our results and
summarise.

2. Physical set-up
In this section, we describe the set-up to be investigated. We consider the idealised

case of forced incompressible three-dimensional flow in a triply periodic box of
dimensions L × L × H. The thin direction H will be referred to as the vertical
‘z’ direction and the remaining two as the horizontal ‘x’ and ‘y’ directions. The
geometry of the domain is illustrated in figure 1. The flow obeys the incompressible
Navier–Stokes equation:

∂tu+ u · ∇u=−∇P+ ν∇2u+ f , (2.1a)
∇ · u= 0, (2.1b)

where u is the velocity field, P is physical pressure divided by constant density
and ν is (kinematic) viscosity. Energy is injected into the system by f , a stochastic
force, that depends only on x and y and has only x and y components, i.e. that is
a two-dimensional–two-component (2D2C) field. We make this assumption firstly
to specifically force the inversely cascading components of the flow and secondly
because it is widely used in previous studies such as Smith et al. (1996), Celani
et al. (2010), Deusebio et al. (2014), Gallet & Doering (2015) and thus enables us
to compare more easily with the literature. The force is divergence free, hence it can
be written as f = (−∂yψ, ∂xψ, 0). The spectrum of f is concentrated in a ring of
wavenumbers of radius kf ≡ 2π/`. It is delta correlated in time, which leads to a fixed
mean injection of energy 〈u · f 〉 = ε, where 〈·〉 denotes an ensemble average over
infinitely many realisations. We use random initial conditions whose small energy is
spread out over a range of wavenumbers. In some cases, in order to compare with
previous studies, we used a hyper-viscosity, which amounts to replacing ν∇2u by
−νn(−∇

2)nu.
The system (2.1b) is characterised by three non-dimensional parameters: the

Reynolds number based on the energy injection rate Re = (ε`4)1/3/ν, the ratio
between forcing scale and domain height Q = `/H and the ratio between forcing
scale and the horizontal domain size K = `/L. The ratio between K and Q gives the
aspect ratio A = K/Q = H/L of the domain. The Kolmogorov dissipation length is
denoted as η= ν3/4/ε1/4

= `Re3/4.
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L
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FIGURE 1. (Colour online) The domain used is a box of height H and square base of
side length L. The forcing is invariant along the thin direction and stochastic with fixed
mean rate of energy input, while involving only wavenumbers k with |k| = kf = 2π/`. The
thin direction will be referred to as the vertical, the others as the horizontal directions.

Re 203 305 406 609 870 2031 4062 Hyper

1/K 8 8 and 16 8 8 8 8 8 8
nx = ny 256 256 and 512 256 512 512 1024 2048 1024
nz 16 16 16 32 32 64 128 64
# runs 40 40 40 30 30 10 2 4

TABLE 1. Summary of the different runs performed. For each Re and K several runs for
different values of Q have been performed. The horizontal resolution is nx, ny, while nz
stands for the vertical resolution at Q= 2. The vertical resolution was changed with Q to
maintain an isotropic grid, Knx =Kny =Qnz wherever possible.

The simulations performed for this work used an adapted version of the Geophysical
High-Order Suite for Turbulence (GHOST) which uses pseudo-spectral methods
including 2/3 aliasing to solve for the flow in the triply periodic domain, (see
Mininni et al. 2011). The resolution was varied from 2562

× 16 grid points to
20482

× 128 grid points depending on the values of the parameters. To explore the
space spanned by these three parameters, we have performed systematic numerical
experiments: for a fixed value of Re and K= 1/8, different simulations are performed
with Q varying from small to large values. The runs are continued until a steady state
is reached where all quantities fluctuate around their mean value. This is repeated for
eight different values of Re from Re= 203 (resolution 2562

× 16) to 4062 (resolution
20482

× 128) and for one value of hyper-viscosity (n = 8, ν8 = 10−38 as in (Celani
et al. 2010)), as a consistency check, since many of the previous studies of thin-layer
turbulence used hyper-viscosity. For Re= 305, we also perform a run with K = 1/16
(L→ 2L). The number of runs performed for each Re are summarised in table 1.

To quantify the energy distribution among different scales it is convenient to work
in Fourier space. The Fourier series expansion of the velocity reads

u(x, t)=
∑

k

ûkeik·x, ûk =
1

L2H

∫
u(x, t)e−ik·x dx (2.2a,b)
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where ûk = (û
(x)
k , û(y)k , û(z)k ) and the sum runs over all k ∈ ((2π/L)Z)2 × (2π/H)Z. In

the pseudo-spectral calculations, this sum is truncated at a finite kres. Since flow in
a thin layer is a highly anisotropic system, it is important to consider quantities in
the vertical and horizontal directions separately. For this purpose, we monitor various
quantities in our simulations: first of all, the total energy spectrum as a function of
horizontal wavenumber

Etot(kh)=
1
2

∑
k

k2
x+k2

y=k2
h

|ûk|
2. (2.3)

In addition, we monitor different components of domain-integrated energy, namely the
total horizontal kinetic energy

1
2

U2
h =

1
2

∑
k

kz=0

(|û(x)k |
2
+ |û(y)k |

2) (2.4)

(based on the (vertically averaged) 2D2C field only), the large-scale horizontal kinetic
energy

1
2

U2
ls =

1
2

∑
k

k<kmax
kz=0

(|û(x)k |
2
+ |û(y)k |

2), (2.5)

where kmax =
√

22π/L, as well as the (vertically averaged) large-scale kinetic energy
in the z component

1
2

U2
z =

1
2

∑
k

k<kmax
kz=0

|û(z)k |
2 (2.6)

and the three-dimensional kinetic energy (3-D energy), defined as

1
2

U2
3D =

1
2

∑
k

kz 6=0

|ûk|
2. (2.7)

3. Results from the direct numerical simulations
In this section, we present the results obtained from our simulations. For a given

set of parameters Re, Q, K, two different behaviours are possible. For thick layers
Q� 1, 3-D turbulence is observed, i.e. there is no inverse cascade and the energy
injected by the forcing is transferred to the small scales where it is dissipated. No
system-size structures appear in this case. For thin layers Q� 1, a split cascade is
present with part of the energy cascading inversely to the large scales and part of the
energy cascading forward to the small scales. For these layers, at steady state, coherent
system-size vortices appear with very large amplitudes.

A visualisation of the flow field in these two different states is shown in figure 2
for the 3-D turbulence and condensate states. Typical time series of U2

h for a thick
layer (forward cascade) and a thin layer (inverse cascade) are shown in figure 3(a).
For the thick layer, the total energy fluctuates around a mean value of order (ε`)2/3,
while for the thin layer, the energy saturates to a much larger value. The energy
spectra for the two runs of figure 3(a) at the steady state are shown in figure 3(b),
showing quantitatively that energy is concentrated in the large scales for the two
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(a) (b)

FIGURE 2. (Colour online) Typical flow fields in the steady state of 3-D turbulence (a)
and 2-D turbulence (b) regimes, visualised using squared vorticity. The boxes below show
the corresponding side views. Note the astonishing similarity between this figure and
figure 1(a,b) of the experimental study by Xia et al. (2011).

different cases. In more detail, U2
h for the thin layer shows two different stages: first,

at early times, there is a linear increase with time and second, there is saturation
at late times. Therefore, to fully describe the evolution of the system, we need to
quantify the rate of the initial energy increase and the energy at which it saturates.
The red-dashed line indicates a fit to the initial linear increase. This slope provides
a measurement of the rate εinv at which energy cascades inversely. For the steady
state stage, the black dashed-dot line indicates the mean value at late times. For
all runs, we measure the slope of the U2

h curve and the steady state mean values
of all corresponding energies defined in the previous section. For the runs of high
resolution, to accelerate convergence, the large-scale velocity uk=1 (from a run at
the early stage) was increased artificially and the run continued. Alternatively, an
output of a converged run was used as initial condition. However, all cases were run
sufficiently long to demonstrate that they have reached a steady state.

