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The use of radio frequency (RF) waves in fusion plasmas for heating, for non-
inductive current generation, for profile control and for diagnostics has been well
established. The RF waves, excited by antenna structures placed near the wall of
a fusion device, have to propagate through density fluctuations at the plasma edge.
These fluctuations can modify the properties of the RF waves that propagate towards
the core of the plasma. A full-wave electromagnetic computational code ScaRF based
on the finite difference frequency domain (FDFD) method has been developed to study
the effect of density turbulence on RF waves. The anisotropic plasma permittivity
used in the scattering studies is that for a magnetized, cold plasma. The code is
used to study the propagation of an RF plane wave through a modulated, spatially
periodic density interface. Such an interface could arise in the edge region due to
magnetohydrodynamic instability or drift waves. The frequency of the plane wave is
taken to be in the range of the electron cyclotron frequency. The scattering analysis
is applicable to ITER-like plasmas, as well as to plasmas in medium sized tokamaks
such as TCV, ASDEX-U and DIII-D. The effect of different density contrasts across
the interface and of different spatial modulations are discussed. While ScaRF is used
to study a periodic density fluctuation, the code is general enough to include different
varieties of density fluctuations in the edge region – such as blobs and filaments, and
spatially random fluctuations.
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1. Introduction
In fusion devices like tokamaks, radio frequency (RF) electromagnetic waves are

generated by antennae near the wall of the device. The launched waves propagate
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through a turbulent edge plasma region before coupling power to the core plasma
for heating and for generating non-inductive currents. The tenuous plasma in the
edge is composed of blobs and filamentary structures (see Krasheninnikov 2001;
Grulke et al. 2006; Myra et al. 2006a; Myra, Russell & D’ Ippolito 2006b; Zweben
et al. 2007; Pigarov, Krasheninnikov & Rognlien 2012), drift waves and rippling
modes (see Ritz et al. 1984), as well as random fluctuations. Various theoretical
and computational studies have shown that the propagation characteristics of the RF
waves are modified due to their interaction with blobs and filaments (see Ram &
Hizanidis 2016; Ioannidis et al. 2017). The theoretical studies have provided physical
insight into the scattering process by constructing analytical solutions to the full-wave
equations. However, they are limited in their scope as the composition of the edge
plasma is assumed to be either a single spherical blob (see Ram, Hizanidis & Kominis
2013) or a single cylindrical filament (see Ram & Hizanidis 2016). However, the
edge plasma is a more intricate mixture of blobs and filaments of different shapes
and sizes as well as waves like magnetohydrodynamic (MHD) instabilities. For
complicated representations of the edge plasma density, one has to use resort to fully
computational resources.

There are two approximations that are made in all these studies. First, that the edge
plasma is cold so that all thermal effects are ignored. Consequently, only the cold
plasma RF waves can propagate in the edge region. Second, that the edge plasma
is stationary. This is based on the fact that all time scales associated with the RF
waves are much shorter than those associated with the edge turbulence. The time
scales for edge turbulence are in the MHD realm – frequencies in the kHz range and
fluctuation speeds in the ion-acoustic range. On the other hand, the RF time scales
are in the kinetic regime – frequencies ranging from 10s of MHz to 100s of GHz
and group speeds near the speed of light. The full-wave studies for RF propagation
use the complete complement of Maxwell’s equations in which the plasma permittivity
is an anisotropic tensor which is a function of the local density in the edge region.
The ambient magnetic field is assumed to be uniform and at arbitrary direction.

Lacking detailed measurements of the plasma density in the edge region, one has
to model the effective permittivity based on some assumptions. One possible scheme
is based on the generalization of the Maxwell–Garnet homogenization technique (see
MacKay & Lakhtakia 2015; Bairaktaris et al. 2017), which assumes some distribution
of filamentary structures of random sizes and densities. But there are many different
representations of density fluctuations which have been implemented in various
studies. In addition, given some representation of the fluctuations, one can use either
approximate methods or full-wave methods to determine their effect on RF waves. The
approximate methods are generally based on the eikonal Wentzel–Kramers–Brillouin
(WKB) solution of Maxwell’s equations.

