
JFP 25, e7, 9 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000167

1

PhD Abstracts

G R A H A M H U T T O N

University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service

to the community, the Journal of Functional Programming publishes the abstracts

from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any

paywall. They do not require any transfer of copyright, merely a license from the

author. A dissertation is eligible for inclusion if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 8 abstracts for 2014/15 and hope that JFP readers

will find many interesting dissertations in this collection that they may not otherwise

have seen. If a student or advisor would like to submit a dissertation abstract for

publication in this series, please contact the series editor for further details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000167


2 G. Hutton

Terrier: An Embedded Operating System Using Advanced Types for
Safety

M A T T H E W D A N I S H

Boston University, USA

Date: May 2015; Advisor: Hongwei Xi
URL: http://cs-people.bu.edu/md/dissertation/md.pdf

Operating systems software is fundamental to modern computer systems: all other

applications are dependent upon the correct and timely provision of basic system

services. At the same time, advances in programming languages and type theory

have lead to the creation of functional programming languages with type systems

that are designed to combine theorem proving with practical systems programming.

The Terrier operating system project focuses on low-level systems programming in

the context of a multi-core, real-time, embedded system, while taking advantage of a

dependently typed programming language named ATS to improve reliability. Terrier

is a new point in the design space for an operating system, one that leans heavily on

an associated programming language, ATS, to provide safety that has traditionally

been in the scope of hardware protection and kernel privilege. Terrier tries to have

far fewer abstractions between program and hardware. The purpose of Terrier is

to put programs as much in contact with the real hardware, real memory, and real

timing constraints as possible, while still retaining the ability to multiplex programs

and provide for a reasonable level of safety through static analysis.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://cs-people.bu.edu/md/dissertation/md.pdf
https://doi.org/10.1017/S0956796815000167


PhD Abstracts 3

On Computational Small Steps and Big Steps:
Refocusing for Outermost Reduction

J A C O B J O H A N N S E N

Aarhus University, Denmark

Date: March 2015; Advisor: Olivier Danvy
URL: http://pure.au.dk/portal/files/86391423/Jacob_Johannsen_dissertation.pdf

We study the relationship between small-step semantics, big-step semantics and

abstract machines, for programming languages that employ an outermost reduction

strategy, i.e., languages where reductions near the root of the abstract syntax tree

are performed before reductions near the leaves. In particular, we investigate

how Biernacka and Danvy’s syntactic correspondence and Reynolds’s functional

correspondence can be applied to inter-derive semantic specifications for such

languages.

The main contribution of this dissertation is three-fold: First, we identify that

backward overlapping reduction rules in the small-step semantics cause the refo-

cusing step of the syntactic correspondence to be inapplicable. Second, we propose

two solutions to overcome this in-applicability: backtracking and rule generalization.

Third, we show how these solutions affect the other transformations of the two

correspondences.

Other contributions include the application of the syntactic and functional

correspondences to Boolean normalization. In particular, we show how to systemat-

ically derive a spectrum of normalization functions for negational and conjunctive

normalization.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://pure.au.dk/portal/files/86391423/Jacob_Johannsen_dissertation.pdf
https://doi.org/10.1017/S0956796815000167


4 G. Hutton

Automating Abstract Interpretation of Abstract Machines

J A M E S I A N J O H N S O N

Northeastern University, USA

Date: April 2015;
Advisor: David Van Horn

URL: http://arxiv.org/abs/1504.08033

Static program analysis is a valuable tool for any programming language that

people write programs in. The prevalence of scripting languages in the world

suggests programming language interpreters are relatively easy to write. Users of

these languages lament their inability to analyze their code, therefore programming

language analyzers (abstract interpreters) are not easy to write. This thesis more

deeply investigates a systematic method of creating abstract interpreters from

traditional interpreters, called Abstracting Abstract Machines.

Abstract interpreters are difficult to develop due to technical, theoretical, and

pragmatic problems. Technical problems include engineering data structures and

algorithms. I show that modest and simple changes to the mathematical presentation

of abstract machines result in 1000 times better running time - just seconds for

moderately sized programs.

In the theoretical realm, abstraction can make correctness difficult to ascertain.