Figure 4 shows the slopes of the initial total energy increase εinv, measured
as illustrated in figure 3(a) for all our numerical simulations. The slopes are
non-dimensionalised by the energy input rate ε and plotted versus Q for all different
values of Re including the hyper-viscous runs. The slope at this early stage measures
the strength of inverse energy transfer. At small Q (deep layers), the slope vanishes
for all runs, showing that no inverse cascade is present. Moving to larger Q, for
every Re, there is a critical value Q3D(Re) of Q above which the slope becomes
non-zero. This is the birth of the inverse cascade. Figure 5 shows estimates of Q3D as
a function of Re: the upper curve shows the smallest Q for which an inverse cascade
was observed for that given Re while the lower curve shows the largest Q for which
no inverse cascade was observed. The critical value Q3D lies between these two
curves. The point Q3D shifts to larger Q as Re is increased but eventually for the two
largest Re simulated, namely Re= 2031 and Re= 4062, as well as the hyper-viscous
run, Q3D saturates at Q3D ≈ 2.5. (Previous findings (Celani et al. 2010) estimated
this value to Q3D ≈ 2, however in that work too limited a range of values of Q was
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FIGURE 3. (Colour online) (a) Shows the typical time evolution of U2
h for Q = 1.25 <

Q3D and Q = 4 > Q3D. In the former case, U2
h remains small. In the latter, there is an

initially linear increase whose slope measures the rate of inverse energy transfer. After
long time, U2

h reaches its steady state value. Two quantities are measured: the initial slope
(red-dashed line) and the condensate value (horizontal black dashed-dot line). A similar
evolution observed in an experiment is shown in Xia et al. (2009) figure 6. (b) Shows
the corresponding spectra: in the presence of an inverse cascade there is a maximum at
the largest scale, while in its absence the maximum is near the forcing scale.
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FIGURE 4. (Colour online) (a) Initial slopes, measured as indicated in figure 3(a), non-
dimensionalised by the energy injection rate ε, as a function of Q (∝ 1/H) for all Re
used. The same symbols are used in all plots in this section. Thick layers are at small Q
(left) and thin layers at large Q (right). (b) The same data collapsed by a rescaling of the
abscissa by

√
Re and the coordinate by the maximum value obtained for that Reynolds

number.

used to be able to precisely pinpoint Q3D. Another possible reason for the different
result is the different value of 1/K associated with the different forcing wavenumber
kf = 16 used). The saturation of Q3D ≈ 2.5 indicates that Q3D converges to this value
at large Re. For Q > Q3D, the slope begins increasing linearly εinv ∝ Q − Q3D. (We
note that small slopes are hard to distinguish from zero slope since the difference
only becomes apparent after a long simulation time.)

If Q is increased further, a point Q2D is reached beyond which the slope becomes
independent of Q. Above this second critical point, the flow becomes exactly two-
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FIGURE 5. (Colour online) Estimated value of Q3D as a function of Re. The top line
shows the smallest value of Q for which an inverse cascade was observed and the bottom
line shows the largest value of Q for which no inverse cascade was observed. The
rightmost point indicates the results from the hyper-viscous runs.

15

10

5

0
2.5 5.0 7.5 10.0 12.5 15.0

Q Q/Re3/4

0.004

0.003

0.002

0.001

0
0 0.1 0.2 0.3

U
2 ls
K2 /

(´
l)

2/
3

U
2 ls
K2 /

[R
e(

´l
)2/

3 ]

(a) (b)

FIGURE 6. (Colour online) (a) U2
ls as defined in equation (2.5), non-dimensionalised by

(ε`)2/3/K2 as a function of Q. (b) The same data (excluding hyper-viscous run), with
large-scale energy rescaled by 1/Re and plotted versus Q/Re3/4 showing a satisfactory
data collapse. The value Q3D/Re3/4 (where U2

ls plateaus) coincides for all Re at Q/Re3/4
≈

0.09–0.1.

dimensional (Benavides & Alexakis 2017). The value of Q2D increases with Re as
Q2D ∝ Re1/2. This scaling is verified in this work as well and shown in figure 4(b).
The two critical points Q3D and Q2D at this early stage of development of the inverse
cascade have been studied in detail in the past (Celani et al. 2010; Benavides &
Alexakis 2017).

Here we mostly focus on the second stage of evolution: the steady state and
the properties of the condensate. Figure 6 shows the equilibrium value of U2

ls, as
defined in equation (2.5), non-dimensonalised by the forcing energy scale (ε`)2/3

and multiplied by K2. In the left panel, it is plotted versus Q (figure 6a) and in the
right panel it is rescaled by 1/Re and plotted versus η/H=QRe−3/4 (figure 6b). First
consider figure 6(a). At small Q, there is very little energy in the large scales. This
corresponds to the values of Q that displayed no inverse cascade at the initial stage.
In the absence of an inverse cascade, the large scales only possess a small non-zero
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FIGURE 7. (Colour online) Zoomed-in version of figure 6(a) showing that there is a
discontinuity in U2

ls/(ε`)
2/3 at Q3D for all Reynolds numbers up to the second highest

simulated.

energy and are expected to be in a thermal equilibrium state (Kraichnan 1973; Dallas,
Fauve & Alexakis 2015; Cameron, Alexakis & Brachet 2017). For Q > Q3D the
energy in the large scale takes larger values. In all cases, the energy increases nearly
linearly U2

ls ∝ (Q − Q3D) for Q2D > Q > Q3D. With the chosen coordinate, the close
coincidence of the experiments with K = 1/8 and K = 1/16 at Re= 305 indicates a
scaling of U2

ls ∝ L2. If we zoom in on Q3D (see figure 7), we observe clear signs of
small but discontinuous jumps of U2

ls at Q3D that are not visible in the zoomed out
figure 6(a). These cases are examined in more detail in the next section.