A WKB ray tracing approach was used to study changes in the wave vectors
of the RF waves due to a random distribution of blobs (see Hizanidis et al.
2010). In Sysoeva et al. (2015), two analytical models for the ordinary mode
propagation through a turbulent edge plasma layer were developed based on the
eikonal perturbation method and the weak turbulence theory approach. In Snicker
et al. (2018), RF scattering from turbulent density fluctuations was studied by a
Monte Carlo solver (WKBeam) for the kinetic wave equation by use of the integral
form of the scattering operator within the Born approximation. There have been
several studies using full-wave computational tools. The effect of multiple filamentary
structures was studied numerically by solving the full-wave equation within the
COMSOL framework (see Ioannidis et al. 2017). In Kohn et al. (2018), scattering
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of RF beams from edge density fluctuations was investigated using the WKBeam
code and the full-wave code IPF-FDMC, which is the standard two-dimensional finite
difference time domain (FDTD) code for isotropic media.

While these previous studies have considered the effect of blobs and filaments,
and random fluctuations on RF waves, we are interested in the effect of periodic
density interfaces (plasma gratings) on RF waves. This is primarily driven by
experimental observations which indicate the presence of drift waves and rippling
modes in the edge region (see Ritz et al. 1984). The density interface is at the
edge separating the vacuum region in which the antenna structure is located and
the turbulent plasma in the edge region and scrape-off layer. The periodic density
interface could also be due to the presence of a MHD instability. In order to have
a detailed understanding of the effect of such an interface on the scattering of a
RF wave, we have developed the full-wave code ScaRF. ScaRF is based on the
finite difference frequency domain method (FDFD) (see Smith 1996). FDFD solves
Maxwell’s equations in the frequency domain. It is a full-wave method and thus
describes reflection, refraction and diffraction effects. ScaRF is this work is used not
only for the RF scattering analysis of a density interface approximated by a single
mode periodic interface (plasma grating), but more generally by an arbitrary profile
periodic interface generated as a superposition of spatial harmonics with random
weights. In addition the permittivity of the turbulent region is approximated by
the aforementioned homogenized anisotropic permittivity tensor. Both permittivities
(incidence and turbulent regions) are approximated by the cold plasma ones. To
handle these problems, ScaRF uses FDFD formulated for anisotropic media (see
Rumpf et al. 2014), in conjunction with the total field scattered field (TFSF) method
(see Papadopoulos & Glytsis 2014; Rumpf et al. 2014), for inserting the RF excitation
into the computational grid, the perfect matching layer (PML) absorbing boundary
condition (see Oskooi & Johnson 2011), for absorption of irrelevant boundary reflected
waves, and Floquet–Bloch–periodic boundary conditions (FBPBC) for the definition
of the periodic interface. ScaRF is a three-dimensional code, and thus can model
cases of arbitrary magnetic field orientation. In addition it considers general density
fluctuations and is not restricted to periodic interfaces. We are not aware of the
existence of a similar finite difference (FD) full-wave code for RF-plasma scattering.
Other FD codes for plasma scattering are usually time domain codes (FDTD). The
advantage of FDFD is that it handles numerical dispersion, anisotropy, incident field
definition and periodic boundary conditions more straightforward than FDTD (see
Glytsis, Papadopoulos & Koutserimpas 2018), in which anisotropy and periodicity
could lead in some cases to inaccurate results and instability (see Taflove & Hagness
2005). Thus FDFD is ideal for the class of problems ScaRF is designed to solve. It
is important to understand that the rippling modes or modulated interfaces exist in
the edge region in conjunction with random fluctuations, blobs and filaments. While
ScaRF can take any representation of the edge plasma density into account, we
are primarily motivated by understanding the effect of density ripples on RF waves.
Our study complements previous studies which have dealt with blobs, filaments and
random fluctuations. In the future, ScaRF will be used for studying the effect of
various representations of the edge density on the propagation of RF waves.

The structure of the paper is organized as follows. In § 2 the geometry of the plasma
structure (plasma grating) is presented and the relation of the coordinate system for
the microwave diffraction analysis with the magnetic field and plasma coordinate
systems in the torus is explained. Next the anisotropic permittivity tensors for cold
plasma in the interface regions are derived (see Stix 1992). A detailed summary of
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FIGURE 1. A tokamak plasma torus is shown with the corresponding coordinate systems
of interest. The coordinate system (xB, yB, zB) corresponds to the magnetic flux density,
B, coordinate system while (xp, yp, zp) corresponds to the plasma coordinate system. The
zp-component of the magnetic flux density corresponds to the toroidal magnetic flux
density component, Btor, while the xpyp-component corresponds to the poloidal magnetic
flux density component, Bpol.

the FDFD formulation follows. In § 3, the dispersion relation in anisotropic medium
is presented which is used to define the modes of the incident plane wave used
in the FDFD method in conjunction with the TFSF technique. In § 4 the FDFD
numerical results are shown for a sinusoidal plasma grating of various amplitudes
and periods, for O and X modes of the incident RF wave and for various interface
region contrasts. Finally, the random periodic (containing multiple spatial frequencies)
plasma grating is analysed for O and X incident modes. Finally in § 5, the main
results and conclusions of this work are summarized.