Analysis techniques need a reason to trust them. Previous analysis techniques, if they

have a correctness proof, will have to bridge multiple formulations of a language’s

semantics to prove correct. I provide proof techniques for proving the correctness of

regular, pushdown, and stack-inspecting pushdown models of abstract computation

by leaving computational power to an external factor: allocation. Each model is

equivalent to the concrete (Turing-complete) semantics when the allocator creates

fresh addresses. Even if we don’t trust the proof, we can run models concretely

against test suites to better trust them. If the allocator reuses addresses from a

finite pool, then the structure of the semantics collapses to one of these three sound

automata models, without any foray into automata theory.

In the pragmatic realm, I show that the systematic process of abstracting abstract

machines is automatable. I develop a meta-language for expressing abstract machines

similar to other semantics engineering languages. The language’s special feature is

that it provides an interface to abstract allocation. The semantics guarantees that if

allocation is finite, then the semantics is a sound and computable approximation of

the concrete semantics. I demonstrate the language’s expressiveness by formalizing

the semantics of a Scheme-like language with temporal higher-order contracts, and

automatically deriving a computable abstract semantics for it.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://arxiv.org/abs/1504.08033
https://doi.org/10.1017/S0956796815000167


PhD Abstracts 5

Programming Contextual Computations

D O M I N I C O R C H A R D

University of Cambridge, UK

Date: May 2014; Advisor: Alan Mycroft
URL: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-854.html

Modern computer programs are executed in a variety of different contexts: on

servers, handheld devices, graphics cards, and across distributed environments, to

name a few. Understanding a program’s contextual requirements is therefore vital for

its correct execution. This dissertation studies contextual computations, ranging from

application-level notions of context to lower-level notions of context prevalent in

common programming tasks. It makes contributions in three areas: mathematically

structuring contextual computations, analysing contextual program properties, and

designing languages to facilitate contextual programming.

Firstly, existing work which mathematically structures contextual computations us-

ing comonads (in programming and semantics) is analysed and extended. Comonads

are shown to exhibit a shape preservation property which restricts their applicability

to a subset of contextual computations. Subsequently, novel generalisations of

comonads are developed, including the notion of an indexed comonad, relaxing

shape-preservation restrictions.

Secondly, a general class of static analyses called coeffect systems is introduced to

describe the propagation of contextual requirements throughout a program. Indexed

comonads, with some additional structure, are shown to provide a semantics for

languages whose contextual properties are captured by a coeffect analysis.

Finally, language constructs are presented to ease the programming of contextual

computations. The benefits of these language features, the mathematical structuring,

and coeffect systems are demonstrated by a language for container programming

which guarantees optimisations and safety invariants.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-854.html
https://doi.org/10.1017/S0956796815000167


6 G. Hutton

Random Structured Test Data Generation for Black-Box Testing

M I C H A �L H. P A �L K A

Chalmers University of Technology, Sweden

Date: December 2014; Advisor: Koen Claessen and John Hughes
URL: http://tinyurl.com/pw9vkru

We show how automated random testing can be used to effectively find bugs

in complex software, such as an optimising compiler. To test the GHC Haskell

compiler we created a generator of simple random programs, used GHC to compile

them with different optimisation levels, and then compared the results of running

them. Using this simple approach we found a number of optimisation bugs in

GHC. This approach for finding bugs proved to be very effective, but we found that

implementing a generator of random programs by hand required a large amount of

effort. Therefore, we developed an automatic method for deriving random generators

of complex test data based on computable boolean predicates that specify the

well-formed values of the data type. Defining such a predicate is usually much

quicker than implementing a dedicated generator, even if its performance might

be comparably lower. In addition, we discovered that the pseudorandom number

generator used by us for random testing is unreliable, and that no reliable contruction

exists that supports our particular requirements. Consequently, we designed and

implemented a high-quality pseudorandom number generator, which is based on a

known and reliable cryptographic construction, and whose correctness is supported

by a formal argument. Finally, we present how random testing can be used to rank

a group of programs according to their relative correctness with respect to their

observed behaviour. The ranking method removes the influence of the distribution

of the random data generator used for testing, which results in a reliable ranking.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://tinyurl.com/pw9vkru
https://doi.org/10.1017/S0956796815000167


PhD Abstracts 7

Profiling Optimised Haskell – Causal Analysis and Implementation

P E T E R M O R I T Z W O R T M A N N

University of Leeds, UK

Date: October 2014; Advisor: David Duke
URL: http://etheses.whiterose.ac.uk/8321/

At the present time, performance optimisation of real-life Haskell programs is

a bit of a “black art”. Programmers that can do so reliably are highly esteemed,

doubly so if they manage to do it without sacrificing the character of the language

by falling back to an “imperative style”. The reason is that while programming at

a high-level does not need to result in slow performance, it must rely on a delicate

mix of optimisations and transformations to work out just right. Predicting how all

these cogs will turn is hard enough - but where something goes wrong, the various

transformations will have mangled the program to the point where even finding the

crucial locations in the code can become a game of cat-and-mouse.