The increase of the large-scale energy stops at the second critical point Q2D, where
U2

ls becomes independent of Q. It is noteworthy that the curves for various values of
Re all follow the same straight line between their respective Q3D and Q2D with only
some deviations at low Q. Furthermore, both Q2D and the plateau value of U2

ls depend
on Re. In figure 6(b), the same data are plotted, but with rescaled axes. The rescaling
collapses the data well, with some deviations at small Q related to the convergence of
Q3D. This indicates that at large values of Q, U2

ls scales like U2
ls ∝ (ε`)

2/3Re. This is
precisely the scaling of the condensate of 2-D turbulence (Boffetta & Ecke 2012). The
critical value where the transition to this maximum value of U2

ls occurs is Q2DRe−3/4
=

η/H2D ≈ 0.09− 0.1.
The scaling allowing us to collapse the data in figure 4 (transient stage) is different

from that in figures 6, 8 and 9 (condensate state). This implies that Q2D ∝ Re1/2

estimated during the early stage of the inverse cascade development is different from
Q2D ∝ Re3/4 estimated at steady state where a condensate is fully developed. The
reason for this difference is that the transition to exactly 2-D motion occurs when
the maximum shear in the flow (which produces 3-D motion by shear instabilities)
is balanced by small-scale viscous dissipation. In the presence of the inverse cascade,
an E(k)∝ ε2/3k−5/3 spectrum is formed at k> kf , such that the peak of the enstrophy
spectrum k2E(k) is at the forcing scale. Thus the balance between 2-D shear and 3-D
damping is

(ε`)1/3/`∼ ν/H2, (3.1)

implying H2D ∼ `Re−1/2 (Benavides & Alexakis 2017). In the condensate, however,
most of the energy and enstrophy are located in the largest scales and are such that
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FIGURE 8. (Colour online) (a) U2
3D as defined in equation (2.7), non-dimensionalised by

(ε`)2/3 and plotted versus Q. (b) The same information as (a), but in terms of the square-
root of the 3-D kinetic energy rescaled by (εH)2/3, plotted versus Q/Re3/4. This rescaling
indicates that U2

3D ∝ (Q2D −Q)2 close to the transition.
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FIGURE 9. (Colour online) (a) U2
z as defined in equation (2.6) as a function of Q. (b) The

various curves collapse when the abscissa is chosen as η/H=Q/Re3/4 and the coordinate
as U2

3D/(εH)2/3. Raising the coordinate to the 1/3 power, the curve becomes linear close
to onset. This indicates that close to onset, U2

v scales as U2
z ≈ (Qc − Q)3, where Qc ≈

0.09–0.1≈Q2D. We note that the scaling exponent is different from that found for U2
3D.

energy injection ε is balanced by large-scale dissipation∝ νU2
ls/L

2. The large-scale
shear is thus Uls/L ∝ (ε/ν)1/2 which is balanced by the damping rate of 3-D
perturbations at onset,

(ε/ν)1/2 ∼ ν/H2, (3.2)

giving the scaling H2D ∝ ε
1/4ν3/4

∝ `Re−3/4. We will recover the very same steady
state scaling in § 6 from a low-order model. These two scalings imply the interesting
possibility that a flow which becomes exactly two-dimensional at the early stages of
the inverse cascade for Q&Re1/2 may develop 3-D instabilities at the condensate state
if Q . Re3/4.

Figure 8 shows U2
3D as defined in equation (2.7). In the left panel it is non-

dimensionalised by the forcing energy (ε`)2/3 and plotted versus Q (figure 8a), while
in the right panel, it is non-dimensionalised by (εH)2/3, raised to the power 1/2 and
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plotted versus η/H = Q/Re−3/4. Figure 8(a) shows that beyond some non-monotonic
behaviour at small Q, U2

3D decreases monotonically with Q until it reaches zero at
Q2D and remains zero beyond this point. The 3-D energy increases with Re at a given
Q. Under the rescaling in figure 8(b), the various curves collapse nicely. In particular,
the point where U2

3D vanishes is sharp and identical for all Re, namely η/H ≈ 0.1.
Comparing with figure 6(b), one sees that this point and Q2D coincide within the
range of uncertainties. This means that beyond Q2D, not only is U2

ls independent of
Q, but also U2

3D vanishes. This confirms that Q2D corresponds to the point where the
motion becomes invariant along z.

Finally, figure 9 shows the vertical kinetic energy, non-dimensionalised by (ε`)2/3,
once plotted versus Q and once taken to the 1/3 power and plotted versus Q/Re3/4.
The general features of figure 9(a) are similar to figure 8(a): like 3-D energy, vertical
kinetic energy decreases with Q until it reaches zero and it increases with Re. The
curves collapse in figure 9(b) and the behaviour close to Q2D becomes linear if the
coordinate is raised to the 1/3 power, indicating an approximate scaling U2

z ≈ (Qc −

Q)3 with Qc ≈ Q2D. This indicates that the point beyond which the vertical kinetic
energy vanishes is close to Q2D, implying that beyond Q3D, the motion is not only
invariant along z but also restricted to the x–y plane. Hence, for Q > Q2D, the flow
has two-dimensionalised exactly.

4. Behaviour close to the transitions: hysteresis and intermittency
In this section, we discuss the behaviour close to the two transition points Q2D

and Q3D. Each transition shows a different non-trivial behaviour. Close to Q3D, we
observe discontinuous transitions and hysteresis for some range of parameters, while
close to Q2D, we find both spatial and temporal intermittency with localised bursts of
3-D energy.

4.1. Close to Q3D: discontinuity and hysteresis
We begin by discussing the behaviour of the flow for Q close to Q3D where a sharp
increase of the large-scale energy was observed. This sharp increase could indicate the
presence of a discontinuity that could further imply the presence of hysteresis.

To verify the presence of a discontinuity we need perform many different runs
varying Q is small steps as well as verifying sensitivity to initial conditions. To do
this, a hysteresis experiment has been performed at Re= 406, consisting of two series
of runs, that we refer to as the ‘upper branch’ and the ‘lower branch’, see figure 10.
On the upper branch, we start with random initial conditions and Q≈ 2.25 for which
the system reaches a condensate equilibrium with an associated non-zero value of
large-scale energy. Once the run has equilibrated, we use that equilibrium state to
initialise a run at Q→Q−1Q with 1Q= 0.1. By decreasing Q, the physical height
of the box is increased. To be able to use the equilibrium state reached at one Q as
initial condition for a neighbouring Q, the z-dependence of the velocity field is scaled
and the velocity field is projected onto its diverge-free part, formally v(x, y, z)→
Pv(x, y,λz), where P= I−∇−2∇(∇ · ). Having changed Q and applied this procedure,
we let the system equilibrate to a new condensate state. This is repeated five more
times (step size reduced to 1Q= 0.05 and then 1Q= 0.025) down to Q≈ 1.9. When
Q is now lowered 0.025 further, the condensate decays into 3-D turbulence and the
large-scale energy saturates to close to zero. Reducing Q even more, U2

ls remains
small, indicating a 3-D turbulent state. The lower branch was calculated similarly,
with the only difference that the experiment started at low Q and Q was increased
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FIGURE 10. (Colour online) Hysteresis curve of U2
ls non-dimensionalised by the forcing

energy. Two experiments are shown, the ‘lower branch’ starting from small Q (deep
layer) and increasing Q and the ‘upper branch’ starting from large Q (thin layer) and
decreasing Q.

(a) (b)

FIGURE 11. (Colour online) Visualisation of the typical flow field after long simulation
time at Q ≈ 1.97 in the hysteresis experiment on the upper (b) and lower (a) branches.
The lower branch flow field shows small-scale structures and no large-scale organisation,
reminiscent of 3-D turbulence. By contrast, the upper branch flow field is characterised
by two large-scale vortices in addition to smaller-scale structures in between them.

in steps of 0.05 and then of 0.025. For small Q, the two branches coincide, while
the lower branch remains at low U2

ls (3-D turbulence) up to Q≈ 2.025. For Q larger
than Q= 2.025, the lower branch merges with the upper branch, closing the hysteresis
loop and a condensate is spontaneously formed from 3-D turbulence. In other words,
for Re = 406 in the range 1.9 6 Q 6 2.025, there are multiple steady states and to
which state the system will saturate depends on the initial conditions. The flow field
for two such states starting from different initial conditions for Q≈ 1.97 is visualized
in figure 11.