2. Geometrical configurations and the FDFD method
The coordinate system used in the FDFD method for the RF diffraction analysis is

based on the simplistic toroidal plasma configuration shown in figure 1, where two
different coordinate systems are shown relative to the toroidal plasma configuration.
The coordinate system (xB, yB, zB) corresponds to the magnetic field density coordinate
system where the zB direction corresponds to the direction of the magnetic field (this
is the toroidal direction). The (xp, yp, zp) coordinate system corresponds to the plasma
coordinate system. Since the toroidal magnetic flux density can have a poloidal
component the two coordinate systems could be related via the Euler rotation angles,
as represented in figure 2. The Euler angles that connect the two coordinate systems
are denoted by φB, θB and ψB and all are measured counter-clockwise, as shown in
figure 2. It is straightforward to show that the unit vectors of the two coordinate
systems are related by:x̂B

ŷB
ẑB

=
m11 m12 m13

m21 m22 m23
m31 m32 m33

x̂p
ŷp
ẑp

= M̃

x̂p
ŷp
ẑp

, (2.1)
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where

m11 = cosψB cos φB − cos θB sin φB sinψB,

m12 = cosψB sin φB + cos θB cos φB sinψB,

m13 = sinψB sin θB,

m21 =− sinψB cos φB − cos θB sin φB cosψB,

m22 =− sinψB sin φB + cos θB cos φB cosψB,

m23 = cosψB sin θB,

m31 = sin θB sin φB,

m32 =− sin θB cos φB,

m33 = cos θB,


(2.2)

and the hatted variables correspond to the unit vectors in the corresponding coordinate
system. According to Stix (see Stix 1992) the relative permittivity of the cold plasma
is given by the following equation in the (xB, yB, zB) coordinate system:

ε̃B =

 S −iD 0
+iD S 0

0 0 P

, (2.3)

where the needed parameters are defined below:

S = 1
2(R + L), D= 1

2(R − L),

P = 1+ Pe + P i, R = 1+ Re + Ri,

L= 1+ Le + Li, Re =
1+ incol

1+ Ce + incol
Pe,

Ri =
1+ incol

1+ Ci + incol
P i, Le =

1+ incol

1− Ce + incol
Pe,

Li =
1+ incol

1− Ci + incol
P i, Pe =−

(ωpe

ω

)2 1
1+ incol

,

P i =−

(ωpi

ω

)2 1
1+ incol

, Ce =−
ωce

ω
,

Ci =
ωci

ω
, ωpe = qe

√
ne

meε0
,

ωpi = qi

√
ni

miε0
= Zqe

√
ni

Ampε0
, ωce =

qeBzB

me
,

ωci =
ZqeBzB

Amp
, ncol =

νcol

ω
.



(2.4)

The variables in the above equations are: the magnitude of the electron charge qe, the
electron rest mass me, the atomic number Z, the atomic mass number A, the proton
rest mass mp, the permittivity of free space ε0, the frequency of the electromagnetic
radiation ω=2πf (where f the frequency in Hz), the electron and ion plasma densities
ne and ni, respectively (in m−3), and the electron and ion collision rate νcol. The
frequencies ωpe and ωpi are the electron and ion plasma resonant frequencies and the
ωce and ωci are the electron and ion cyclotron frequencies respectively. In this work
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ωce = 7.915 × 1011 rad s−1 and ωci = 2.155 × 108 rad s−1. Collisional absorption is
not included in the current model, but can be incorporated by modifying the relative
permittivity tensor in (2.3). The relative permittivity tensor of (2.3) can be expressed
in the plasma coordinate system (xp, yp, zp) using the following transformation

ε̃p = M̃
−1
ε̃BM̃, (2.5)

where ε̃B is defined in (2.3) and the Euler angles transformation matrix is defined
in (2.1). A possible ripple at the torus plasma surface could cause diffraction of the
incident microwave radiation. In order to study this effect a periodic ripple at the
plasma torus surface is studied. The geometry is shown in figure 3. The ripple can
be defined as

h(x)= d− d cos
(

2π

Λ
x
)
, (2.6)

where h(x) is the cosinusoidally varying ripple height and Λ the spatial period of the
ripple. The microwave diffraction is analysed in the (x, y, z) coordinate system that is
related to the plasma coordinate system (xp, yp, zp) as follows:x̂

