
JFP 13 (1): 235–240, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803002910 Printed in the United Kingdom

Chapter 27

Random Numbers

module Random (
RandomGen(next, split, genRange),
StdGen, mkStdGen,
Random(random, randomR,

randoms, randomRs,
randomIO, randomRIO),

getStdRandom, getStdGen, setStdGen, newStdGen
) where

---------------- The RandomGen class ------------------------

class RandomGen g where
genRange :: g -> (Int, Int)
next :: g -> (Int, g)
split :: g -> (g, g)

---------------- A standard instance of RandomGen -----------
data StdGen = ... -- Abstract

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

mkStdGen :: Int -> StdGen

235

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

236 CHAPTER 27. RANDOM NUMBERS

---------------- The Random class ---------------------------
class Random a where

randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)

randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [a]

randomRIO :: (a,a) -> IO a
randomIO :: IO a

instance Random Int where ...
instance Random Integer where ...
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

---------------- The global random generator ----------------
newStdGen :: IO StdGen
setStdGen :: StdGen -> IO ()
getStdGen :: IO StdGen
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

The Random library deals with the common task of pseudo-random number generation. The library
makes it possible to generate repeatable results, by starting with a specified initial random number
generator; or to get different results on each run by using the system-initialised generator, or by
supplying a seed from some other source.

The library is split into two layers:

� A core random number generator provides a supply of bits. The class RandomGen provides
a common interface to such generators.

� The class Random provides a way to extract particular values from a random number gener-
ator. For example, the Float instance of Random allows one to generate random values of
type Float.

27.1 The RandomGen class, and the StdGen generator

The class RandomGen provides a common interface to random number generators.

class RandomGen g where
genRange :: g -> (Int,Int)
next :: g -> (Int, g)
split :: g -> (g, g)

-- Default method
genRange g = (minBound,maxBound)

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

27.1. THE RANDOMGEN CLASS, AND THE STDGEN GENERATOR 237

� The genRange operation yields the range of values returned by the generator.

It is required that:

– If �"� �� � genRange $, then " � �.

– genRange � �� �.

The second condition ensures that genRange cannot examine its argument, and hence the
value it returns can be determined only by the instance of RandomGen. That in turn allows an
implementation to make a single call to genRange to establish a generator’s range, without
being concerned that the generator returned by (say) next might have a different range to
the generator passed to next.

� The next operation returns an Int that is uniformly distributed in the range returned by
genRange (including both end points), and a new generator.

� The split operation allows one to obtain two independent random number generators. This
is very useful in functional programs (for example, when passing a random number generator
down to recursive calls), but very little work has been done on statistically robust implemen-
tations of split (Burton and Page [2] and Hellekalek [7]] are the only examples we know
of).

The Random library provides one instance of RandomGen, the abstract data type StdGen:

data StdGen = ... -- Abstract

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

mkStdGen :: Int -> StdGen

The StgGen instance of RandomGen has a genRange of at least 30 bits.

The result of repeatedly using next should be at least as statistically robust as the “Minimal Stan-
dard Random Number Generator” described by Park and Miller [12] and Carta [3]. Until more is
known about implementations of split, all we require is that split deliver generators that are
(a) not identical and (b) independently robust in the sense just given.

The Show/Read instances of StdGen provide a primitive way to save the state of a random number
generator. It is required that read (show g) == g.

In addition, read may be used to map an arbitrary string (not necessarily one produced by show)
onto a value of type StdGen. In general, the read instance of StdGen has the following proper-
ties:

� It guarantees to succeed on any string.

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

238 CHAPTER 27. RANDOM NUMBERS

� It guarantees to consume only a finite portion of the string.

� Different argument strings are likely to result in different results.

The function mkStdGen provides an alternative way of producing an initial generator, by mapping
an Int into a generator. Again, distinct arguments should be likely to produce distinct generators.

Programmers may, of course, supply their own instances of RandomGen.

Implementation warning. A superficially attractive implementation of split is

instance RandomGen MyGen where
...
split g = (g, variantOf g)

Here, split returns g itself and a new generator derived from g. But now consider these two
apparently-independent generators:

g1 = snd (split g)
g2 = snd (split (fst (split g)))

If split genuinely delivers independent generators (as specified), then g1 and g2 should be inde-
pendent, but in fact they are both equal to variantOf g. Implementations of the above form do
not meet the specification.

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

27.2. THE RANDOM CLASS 239

27.2 The Random class

With a source of random number supply in hand, the Random class allows the programmer to
extract random values of a variety of types:

class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)

randomRs :: RandomGen g => (a, a) -> g -> [a]
randoms :: RandomGen g => g -> [a]

randomRIO :: (a,a) -> IO a
randomIO :: IO a

-- Default methods
randoms g = x : randoms g’

where
(x,g’) = random g

randomRs = ...similar...

randomIO = getStdRandom random
randomRIO range = getStdRandom (randomR range)

instance Random Int where ...
instance Random Integer where ...
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

� randomR takes a range �
�� ��� and a random number generator � , and returns a random
value uniformly distributed in the closed interval �
�� �� �, together with a new generator. It is
unspecified what happens if
� � �� . For continuous types there is no requirement that the
values
� and �� are ever produced, but they may be, depending on the implementation and
the interval.

� random does the same as randomR, but does not take a range.

– For bounded types (instances of Bounded, such as Char), the range is normally the
whole type.

– For fractional types, the range is normally the semi-closed interval �$ � ! �.

– For Integer, the range is (arbitrarily) the range of Int.

� The plural versions, randomRs and randoms, produce an infinite list of random values,
and do not return a new generator.

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

240 CHAPTER 27. RANDOM NUMBERS

� The IO versions, randomRIO and randomIO, use the global random number generator
(see Section 27.3).

27.3 The global random number generator

There is a single, implicit, global random number generator of type StdGen, held in some global
variable maintained by the IO monad. It is initialised automatically in some system-dependent
fashion, for example, by using the time of day, or Linux’s kernel random number generator. To get
deterministic behaviour, use setStdGen.

setStdGen :: StdGen -> IO ()
getStdGen :: IO StdGen
newStdGen :: IO StdGen
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

� getStdGen and setStdGen get and set the global random number generator, respectively.

� newStdGen applies split to the current global random generator, updates it with one of
the results, and returns the other.

� getStdRandom uses the supplied function to get a value from the current global random
generator, and updates the global generator with the new generator returned by the function.
For example, rollDice gets a random integer between 1 and 6:

rollDice :: IO Int
rollDice = getStdRandom (randomR (1,6))

The Web site http://random.mat.sbg.ac.at/ is a great source of information.

https://doi.org/10.1017/S0956796803002910 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002910