The following remarks are in order: although for each Q we ran the simulations
until saturation was achieved, since we are dealing with a noisy system, rare
transitions can exist between the two branches of the hysteresis loop. To test this, we
picked the point Q≈ 1.97 on both lower and upper branches and ran them for a long
time (thousands of eddy turnover times τ = (L3/ε)1/2). In neither case did we see a
transition between the two branches, indicating that such transitions are rare (if not
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FIGURE 12. (Colour online) Plots showing temporal intermittency at Re= 203. (a) Shows
a typical time series (on linear–log axes) of 3-D energy close to Q2D. Specifically, Q= 5,
while Q2D ≈ 5.13 at this value of Re. (b) Shows probability density functions (PDFs)
corresponding to this time series as well as for different values of Q (PDFs shifted by
a constant factor for better visibility). The different symbols mark different values of
Q, while the dotted lines correspond to power laws with exponents −1 (bottom), −0.8
(middle) and −0.3 (top) respectively.

absent) in the middle of the hysteresis loop. Near the edges of the hysteresis loop
at Q≈ 2.05 and Q≈ 1.9, the dependence on simulation time is likely to be stronger,
but this has not been investigated.

Furthermore, we note that the bifurcation diagram of figure 10 corresponds to a
relatively low Reynolds number Re= 406. Whether this subcritical behaviour persists
at larger Re and/or larger box sizes (smaller K) is still an open question. Figure 7
suggests that a discontinuity continues to exist at Q = Q3D up to high Reynolds
numbers (Re = 2031 shown there). In addition, we found more points at higher Re
that showed a dependence on initial conditions but without having enough values of
Q to create a hysteresis diagram. These findings suggest that subcritical behaviour
and hysteresis might survive even at high Re. However, due to the high computational
cost at higher resolution and the long duration of the runs required to verify that the
system stays in a particular state, we could not investigate this possibility in detail.
Further simulations at larger Re and possibly smaller K (larger boxes) are required
to resolve this issue. Similar hysteretic behaviour has recently been reported in
rotating turbulence, see Yokoyama & Takaoka (2017). More generally, multistability
is observed in many turbulent flows, see Weeks et al. (1997), Ravelet et al. (2004)
as examples.

4.2. Close to Q2D: intermittent bursts
Next, we discuss the behaviour of the flow close to the second critical point Q2D. A
typical time series of 3-D energy for Q.Q2D is shown in figure 12(a). One observes
bursty behaviour and variations over many orders of magnitude, indicating on–off
intermittency (Fujisaka & Yamada 1985; Platt, Spiegel & Tresser 1993). On–off
intermittency refers to the situation where a marginally stable attractor loses or gains
stability due to noise fluctuations. When instability is present, a temporary burst is
produced before the system returns to the attractor. On–off intermittency predicts that
the unstable mode X follows a power-law distribution P(X)∝ Xδ−1 for X� 1 where
δ measures the deviation from onset (here δ∝ (Q2D−Q)/Q2D) and all moments scale
linearly with the deviation 〈Xn

〉 ∝ δ.
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In our system, the 2-D flow forms the marginal stable attractor that loses stability
to 3-D perturbations depending on the exact realisation of the 2-D turbulent flow.
To formulate this, we decompose the velocity field into its 2-D and 3-D parts, u =
u2D+ u3D, where the 2-D part is defined as the Fourier sum of u restricted to modes
with kz = 0. Filtering the 3-D component of equation (2.1b), dotting with u3D and
integrating over the domain gives

1
2∂tU2

3D =−〈{u3D · ∇u2D} · u3D〉 − ν〈|∇u3D|
2
〉, (4.1)

where 〈·〉 denotes integration over the domain. The chaotic 2-D motions then act
as multiplicative noise while the viscous terms provide a mean decay rate. An
important physical mechanism for creating 3-D disturbances is 3-D elliptic instability
of the 2-D counter-rotating vortex pair forming the condensate, as described in Le
Déz & Laporte (2002). This may explain the presence of the critical value Q2D
itself: instability requires small vertical wavenumbers, but the minimum wavenumber
increases with decreasing H and Q2D corresponds to the point where 3-D perturbations
begin to decay.

Figure 12 shows that temporal intermittency is present in the thin-layer system.
Panel (a) shows a typical time series of 3-D energy at Q . Q2D which fluctuates
over six orders of magnitude. In particular, as mentioned before, there are burst-like
excursions in 3-D energy. In figure 12(b), PDFs constructed from this time series and
similar ones for different values of Q are shown along with dotted lines indicating
power laws with exponents −1, −0.8 and −0.3. The PDFs are very close to a power
law for a significant range of U2

3D and the exponent converges to minus one as the
transition is approached, in agreement with on–off intermittency predictions. However,
the scaling of 3-D energy with deviation from onset shown in figure 8(b) does not
follow the linear prediction of on–off intermittency, but rather 〈U2

3D〉∝ (Q2D−Q)2. For
U2

z , figure 9 seems to suggest yet a different scaling, namely 〈U2
z 〉 ∝ (Q2D − Q)3. A

similar behaviour was also found in Benavides & Alexakis (2017) and was attributed
to the spatio-temporal character of the intermittency that not only leads to 3-D motions
appearing more rarely in time as criticality is approached but also to them occupying
a smaller fraction of the available volume. This appears also to be the case in our
results, as demonstrated in figures 13 and 14, where u2

3D and the vertical velocity uz
are plotted for three different values of Q. As Q approaches the critical value Q2D, the
structures become smaller for u2

3D and uz with the difference that u2
3D shows spot-like

structures in figure 13(c) which are absent for uz. This difference may be related to
the two different scalings observed for U2

3D and U2
z with Qc−Q small: if the volume

fraction of vertical motion depends on Qc−Q to a different power than that of vertical
variations, two different behaviours of U2

z and U2
3D would follow. A more detailed

quantitative investigation of the scaling of volume fraction will be needed to clarify
this.

In summary, we have found non-trivial behaviour close to both transitions: we have
observed hysteresis near Q3D and spatio-temporal intermittency close to Q2D where
the temporal behaviour seems to be described by on–off intermittency. Taking into
account these effects will be crucial for understanding the exact nature of the observed
transitions.

5. Spectra and fluxes
In this section, we discuss the spectral space properties of the three different

regimes described in the previous section. For this purpose, it is necessary to define
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Max(Ua2
3D)

0

(a) (b) (c)

FIGURE 13. Snapshots of u2
3D for Re=203 and Q=2.5 (a), Q=5.0 (b) and Q=5.125 (c)

(corresponding to figure 12). The colour bar is chosen in each plot such that the maximum
value of u2

3D is shown in black. As Q increases towards Q2D ≈ 5.13, U2
3D becomes more

and more localised. In (c), u2
3D is concentrated in small columnar structures (upper and

lower right-hand corner) absent in figure 14(c).