ŷ
ẑ

=
0 1 0

0 0 1
1 0 0

x̂p
ŷp
ẑp

= Q̃

x̂p
ŷp
ẑp

, (2.7)

where the hatted variables are the unit vectors along the corresponding axes,
respectively. The incident microwave radiation is modelled as a plane wave with
an azimuthal angle of incidence φ and a polar angle of incidence θ (as shown in
figure 3). The regions above and below the periodic ripple correspond to plasma
regions of different plasma densities. Their tensor relative permittivities ε̃l,p can be
determined by suitable use of (2.5) in the plasma coordinate system. Then the relative
permittivities ε̃1 and ε̃2 needed for the diffraction analysis in the (x, y, z) coordinate
system can be found from

ε̃` = Q̃ε̃`,pQ̃
T
, `= 1, 2. (2.8)

Next the FDFD method is formulated in the (x, y, z) coordinate system that will be
used in the analysis of the plasma grating of figure 3, with FBPBC in the xy plane
and PML in xy planes parallel to the z axis. FDFD solves Maxwell’s equations in
the frequency domain. It is a rigorous and stable method of known error sources
(see Smith 1996; Sadiku 2001; Taflove & Hagness 2005) that can model systems
of complex geometry and can be applied in parallel for computationally demanding
problems. In FDFD finite differences are used to approximate Maxwell’s equations,
leading to a large linear algebraic system, whose solution provides the electromagnetic
fields in space. In particular after normalizing the magnetic field according to H̃ ≡
−iZ0H, where Z0 is the free space impedance and i is

√
−1, Maxwell’s equations

with the wave-absorbing PML layer truncating the computational grid, become:

∇×E= k0[ε̃]H̃, (2.9)
∇× H̃= k0[µ̃]E, (2.10)
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where [ε̃] ≡ J[ε]JT/det(J) and [µ̃] ≡ J[µ]JT/det(J) are relative permittivity and
permeability tensors, defined so as to implement the PML for anisotropic media,
(see Oskooi & Johnson 2011), where J ≡ diag(s−1

x , s−1
y , s−1

z ) and sw ≡ κw + i(σw/ω),
w={x, y, z} are the PML stretching factors with κw >1 the evanescent wave absorption
parameter, and σw the PML conductivity. The parameters of the stretching factors are
polynomials (see Oskooi & Johnson 2011) spatially varying along the w direction. It
is convenient to simplify Maxwell’s equations (2.9)–(2.10) by normalizing the grid
coordinates as w̃= k0w, w= {x, y, z}, which leads to:

∂Ez

∂ ỹ
−
∂Ey

∂ z̃
= µ̃xxH̃x + µ̃xyH̃y + µ̃xzH̃z (2.11)

∂Ex

∂ z̃
−
∂Ez

∂ x̃
= µ̃yxH̃x + µ̃yyH̃y + µ̃yzH̃z (2.12)

∂Ey

∂ x̃
−
∂Ex

∂ ỹ
= µ̃zxH̃x + µ̃zyH̃y + µ̃zzH̃z (2.13)

∂H̃z

∂ ỹ
−
∂H̃y

∂ z̃
= ε̃xxEx + ε̃xyEy + ε̃xzEz (2.14)

∂H̃x

∂ z̃
−
∂H̃z

∂ x̃
= ε̃yxEx + ε̃yyEy + ε̃yzEz (2.15)

∂H̃y

∂ x̃
−
∂H̃x

∂ ỹ
= ε̃zxEx + ε̃zyEy + ε̃zzEz. (2.16)

In the FDFD method the discretization of (2.11)–(2.16) is done by approximating
spatial derivatives using central differences, assuming that fields are placed on the Yee
cell as shown in figure 4, and permittivity and permeability tensors elements ε̃mn, µ̃mn

(m, n={x, y, z}) are placed at the same grid point as the En and H̃n fields respectively.
In the resulting finite difference equations each term must exist at the same point
on the Yee grid. In order to satisfy this rule the terms containing off-diagonal tensor
elements in (2.11)–(2.16) are linearly interpolated to the correct grid points by using
interpolation matrices R−w , R+w , which averages the grids points along the direction
w = {x, y, z}, with the next (+) or previous (−) grid points. Eventually the discrete
form is (2.11)–(2.12) is:

De
yez − De

zey = µ̃′xxh̃x + R−x R+y µ̃
′
xyh̃y + R−x R+z µ̃

′
xzh̃z (2.17)

De
zex − De

xez = R−y R+x µ̃
′
yxh̃x + µ̃′yyh̃y + R−y R+z µ̃

′
yzh̃z (2.18)

De
xey − De

yex = R−z R+x µ̃
′
zxh̃x + R−z R+y µ̃

′
zyh̃y + µ̃′zzh̃z (2.19)

Dh
yh̃z − Dh

z h̃y = ε̃ ′xxex + R+x R−y ε̃
′
xyey + R+x R−z ε̃

′
xzez (2.20)

Dh
z h̃x − Dh

xh̃z = R+y R−x ε̃
′
yxex + ε̃ ′yyey + R+y R−z ε̃

′
yzez (2.21)

Dh
xh̃y − Dh

yh̃x = R+z R−x ε̃
′
zxex + R+z R−y ε̃

′
zyey + ε̃ ′zzez, (2.22)

where De
w, Dh

w are derivative matrices, and ew, h̃w are vectors containing electric
and magnetic field values respectively, at discrete spatial points, in the direction
w = {x, y, z} and µ̃′mn, ε̃ ′mn, (m, n = {x, y, z}) are diagonal matrices containing the
relevant tensor elements of the grid along their diagonals. Equations (2.17)–(2.22) are
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simplified by redefining the permittivity and permeability diagonal tensors, ε̃ ′mn, µ̃′mn,
so as to include the interpolation matrices according to:

ε̃ ′′mn =

{
R+mR−n ε̃

′
mn, m 6= n,

ε̃ ′mn, m= n,
(2.23)

µ̃′′mn =

{
R−mR+n µ̃

′
mn, m 6= n,

µ̃′mn, m= n.
(2.24)

Then (2.17)–(2.22) are equivalent to the linear system:

A

[
e
h̃

]
= 0, (2.25)

where A≡

[
Ce

−[µ̃′′]

−[ε̃ ′′] Ch

]
, (2.26)

Ce
≡

 0 −De
z De

y
De

z 0 −De
x

−De
y De

x 0

 , (2.27)

Ch
≡

 0 −Dh
z Dh

y
Dh

z 0 −Dh
x

−Dh
y Dh

x 0

 , (2.28)

e ≡ [ex, ey, ex]
T and h̃ ≡ [h̃x, h̃y, h̃x]

T. Since the right-hand side of (2.25) is zero
no meaningful solution exists. A non-zero right-hand side of (2.25) is generated by
introducing the plane wave excitation in the computational grid by use of the total
field/scattered field (TFSF) technique. In the TFSF method, a boundary S is defined
separating the computational domain into regions where only total fields exist and
regions where only scattered fields exits. The TFSF interface for the plasma grating
in figure 3 is parallel to the xy plane. To apply the TFSF method, the incident source
electric (esrc ≡ [ex,src, ey,src, ey,src]

T) and magnetic (h̃src ≡ [h̃x,src, h̃y,src, h̃y,src]
T) fields,

propagating in the anisotropic medium, free of scatterers (with only the background
present), should be known. This information is available and is given by (3.5)–(3.7),
as described in detail in § 3. Then the right-hand side of (2.25), b is given by:

b= (QA− AQ)[esrc, h̃src]
T (2.29)

Q≡ diag(Qe
x,Qe

y,Qe
z,Qh

x,Qh
y,Qh

z ), (2.30)

where Qe
w or Qh

w are diagonal matrices operating on the electric or magnetic field
source vector, in the direction w={x, y, z}. These Qe

w, Qh
w matrices have 1 or 0 in the

diagonal if they act on a source field node that belongs to the scattered or to the total
field region respectively. Then the electric and magnetic fields are obtained everywhere
in the computational domain, from the solution of the linear system A[e, h̃]T = b.

3. Dispersion and polarization of RF waves in plasma
In order to define the excitation plane wave source for the FDFD method, it

is necessary to derive the dispersion relation for anisotropic media. There are two
possible orthogonal polarizations in the anisotropic region and the incident plane wave
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RF waves in the plasma edge 9

FIGURE 2. The relation between the (xB, yB, zB) and the (xp, yp, zp) coordinate systems.
The angles φB, θB and ψB are the Euler angles that connect the two coordinate systems.
All the angles are defined with positive as counter-clockwise.