In this work we will lift the veil on the performance of heavily transformed Haskell

programs: Using a formal causality analysis we will track source code links from

square one, and maintain the connection all the way to the final costs generated by

the program. This will allow us to implement a profiling solution that can measure

performance at high accuracy while explaining in detail how we got to the point in

question. Furthermore, we will directly support the performance analysis process by

developing an interactive profiling user interface that allows rapid theory forming

and evaluation, as well as deep analysis where required.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://etheses.whiterose.ac.uk/8321/
https://doi.org/10.1017/S0956796815000167


8 G. Hutton

Combinatorial Species and Labelled Structures

B R E N T A. Y O R G E Y

University of Pennsylvania, USA

Date: December 2014;
Advisor: Stephanie Weirich

URL: http://tinyurl.com/o7d6xue

The theory of combinatorial species was developed in the 1980s as part of

the mathematical subfield of enumerative combinatorics, unifying and putting on

a firmer theoretical basis a collection of techniques centered around generating

functions. The theory of algebraic data types was developed, around the same time,

in functional programming languages such as Hope and Miranda, and is still

used today in languages such as Haskell, the ML family, and Scala. Despite their

disparate origins, the two theories have striking similarities. In particular, both

constitute algebraic frameworks in which to construct structures of interest. Though

the similarity has not gone unnoticed, a link between combinatorial species and

algebraic data types has never been systematically explored. This dissertation lays

the theoretical groundwork for a preciseand, hopefully, usefulbridge bewteen the

two theories. One of the key contributions is to port the theory of species from a

classical, untyped set theory to a constructive type theory. This porting process is

nontrivial, and involves fundamental issues related to equality and finiteness; the

recently developed homotopy type theory is put to good use formalizing these issues in

a satisfactory way. In conjunction with this port, species as general functor categories

are considered, systematically analyzing the categorical properties necessary to define

each standard species operation. Another key contribution is to clarify the role of

species as labelled shapes, not containing any data, and to use the theory of analytic

functors to model labelled data structures, which have both labelled shapes and data

associated to the labels. Finally, some novel species variants are considered, which

may prove to be of use in explicitly modelling the memory layout used to store

labelled data structures.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://tinyurl.com/o7d6xue
https://doi.org/10.1017/S0956796815000167


PhD Abstracts 9

Interactive Typed Tactic Programming in the Coq Proof Assistant

B E T A Z I L I A N I

Saarland University, Germany

Date: March 2015; Advisor: Derek Dreyer
URL: http://scidok.sulb.uni-saarland.de/volltexte/2015/6041/pdf/thesis.pdf

In order to allow for the verification of realistic problems, Coq provides a language

for tactic programming, therefore enabling general-purpose scripting of automation

routines. However, this language is untyped, and as a result, tactics are known

to be difficult to compose, debug, and maintain. In this thesis, I develop two

different approaches to typed tactic programming in the context of Coq: Lemma

Overloading and Mtac. The first one utilizes the existing mechanism of overloading,

already incorporated into Coq, to build typed tactics in a style that resembles that

of dependently typed logic programming. The second one, Mtac, is a lightweight

yet powerful extension to Coq that supports dependently typed functional tactic

programming, with additional imperative features.

I motivate the different characteristics of Lemma Overloading and Mtac through

a wide range of examples, mainly coming from program verification. I also show how

to combine these approaches in order to obtain the best of both worlds, resulting in

extensible, typed tactics that can be programmed interactively.

Both approaches rely heavily on the unification algorithm of Coq, which currently

suffers from two main drawbacks: it incorporates heuristics not appropriate for

tactic programming, and it is undocumented. In this dissertation, in addition to

the aforementioned approaches to tactic programming, I build and describe a new

unification algorithm better suited for tactic programming in Coq.

https://doi.org/10.1017/S0956796815000167 Published online by Cambridge University Press

http://scidok.sulb.uni-saarland.de/volltexte/2015/6041/pdf/thesis.pdf
https://doi.org/10.1017/S0956796815000167