Max(√z)

Min(√z)

(a) (b) (c)

FIGURE 14. (Colour online) Snapshots of vz for Re=203 and Q=2.0 (a), Q=5.0 (b) and
Q= 5.125 (c). The colour scale on the right is chosen in each plot such that the minimum
(negative) is shown in black and the maximum (positive) in red. (same as in figure 12).
As in figure 13, uz becomes localised in smaller and smaller areas as Q increases, i.e.
there is increasing spatial intermittency as Q2D ≈ 5.13 is approached.

a few additional quantities. In addition to the total 1-D energy spectrum defined in
(2.3), is of interest to consider the two-dimensional energy spectrum in the (kh, kz)
plane.

E(kh, kz)=
1
2

∑
k′

k′2x +k′2y =k2
h

k′z=kz

|ûk′ |
2. (5.1)

Moreover, the total 1-D energy spectrum may advantageously be split up into three
components: the energy spectrum of the (vertically averaged) 2D2C field

Eh(kh)=
1
2

∑
k

k2
x+k2

y=k2
h

kz=0

(|û(x)k |
2
+ |û(y)k |

2), (5.2)

the energy spectrum of the (vertically averaged) vertical velocity

Ez(kh)=
1
2

∑
k

k2
x+k2

y=k2
h

kz=0

|û(z)k |
2, (5.3)
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FIGURE 15. (Colour online) Logarithmic surface plots of E(kh, kz) at steady state in the
three regimes (a) Q<Q3D, (b) Q3D <Q<Q2D and (c) Q2D <Q.

and the energy spectrum of the 3-D flow defined as

E3D(kh)=
1
2

∑
k

k2
x+k2

y=k2
h

kz 6=0

|ûk|
2, (5.4)

satisfying Etot(kh) = Eh(kh) + Ez(kh) + E3D(kh). Furthermore, we introduce three
different quantities related to spectral energy flux. First, the total energy flux as a
function of horizontal wavenumber

Π(kh)= 〈u<kh
· (u · ∇)u〉, (5.5)

where the low-pass filtered velocity field is

u<kh
=

∑
k

k2
x+k2

y<k2
h

ûkeik·x. (5.6)

With this definition, Π(kh) expresses the flux of energy through the cylinder k2
x + k2

y =

k2
h due to the nonlinear interactions. The 2-D energy flux as a function of kh is defined

as
Π2D(kh)= 〈u<kh

· (u · ∇)u〉, (5.7)

where the over-bar stands for vertical average and expresses the flux through the same
cylinder due to only 2D2C interactions. Finally, we define the 3-D energy flux (due
to all interactions other than those in (5.7)) as a function of horizontal wavenumber
by

Π3D(kh)=Π(kh)−Π2D(kh). (5.8)

It expresses the flux due to all interactions other than the ones in (5.7).
Figure 15 shows the steady state 2-D energy spectrum in the three different regimes:

(a) Q < Q3D, (b) Q3D < Q < Q2D and (c) Q2D < Q. In the 3-D turbulent case (a),
the global maximum is at the forcing scale and kz = 0, while large kz modes have a
relatively larger fraction of total energy than in cases (b,c). In cases (b,c), a condensate
is present with a maximum at the largest wavenumber kh = 1, kz = 0. In case (b),
there is still energy in the kz 6= 0 modes, while in case (c), the energy is entirely
concentrated in the kz = 0 mode. Figure 16 shows the energy spectra Eh(kh), Ez(kh)
and E3D(kh) for the same three cases (a–c). In case (a) (3-D turbulence), all three
spectra are of the same order, with a small excess of Eh(kh) in the large scales and an
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FIGURE 16. (Colour online) Three different energy spectra, Eh(kh), Ez(kh), E3D(kh) at Re=
609 for 3-D turbulence (a), 2-D turbulence (c) and an intermediate case Q ∈ (Q3D, Q2D)
(b) flux-loop condensate (cf. main text). For 3-D turbulence (Q = 1.25 < Q3D), the 2-D
energy spectrum peaks at the forcing scale and is an order of magnitude bigger than the
other components. In the flux-loop condensate (Q= 4), 2-D energy is maximum at k= 1
and 3-D energy and vertical energy are non-zero. In 2-D turbulence (Q= 16>Q2D), 2-D
energy is maximum at k= 1, but 3-D energy and vertical energy vanish.
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FIGURE 17. (Colour online) Three different components of spectral energy flux, Π(kh),
Π2D(kh) and Π3D(kh), are shown for the same three cases and in the same order as in
figure 16.

excess of E3D(kh) in the small scales. The small scale separation between the forcing
and the dissipation scale does not allow us to observe a k−5/3 power-law regime. In
case (b), Eh(kh) clearly dominates in the large scales, forming a steep spectrum (close
to Eh(kh)∝ k−4

h ). However, at wavenumbers larger than the forcing wavenumber kf = 8,
Ez(kh) and E3D(kh) become of the same order as Eh(kh). In case (c) (2-D turbulence),
where Q > Q2D, the spectra Ez(kh) and E3D(kh) have reduced to values close to the
round-off error and are not plotted. The 2-D spectrum Eh(kh) displays again a steep
power-law behaviour close to Eh(kh)∝ k−4

h .
Figure 17 shows the energy fluxes as defined in equations (5.5)–(5.8) for the same

three cases examined in figure 16. In panel (a), where the case Q<Q3D is examined,
there is almost no inverse flux of energy and Π(kh< kf ) is practically zero. The small
inverse flux that is observed for Π2D(kh) at k < kf does not reach the largest scale
of the system and is nearly completely balanced by Π3D(kh), which is forward. At
wavenumbers larger than kf , the total flux is positive and is completely dominated by
Π3D. This is to be contrasted with the rightmost panel (c) with Q > Q2D, where at
small wavenumbers, the flux is negative and is dominated by the 2-D flow, while at
large wavenumbers there is a very small forward flux. For the intermediate case Q3D<

Q< Q2D in panel (b), there is an inverse energy flux. This flux can be decomposed
into a negative 2-D part Π2D(kh) and a positive 3-D part Π3D(kh). In other words, the
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FIGURE 18. (Colour online) Flux-loop condensate steady state fluxes for Re= 4062 in (a)
and the hyper-viscous run in (b).

2-D components of the flow bring energy to the largest scales of the system, which is
then brought back to the small scales by the 3-D components of the flow associated
with a forward energy flux, thus forming a loop for the energy transfer. For this reason,
we refer to this case as flux-loop condensate.

Due to finite viscosity, part of the energy that arrives at the largest scale (shown
in figure 17b) is dissipated. Therefore, the two fluxes are not completely in balance.
As Re is increased, however, the fraction of the energy that is dissipated in the large
scales is decreased and the two opposite fluxes come closer to balancing each other.
This is shown in figure 18, where the energy fluxes for the highest Re simulation and
for the simulation with hyper viscosity are plotted. The two opposite directed fluxes
are closer in amplitude. At Re→∞ it is thus expected that the inverse and forward
fluxes at large scales will be in perfect balance and all the energy is dissipated in the
small scales. It is worth noting, however, that the inverse cascade (negative flux) due
to the 2-D components has much stronger fluctuations than the forward cascading flux
that has led to the non-monotonic behaviour of the flux observed in figure 18 at small
k due to insufficient time averaging.

6. A three-mode model
In this section, we formulate and analyse a simple three-scale ordinary differential

equation (ODE) model which reproduces certain features of the DNS results described
in § 3.