FIGURE 3. A plasma ripple at the torus boundary is considered as a periodic spatial
modulation, i.e. as a plasma grating. The microwave radiation is represented as a plane
wave incident from the top towards the bottom region. The incident wavevector is shown
as kinc and the incident angles are defined as φ and θ . The scattering coordinate system
(x, y, z) is related to the plasma coordinate system by x= yp, y= zp and z= xp as shown
in the figure. The plasma relative permittivities of the top and of the bottom regions are
defined as ε̃1 and ε̃2 respectively. The plasma grating is assumed to have a sinusoidal
profile of periodicity Λ along the x direction, and an amplitude spatial variation of d.
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FIGURE 4. Three-dimensional Yee cell and electric and magnetic fields staggered in
space by half a cell. Electric field components are staggered along their direction, while
magnetic field components are staggered perpendicular to their direction.

is selected as one of them. In particular, with respect to figure 3, an incident plane
wave is assumed, with wavevector, kinc = kinc(−x̂ cos θ sin φ − ŷ sin θ sin φ + ẑ cos θ),
and kinc = k0n1, with k0 the free space wavenumber and n1 the effective index on the
wave in the anisotropic medium with relative permittivity tensor ε̃1. Faraday’s and
Ampere’s equations for the plane wave solution become:

kinc ×E=ωµ0H (3.1)
kinc ×H=−ωε0ε̃1E. (3.2)

Elimination of the field components (z) vertical to the interface of figure 3, in (3.1),
(3.2) leads to a 4×4 eigenvalue eigenvector equation for the tangential to the interface
field components vT

≡ [Ex Ey Hx Hy] of the form:

M̃v = k̃zv (3.3)

and the matrix M̃ is:

−
εzxk̃ x

εzz
Z 0

(
1−

k̃
2
x

εzz

)
−
εzyk̃ x

εzz

k̃ yk̃ xZ 0

εzz

1
Z 0

(
−k̃

2
y + εxx −

εxzεzx

εzz

)
−

k̃ xεxz

εzz

1
Z 0

(
−k̃ xk̃ y + εxy −

εxzεzy

εzz

)
k̃ yεxz

εzz

−
εzxk̃ y

εzz
−

k̃ yZ 0

εzz
−
εzy

εzz
k̃ y Z 0

(
k̃

2
y

εzz
− 1

)
1

Z 0

(
−k̃ xk̃ y − εyx −

εyzεzx

εzz

)
εyzk̃ x

εzz

1
Z 0

(
−k̃

2
x − εyy −

εyzεzy

εzz

)
−
εyzk̃ y

εzz


.

(3.4)
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In general there are four solutions to (3.3), two forward (+z) and two backward (−z),
which can be propagating or evanescent. In order to classify them, Poynting’s vector
is used. In particular Pz ≡ Re{Sz} is calculated, where S is the Poynting vector. If
Pz> 0 or Pz< 0 the solution is a forward or backward wave respectively, and if Pz= 0
the wave should be evanescent. Since e−ikzz is the z-dependence and kz ≡ kzr + ikzi, it
holds that kzi< 0 or kzi> 0 for forward or backward evanescent wave respectively. The
general solution of (3.3) is written as:

v = [v1+ v2+ v1− v2−]

A1+e−ik1+z

A2+e−ik2+z

A1−e−ik1−z

A2−e−ik2−z

 e−ikt ·rt , (3.5)

where v1+, v2+, v1−, v2− are the eigenpolarizations (eigenvectors of (3.3)) that
correspond to the two forward and backward waves with kz1+, kz2+, kz1−, kz2− the
corresponding eigenvalues, with A1+, A2+, A1−, A1− the corresponding amplitudes,
with e−kt ·rt the transverse field dependence. The other two field components, Hz, Ez
are specified directly from (3.1) and (3.2) by use of (3.5) as:

Hzi± =
1
Z0
[k̃xEyi± − k̃yExi±], (3.6)

Ezi± =
Z0

εzz
[k̃yHxi± − k̃xHyi±] −

εzxExi±

εzz
−
εzyEyi±

εzz
, (3.7)

where i= 1, 2, and Z0 the free space impedance.

4. Numerical results
It is emphasized that the purpose of the following numerical results is twofold. On

the one hand, it is to highlight the capabilities of the developed FDFD solver, ScaRF,
and on the other hand, to show the rigorous analysis of RF scattering by plasma blobs,
which is an important problem, with various applications. Usage of the ScaRF solver,
for the analysis of additional plasma–blob systems is left for future work.

By use of ScaRF, the electric and magnetic field vectors e, h, where h = iZ−1
0 h̃,

are calculated at every node of the computational domain, and consequently the time-
averaged Poynting vector, S is calculated as:

S= 1
2 Re{e× h∗}. (4.1)

In the following figures the Poynting vector components are presented in the code’s
coordinate system x, y, z. Transformation of the results to the plasma coordinate
system xp, yp, zp is straightforward by use of (2.7). The y component of the Poynting
vector is not shown since it is significantly smaller than the x, z, components. Figure 5
is the main simulation, and subsequent simulations are cases where a single design
parameter is varied.

In figure 5, the normalized Poynting vector (normalized to the incident plane wave
Poynting vector), is shown for a common blob configuration, where it is assumed that
an O-mode or an X-mode plane wave is incident on the interface, as seen in figure 3,
at angle θ = 30◦ and at frequency of 170 GHz. The periodic interface region has a
period Λ = 10λ1 and amplitude d = λ1, where λ1 is the wavelength of the incident
wave. The interface region contrast is weak, where the electron density of background
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(a) (b)

(c) (d)

(e) (f)

FIGURE 5. Main simulation where an O-mode or an X-mode plane wave is incident on
the interface (figure 3) at angle θ = 30◦, at frequency of 170 GHz, Λ= 10λ1, d=λ1. (a,b)
Components of the normalized Poynting vector, O-mode. (c,d) X-mode. (e, f ) Normalized
Poynting amplitude and Poynting vector flow, for the O and X mode respectively.
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and blob is set to nbg.=3×1020 m−3, nbl.=3.2×1020 m−3, respectively. The magnetic
field is at a 6◦ inclination, with toroidal component, of 4.5 T and poloidal component
of 0.4730 T.

It is observed in figure 5(e, f ) that the density of the energy flow lines of the
normalized Poynting vector increases in regions of high value of the Poynting vector
amplitude. In addition these flow lines are spatially varying due to the spatial variation
of the periodic interface. In regions where the Poynting amplitude is very small, close
to numerical noise level, the pattern of the flow lines changes irregularly (X mode).

Next the normalized Poynting vector is shown when a single design variable
(the amplitude, period or interface region contrast) is varied relatively to the ScaRF
simulation of figure 5. In particular in figure 6 the amplitude of the modulation is
decreased to 0.2 wavelength of the incident wave and a different spatial pattern of
the Poynting vector is observed compared to figure 5. It is observed that, relative
to the main simulation of figure 5, the power flow lines are almost straight due
to the flatter periodic interface, that leads to weaker diffraction effects. In figure 7
the period of the modulation is increased to 20 wavelengths of the incident wave,
compared to the modulation period of figure 5. This change in period results in a
quite different spatial distribution of the Poynting vector compared to figure 5. In
particular increasing the period results in weaker diffraction effects in the sense that
there are fewer significant diffracted orders. This can also be seen from the power
flow in figure 7(e, f ), where the flow lines are smoother compared to figure 5.

With respect to the main simulation (figure 5), in figure 8 the electron density of
the blob is increased from nbl. = 3.2 × 1020 m−3 to nbl. = 3.6 × 1020 m−3 for the O
mode, and from nbl. = 5.5× 1020 m−3 to nbl. = 6.3× 1020 m−3 for the X mode. This
increased interface region contrast leads to strong reflections of the incoming wave and
consequently, as can be seen in figure 8, the Poynting vector amplitude in the blob
region is very small since for the chosen blob and electron densities, at 170 GHz, the
blob system is in the frequency cutoff. This is also quantitatively shown by calculation
of the reflection, r, and transmission, t, coefficients. These are the square root of the
spatial integral in the y-direction of the Sx vector for the scattered fields divided by
the power of the incident wave in the x direction. The values of r, t, are r = 1.005,
t= 0.013 and r= 0.98, t= 1.11× 10−6 for the O and X mode respectively. In addition,
in figure 8(e, f ) the power flow lines are very irregular in the reflection region due
to interference of the incident plane wave and the strong reflected power from the
interface. This is also supported from the fact that the maximum Poynting amplitude
value is higher than any other of the cases considered. The power flow lines are also
irregular in the transmission regions, since the Poynting amplitude is very small, close
to the numerical noise level.