As illustrated in figure 19, our model comprises a 2-D mode U2D at the scale
L of the domain, a mode Uf at the forcing scale ` and a 3-D mode U3D at the
scale of the layer height H, whose interactions are spectrally non-local, thus taking
into account a major result from § 5. The model describes the system at steady state
where these scales are well separated, but is not expected to capture the transient
phase where all intermediate scales between L and ` participate due to the inverse
cascade. As before, let Q= `/H, K = `/L and Re= (ε`4)1/3/ν. Interactions between
modes are modelled using eddy viscosity, which amounts to modifying the molecular
viscosity ν by terms involving the small-scale velocities, modelling the effect of small-
scale motions on large-scale motions as diffusive. The conceptual foundations of eddy
viscosity were laid by de Saint Venant in his effective viscosity, (de Saint-Venant
1843) (see Darrigol (2017) for a historical review). Eddy viscosity was quantified for
the first time by Boussinesq (1877) and later widely popularised through the works
of Taylor (Taylor 1915, 1922), see also Kraichnan (1976). It has been estimated in
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2π/L 2π/Hkf k˜ k

k-5/3

k-3Uf

U3D

U2DE(k) ´

FIGURE 19. (Colour online) Sketch of three-mode model. Solid curve: energy spectrum
E(k) of the condensate state. The energy injected at kf at a rate ε is distributed between
large and small scales. Moreover, energy is transferred from large to small scales. Finally
viscous dissipation occurs at all scales since Re<∞ (short arrows on abscissa) and energy
is transferred to the dissipation range (arrow at kν = 2π/η). The spectrum E(k) shares
certain features with figure 1(e) of Xia et al. (2011) and figure 3 of Celani et al. (2010).

various limits both in 2-D and 3-D flows (Meshalkin 1962; Sivashinsky & Yakhot
1985; Bayly & Yakhot 1986; Yakhot & Sivashinsky 1987; Hefer & Yakhot 1989;
Dubrulle & Frisch 1991; Gama, Vergassola & Frisch 1994; Cameron, Alexakis &
Brachet 2016; Alexakis 2018).

There are two notable cases where the dependence of eddy viscosity νE on the flow
amplitude Us and length scale ls is known. For Re→∞, one expects that νE becomes
independent of ν and the only dimensionally consistent possibility for νE is given by

νE = c1Usls, (6.1)

where c1 is a non-dimensional number. In the low-Re limit, on the other hand, an
exact asymptotic expansion can be carried out (see Dubrulle & Frisch 1991) which
reveals that

νE = c2
U2

s l2
s

ν
+O(U4

s l4
s/ν

2), (6.2)

where the non-dimensional number c2 can be evaluated by the expansion. It may
seem counter-intuitive that the low-Re limit could have any relevance for the turbulent
problem, but since we have established in the DNS that the presence of Q2D is a
finite-Re phenomenon (Q2D∝Re3/4), we clearly need to include a finite Re ingredient
to describe it and the exact result (6.2) is selected for this purpose. The sign of the
prefactors c1, c2 depends on the exact form of the small-scale flow and in particular
its dimensionality. While 2-D flows tend to have negative eddy viscosities and transfer
energy upscale, 3-D flows are expected to have positive eddy viscosities and transfer
energy downscale. For our model, we are going to consider that interactions among
the three different scales L > ` > H are such that the flow at the smaller scale acts
as an eddy viscosity on the flow at the larger scale. These interactions are illustrated
in figure 19. In particular, the energy injected at the forcing scale kf at a rate ε is
transferred both to the large scale L (by a negative eddy viscosity −µ) and to the
small scales (by a positive eddy viscosity σ ). The large scales lose energy directly to
the small scales (via a positive eddy viscosity term η), while the small scales dissipate
energy by transfer to the dissipation range, modelled by a nonlinear energy sink.
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In addition, viscosity is finite, such that all scales dissipate locally. The set of
equations below formalises these ideas:

d
dt

U2
2D =−(ν −µ+ η)

U2
2D

L2
, (6.3a)

d
dt

U2
f = ε − (ν + σ)

U2
f

`2
−µ

U2
2D

L2
, (6.3b)

d
dt

U2
3D = η

U2
2D

L2
+ σ

U2
f

`2
−

U3
3D

H
− ν

U2
3D

H2
. (6.3c)

Note in particular that eddy viscosities do not dissipate energy, but merely redistributes
it between different scales. Adding the three model equations leads to

d
dt
(U2

2D +U2
f +U2

3D)= ε − ν

(
U2

2D

L2
+

U2
f

`2
+

U2
3D

H2

)
−

U3
3D

H
, (6.4)

showing that the total kinetic energy only changes due to molecular viscosity ν, energy
injection ε and the sink term representing the 3-D energy cascade to the dissipation
range, U3

3D/H. Depending on Re, either of the two expressions for eddy viscosity (6.1),
(6.2) may be expected to yield an adequate description of the multi-scale interactions
in the problem. A model that interpolates smoothly between the large and small ν
limits, thus taking into account the finite-Re information necessary for describing Q2D,
is given by

µ= α
U2

f `
2

ν +Uf `
, η= β

U2
3DH2

ν +U3DH
, σ = γ

U2
3DH2

ν +U3DH
, (6.5a−c)

with α, β, γ > 0 non-dimensional coupling constants. In the limits ν→ 0 and ν→∞,
the above expressions converge to the formulae for eddy viscosities described before.
The nonlinear dynamical system thus defined possesses a varying number of fixed
points depending on parameters. To classify them, first note that ε 6= 0 ⇒ Uf 6= 0
at any fixed point by (6.3b) and the definition of µ in (6.5). Hence there are four
possibilities:

(i) laminar state: U2D =U3D = 0 (all energy in forcing scale),
(ii) three-dimensional turbulence state: U2D = 0 and U3D 6= 0,

(iii) two-dimensional condensate state: U2D 6= 0 and U3D = 0 and
(iv) flux-loop condensate state: U2D 6= 0 and U3D 6= 0.

As shown in § A.1, in the zero viscosity limit, there is neither a laminar state nor a
2-D condensate fixed point in the model. This emphasises the importance of including
finite-Re information into the model for describing both Q3D and Q3D in a single
model. The laminar state appears for values of Re≡ (ε`4)1/3/ν below a critical value
Rec for which there is no transfer, neither to large nor to small scales. Above this
critical value, one of the three other states is stable, depending on the value of Q=
`/H. For small values of Q (large H), the system is in the 3-D turbulence state, where
energy is only exchanged between the forcing scale ` and the small scale H. Above
the critical value Q3D, the system transitions to the flux-loop condensate state where
part of the injected energy is transferred to the large scales and then back to the small
scales, thus forming a loop. Finally, at sufficiently large Q above a second critical
point Q3D, the system transitions to the 2-D condensate where it follows 2-D dynamics
and there is only a transfer of the injected energy to the large scales.
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FIGURE 20. (Colour online) Steady state U2
3D from the full model for four different

Re as well as for the Re = ∞ limit. The Re = 500 and the Re = ∞ cases are almost
indistinguishable. The parameters used are L= `= 1, α = 1, β = 5, γ = 0.5.
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FIGURE 21. (Colour online) Model steady state U2
2D with and without rescaling. The

overall structure of the plots is strongly reminiscent of corresponding DNS results in
figure 6(a,b). In (a), U2D vanishes at small Q, increases monotonically between Q3D and
Q2D and remains constant for Q>Q2D. (b) Shows the same data as (a) with the abscissa
rescaled by Re3/4 and the coordinate rescaled by Re as in figure 6(b). The collapse
improves with increasing Re. Parameters: α = 0.51, β = 8, γ = 0.1, `= L/15= 1.

From this simple model, three major predictions may be derived:

(i) Firstly, the critical point Q3D is predicted to converge to a Re-independent value
at large Re as is shown in figure 20. In fact, in the infinite Re limit of the model,
there remains only one bifurcation, namely that at Q3D between two-dimensional
turbulence and the split cascade state.

(ii) Secondly, the critical point Q2D is predicted to obey

Q2D ∝ Re3/4. (6.6)

(iii) Thirdly, for Q > Q2D, i.e. in the 2-D turbulent state, the steady state energy is
predicted to be

U2
2D = (ε`)

2/3

(
L
`

)2

Re. (6.7)

The detailed derivations of these results are given in § A.1. All these three main
features are in agreement with the DNS and therefore the diagram that displays the
different phases of the model, shown in figure 21(a), resembles the corresponding

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

29
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.29


Condensates in thin-layer turbulence 511

figure 6(a) from the DNS. Indeed, the same rescaling collapses the curves in both
cases, see figures 6(b) and 21(b). We also note that for 0<Q2D−Q�1, it is predicted
that U2

3D ∼ (Q2D −Q)2 (see § A.2), again in agreement with the DNS.
We understand the present ODE model as a mean-field description which captures

the global system behaviour and averaged quantities, but does not take fluctuations
into account. Due to the importance of fluctuations near criticality, the ODE model
does not reproduce the detailed behaviour there. However, when a fluctuating energy
input is taken into account by replacing ε→ ε+σζ in (6.3b) (ζ being white Gaussian
noise), on–off intermittency is found close to Q2D where the PDF of U2

3D follows a
power law with an exponent tending to −1 as Q→Q2D from below (see § A.3), just
as in the DNS. This is a consequence of the structure of the model equations.

To conclude this section, we reiterate that the model presented above successfully
captures the location of the critical points (up to a scaling factor) as well as the
amplitude of the condensate U2

2D, while not producing a hysteresis. The intermittency
close to Q2D found in DNS is reproduced by the model when additive noise is
included.

7. Conclusions

We present the first detailed numerical study of the steady state of thin-layer
turbulence as a function of the system parameters using an extensive set of
high-resolution simulations.

It is shown that the split cascade observed at early times of the flow evolution
(Celani et al. 2010; Benavides & Alexakis 2017; Musacchio & Boffetta 2017)
leads to the formation of condensate states in the long-time limit. Three different
states were found for large Re. (i) For very thick layers the system saturates in a
regular 3-D turbulence state with no inverse cascade and negligible dissipation at
large scales. (ii) At intermediate-layer thickness, a flux-loop condensate is formed
in which part of the energy transferred to the condensate by the 2-D motions is
transferred back to the small scales by the 3-D motions. (iii) For very thin layers,
the system becomes two-dimensional and forms a 2-D-turbulence condensate, where
the inversely cascading energy is balanced by the dissipation due to viscosity at
large scales. The transition from 3-D turbulence to the flux-loop condensate occurs
at a critical height H3D (Q3D) that is a decreasing (increasing) function of Re, but
saturates at a Re independent value for large Re. For values of H slightly smaller than
H2D the amplitude of the large-scale velocity U2

ls jumps discontinuously to a large
value and increases linearly after that. Close to the threshold, a hysteresis diagram
was constructed where the system saturates to a different attractor (3-D turbulence
or flux-loop condensate) depending on the initial conditions. Whether this hysteresis
behaviour persists at larger Re and larger box sizes 1/K remains an open question.
The flux-loop condensate transitions to a 2-D turbulence condensate at a critical height
H2D that scales like H2D ∝ `Re−3/4 unlike the early stages of the development where
H2D ∝ `Re−1/2 (Benavides & Alexakis 2017). For the 2-D turbulence condensate, the
large-scale energy was found to be inversely proportional to Re and independent from
H. The transition from a flux-loop condensate to a 2-D turbulence condensate showed
strong spatio-temporal intermittency leading to a scaling of the average 3-D energy
as the square of the deviation from onset U2

3D∝ (H−H2D)
2, similarly as in Benavides

& Alexakis (2017).
A three-mode model has been proposed which reproduces the DNS scalings of the

critical points H2D and H3D as well as the amplitude of the condensate in the 2-D
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turbulence regime. The model demonstrates the basic mechanisms involved: a 2-D
flow that moves energy from the forcing scale to the condensate and a 3-D flow
that takes away energy both form the large scales and the forcing scales. The model
does not describe bi-stability or discontinuity close to Q3D. Nonetheless, it captures
the occurrence of both transitions observed in the DNS and provides several correct
quantitative predictions.

We stress once more that the present work is the first numerical study of thin-layer
turbulent condensation. Previous studies of the thin-layer problem were restricted to
the transient inverse cascade regime due the long computation time needed to reach
the condensate state. Therefore, the present study is novel and provides an important
first step towards a better understanding of thin-layer turbulent condensates (of which
the Earth’s atmosphere and ocean may be viewed as examples, despite the idealised
nature of our set-up), many open questions remain. The complexity of the physics
involved close to criticality goes beyond the mean-field model and requires further
targeted studies. We are convinced that both critical points deserve more detailed
investigations by means of numerical simulations, experiments and modelling. Another
important remaining open problem is the formation of an inverse cascade from a 3-D
forcing. To study this, the amplitude of the 3-D components of the forcing should be
varied compared to the 2-D components in a future study. Three-dimensional forcing
will make a connection with more natural forcing mechanisms like convection that
also display condensates (Favier et al. 2014; Guervilly et al. 2014; Rubio et al.
2014).

Concerning the realisability of the present numerical results in an experiment, it
needs to be stressed that this study only considers the triply periodic domain for
simplicity. When attempting to transfer the results to no-slip boundary conditions,
a word of caution is therefore in order: viscous boundary layers may lead to
large-scale drag, which is explicitly left out from the model set-up used here. Also,
3-D turbulence in boundary layers may infect the interior flow, thereby affecting
even high wavenumbers and the two-dimensionalisation even in the bulk of the
flow. However, the wealth of experimental observations of turbulent condensates in
thin layers, as referenced in the introduction and summarised in Xia & Francois
(2017), suggests that the condensation phenomenon at finite height is robust between
different boundary conditions as well as between the different forcing methods used
in experiment and numerical simulations. In particular, it would be very interesting
to probe the discontinuity and associated phenomena reported here in an experiment.
This has not been done before and experimental studies of thin-layer turbulent
condensates have the advantage of allowing higher Reynolds numbers and much
better time statistics.
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Appendix A. Derivation of mean-field model predictions
A.1. Scalings of critical points and condensate amplitude

In the low viscosity limit, the eddy viscosities given in equation (6.5), take the form
(6.1) and the resulting system of equations reads

∂tU2
2D =

(αUf `)U2
2D

L2
−
(βU3DH)U2

2D

L2
, (A 1a)

∂tU2
f = ε −

(αUf `)U2
2D

L2
−
(γU3DH)U2

f

`2
, (A 1b)

∂tU2
3D =

(βU3DH)U2
2D

L2
+
(γU3DH)U2

f

`2
−

U3
3D

H
. (A 1c)