Finally in figure 9 the interface region is generated as a superposition of 4
spatial modes (multimode) with periods of 2.5, 5, 10, 20 wavelengths of the
incoming wave, and with randomly selected heights, 0.8147, 0.9058, 0.1270, 0.9134
respectively. The blob and background electron densities are the same as in figure 5
(nbl. = 3.2× 1020 m−3, nbg. = 3.0× 1020 m−3). In principle, a periodic plasma grating
of any shape can be represented by a superposition of spatial modes (Fourier
decomposition). This interface, defined by an appropriate number of modes and
weights, could represent a possible realization of an experimentally observed interface
region geometry. Similar experimental scenarios have been observed in Ritz et al.
(1984) where, in the Results and Discussion section, it is stated that: ‘Dissipative
drift waves and rippling modes, driven by density and temperature gradients, are
strong candidates to describe the density and potential fluctuations. . .’. Again the
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6. Same parameters as the main simulation of figure 5, except the periodic
interface amplitude, which is 20 % of the incident wavelength. (a,b) Components of the
normalized Poynting vector, O-mode. (c,d) X-mode. (e, f ) Normalized Poynting amplitude
and Poynting vector flow, for the O and X mode respectively.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7. Same parameters as the main simulation of figure 5, except the periodic
interface period, which is 20 times the incident wavelength. (a,b) Components of the
normalized Poynting vector, O-mode. (c,d) X-mode. (e, f ) Normalized Poynting amplitude
and Poynting vector flow, for the O and X mode respectively.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 8. Same parameters as the main simulation of figure 5, except that the electron
density of the blob region is stronger: nbl.=3.6×1020 m−3, nbl.=5.5×1020 m−3 for the O
and X mode, respectively. (a,b) Components of the normalized Poynting vector, O-mode.
(c,d) X-mode. (e, f ) Normalized Poynting amplitude and Poynting vector flow, for the O
and X mode respectively.

https://doi.org/10.1017/S0022377819000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000308


RF waves in the plasma edge 17

(a) (b)

(c) (d)

(e) (f)

FIGURE 9. Same parameters as the main simulation of figure 5, except the background
blob region is a multimode interface. (a,b) Components of the normalized Poynting vector,
O-mode. (c,d) X-mode. (e, f ) Normalized Poynting amplitude and Poynting vector flow, for
the O and X mode respectively.
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components of spatially varying normalized Poynting vector are shown for O and
X modes of the incident wave in figure 9(a)–(d). In figure 9(e, f ) at the reflection
region, the power flow lines are almost straight lines, since it appears that there is
weak reflection due to the weak density contrast and mainly the incident plane wave
is present. In the transmission region the power flow lines are irregular due to the
complex diffraction effects from the multimode interface.

5. Conclusions

In this work the FDFD code ScaRF is developed for the analysis of RF wave
propagation through a turbulent edge plasma region where dissipative drift waves and
rippling modes characterize density fluctuations (see Ritz et al. 1984). The interfaces
between the region of incidence of the RF wave and the turbulent (blob) region
are approximated as sinusoidal interfaces or more generally, as arbitrary periodic
interfaces. The two regions are anisotropic and the respective permittivities are
specified by the cold plasma permittivity tensor (see Stix 1992). For the turbulent
region a homogenized permittivity tensor is utilized. The FDFD method in ScaRF is
formulated for anisotropic media, using Floquet–Bloch–periodic boundary conditions
to describe the periodic interface, in conjunction with PMLs to remove irrelevant
reflections, and the TFSF interface for the plane wave excitation, which is defined
in the background medium and satisfies the anisotropic media dispersion relation.
A number of simulations are shown, where the Poynting vector is calculated for
O and X mode excitations, and for variations of the period and the amplitude of
the modulation, and also of the interface region contrast. Finally, by calculating
the Poynting vector of a general periodic interface region, defined as an arbitrary
superposition of 4 sinusoidal (with frequency ωn = nω0, n= 1, . . . , 4) interfaces, the
potential of the method to analyse arbitrary configurations is emphasized. It is noted
that there are no limitations in the ScaRF code as to what sort of density fluctuations
is prescribed. It can be used for more general representations of the edge fluctuations,
periodic or non-periodic. In this work the ScaRF code is applied to a problem which
has not been addressed before – namely periodic interfaces.

In the near future, Scarf will be used for more general representations of the
plasma edge fluctuations, and in conjunction with the polynomial chaos expansion
(PCE) method (see Papadopoulos et al. 2018), will rigorously analyse the turbulent
region–incidence region scattering for random variation of the material and geometric
parameters, for periodic or non-periodic structures, and calculate the statistical
moments of the Poynting vector.
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