One can easily see that these equations do not permit a fixed point with U3D= 0 when
ε 6= 0. To show this, first note that, as in the finite Re case, the forcing-scale velocity
Uf cannot vanish at a fixed point if ε 6= 0. Assume there exists a fixed point with
U3D=0. Then equation (A 1c) is trivially satisfied, while (A 1a) implies that U2D=0 or
Uf =0. Since Uf must be non-zero, we have U2D=0, which leads to a contradiction in
equation (A 1b) for any ε 6=0. Hence neither a laminar flow state nor a 2-D condensate
state exists in the system in the infinite Re limit. The only two remaining fixed points
are 3-D turbulence and the flux-loop condensate. The former is given by

U2
2D = 0, U2

f =
ε2/3`2

γH4/3
, U2

3D = (εH)2/3. (A 2a−c)

Using this result and considering equation (A 1a), we can find that the 3-D turbulence
fixed point becomes unstable to 2-D perturbations at

H =
(
α2

β2γ

)1/4

` (A 3)

and thus we obtain that

Q3D =

(
β2γ

α2

)1/4

. (A 4)

Hence, in the low viscosity limit of our three-scale model, there remains only one
bifurcation, namely that at Q3D between two-dimensional turbulence and the split
cascade state. The second critical point Q2D vanishes to infinity as Q2D ∝ Re3/4 in
this limit. Figure 20 demonstrates close to Q3D that the full model converges to the
solution obtained from the asymptotic form of the equations (A 1) as Re increases.
This is consistent with the convergence observed in the DNS in figure 6(b).

At finite viscosity, one has to solve the full equations, (6.5) which is difficult
analytically for the 2-D condensate state. In order to facilitate analytical progress in
deriving predictions from the model, one may formally take the high viscosity limit
in which the different eddy viscosities take the form of equation (6.2). The model
equations then become

∂tU2
2D =−

(
ν − α

U2
f `

2

ν
+ β

U2
3DH2

ν

)
U2

2D

L2
, (A 5a)
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∂tU2
f = ε −

(
ν + γ

U2
3DH2

ν

)
U2

f

`2
− α

U2
f `

2

ν

U2
2D

L2
, (A 5b)

∂tU2
3D = β

U2
3DH2

ν

U2
2D

L2
+ γ

U2
3DH2

ν

U2
f

`2
−

U3
3D

H
− ν

U2
3D

H2
. (A 5c)

To obtain this limiting form of the equations, it is assumed that ν � Uf `, U3DH,
while no restriction is imposed on U2D; in particular, the case of a large-scale-based
Reynolds number in the large scales U2DL/ν, which is most relevant in the
condensate state, is included. The laminar flow is unstable to 3-D perturbations
when Q< γ 1/4Re3/4 and unstable to 2-D perturbations when

Re> 1/α1/3. (A 6)

When the latter condition is satisfied and H is sufficiently small (Q sufficiently large),
the system is attracted to the 2-D condensate state, given by

U2
2D =

L2

ν

(
ε −

ν3

`4α

)
, U2

f =
ν2

α`2
, U3D = 0. (A 7a−c)

Note that U2
2D is inversely proportional to the viscosity and proportional to L2 in

agreement with the scaling of the data in figure 6(b). The 2-D condensate state ceases
to be an attractor of the system when H is sufficiently large such that U3D becomes
unstable. This occurs when

H4 >

(
β
ε

ν3
+
γ − β

α`4

)−1

. (A 8)

Hence, we conclude that

Q2D =

(
β
ε`4

ν3
+
γ − β

α

)1/4

=

(
βRe3

+
γ − β

α

)1/4

. (A 9)

Thus, for moderate values of Re, there is an approximate scaling Q2D∝Re3/4
∝ η, the

dissipation length (note that Re3 > 1/α due to (A 6)), in agreement with the results
obtained in § 3, where we showed that the U2

2D data points collapse under rescaling
such that QRe3/4

= η/H is on the abscissa and U2
2DK2/[Re(ε`)2/3] on the coordinate.

Results from the full model equations (6.3) and (6.5) are shown in figure 21 where the
same scaling is applied. The corresponding plots for equations (A 5) are very similar.
Furthermore, an asymptotic analysis close to Q2D described in § A.2 of this appendix
reveals that the scaling for U2

3D∝ (Q2D−Q)2 which is the same as in the DNS results
shown in figure 8(b) although no intermittency is present. The other critical point Q3D,
where the 3-D turbulence solution changes stability, can be evaluated numerically and
is found to increase with Re indefinitely. This, however, is an artefact of the high
viscosity asymptotic form of the eddy viscosities used in this subsection.

A.2. Behaviour of U3D near Q2D

Here, we derive the behaviour close to H2D in the three-scale model. First consider
H=H2D(1+ δ) and let x= (x, y, z)T = (U2

2D,U
2
f ,U

2
3D)

T , x̃= (x̃, ỹ, z̃)T =x− (x2D, y2D,0)T ,
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FIGURE 22. (Colour online) Time series and PDF showing on–off intermittency close to
Q2D ≈ 1.638 in the three-scale model with a fluctuating energy injection rate. Parameters:
(a) Q = 1.63775, L = 10`, Re = 2, α = 0.001, β = 10, γ = 0.9, σ = 0.1, (b) q =
1.635, 1.636, 1.637, 1.63775 (bottom to top), other parameters identical. Dashed lines in
(b) are power laws with exponents −0.3 −0.74, −0.99 (bottom to top): cf. figures 12
and 8(b).

where x2D and y2D are the values of U2
2D and U2

f respectively at H = H2D. Then
equations (A 5) can be rewritten exactly in the form

d
dt

x̃=


−
ν

L2

α`2x2

νL2
−
βx2H2

νL2

−
αy2

νL2
−
ν

`2
−
γH2y2

ν`2

0 0 C

 x̃+

 0
0

−1/H2D

 z̃3/2
+ x̃TBx̃, (A 10)

where C = −ν/H2
+ βH2x2/νL2

+ γH2y2/ν`
2 and the specific coefficients of the

quadratic term are irrelevant here. By definition of H2D, C(δ = 0) = −ν/H2
2D +

βH2
2Dx2/νL2

+ γH2
2Dy2/ν`

2
= 0. Hence, for small δ, C∝ δ. Specifically,

C
δ�1
∼

(
2ν

H2
2D
+

2βx2

νL2
+

2γ y2

ν`2

)
δ. (A 11)

Hence, considering the z̃ component and balancing the linear term with the z̃3/2 term,
we deduce that

z̃
δ�1
∼

(
2ν

H2
2D
+

2βx2H2
2D

νL2
+

2γ y2H2
2D

ν`2

)2

H2
2Dδ

2. (A 12)

This means that U2
3D ∝ δ

2, which is precisely the scaling observed in figure 8(b). It
is important to note however that the asymptotic result (A 12) is only valid for very
small δ and cannot be extended to δ∼O(1) where the quadratic terms are dominant.

A.3. On–off intermittency in the three-scale model
When a fluctuating energy injection rate is taken into account in the model by
replacing ε→ ε+σζ , where ζ ∼N (0,1) is Gaussian white noise, on–off intermittency
in U2

3D can be observed in the three-scale model. This is illustrated in figure 22 in
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terms of the time series of U2
3D and the corresponding PDF, which approaches a

power law with exponent −1 as Q→Q2D.
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