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Analytic continuation of overconvergent Hilbert

eigenforms in the totally split case

Shu Sasaki

Abstract

We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-
adic overconvergent eigenforms over Q to the case of p-adic overconvergent Hilbert
eigenforms over totally real fields F , under the assumption that p splits completely
in F . This includes weight-one forms and has applications to generalisations of Buzzard
and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s
well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to
the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.

1. Introduction

Let p > 5 be a prime and let O be the ring of integers of a finite extension of Qp with maximal
ideal λ. Let ρ :GQ→GL2(O) be a continuous two-dimensional representation of the absolute
Galois group GQ = Gal(Q/Q) of Q. Suppose that the following conditions are satisfied.

(i) ρ ramifes at only finitely many primes.

(ii) ρ is unramified at p and ρ(Frobp) has eigenvalues α and β in O which are distinct modulo λ.

(iii) ρ mod λ is absolutely irreducible and ‘modular’.

Buzzard and Taylor proved in [BT99] that such a ρ arises from a holomorphic eigenform of weight
one, in the sense of Deligne and Serre [DS74]. The arguments in [BT99] rely crucially on two key
ingredients. First, one needs a ‘companion forms theorem’ due to Gross, Coleman and Voloch
on congruences between ordinary forms of low weight; second, it is necessary to have results
concerning ‘analytic continuation of overconvergent eigenforms’, extending an overconvergent
eigenform to the non-ordinary locus of modular curves; this is crucial for ‘gluing’ weight-one
liftings (overconvergent eigenforms of weight one and slope zero) of mod-p companion forms on
their overlap.

Our motivation for this paper is to generalise the above result to the Hilbert case and follow
Taylor’s strategy (outlined in [Tay97]) to prove ‘insoluble’ cases of the strong Artin conjecture
for totally odd, continuous representations GF →GL2(C) of the absolute Galois group of totally
real fields F . Since the Jacquet–Langlands correspondence does not transfer weight-one forms for
GL2 over F to forms on Shimura curves over F of the type considered by Carayol [Car86], one has
to work directly with Hilbert modular varieties and develop a theory of p-adic (overconvergent)
modular forms on Hilbert modular varieties.
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The companion-forms theorems of Gross, Coleman and Voloch have been generalised by
Gee in [Gee08] to the setting of Hilbert modular forms over totally real fields F , under the
assumption that p splits completely. However, proving a p-adic analytic continuation theorem for
overconvergent Hilbert eigenforms, for example for weight-one specialisations of Hida families in
the Hilbert case, has remained an open problem. We solve this problem in the present paper.
In forthcoming work [Sas], the author will establish a modular lifting theorem for weight-one
Hilbert modular forms that is analogous to the main theorem of Buzzard [Buz03]; this will help to
prove many new cases of the strong Artin conjecture for totally odd, continuous representations
GF →GL2(C), under the local condition that some particular p splits completely in F .

The technique used to prove that certain overconvergent p-adic Hilbert eigenforms of
level p are classical p-adic Hilbert eigenforms is analogous to that in [BT99, Buz03, Kas06].
In particular, Buzzard [Buz03] proved the optimal overconvergence results, and we shall follow
his method. What is new here is that we write down more formally a function which controls
the overconvergence on the generic fibre of the level-p HMV, and this generalises the ad hoc v′

used in [Buz03].
Given an overconvergent eigenform of weight k > 1 and level Γ1(N) ∩ Γ0(p), Kassaei [Kas06]

observed that even when its companion form is not assumed, one can explicitly write down
(and then glue) another (over)convergent modular form if the valuation of the eigenvalue of Up
is strictly less than k − 1. The key observation in [Kas06] is that, whilst an overconvergent
eigenform f such that f |Up = αf overconverges to ‘the far end’ of the supersingular annuli
in (XΓ1(N)∩Γ0(p))an but not any further, f − (1/αp)f |Frobp does extend (see [Gou88] for the
definition of Frobp) if we remove precisely that ‘factor’ which causes the problem. Based on
this observation, Kassaei wrote down an infinite sum of overconvergent modular forms and
endeavoured to glue it back onto f . In order to do this, a general ‘gluing lemma’ in p-adic
‘integral’ geometry was proved in [Kas06], and critical use was made of the overconvergence of
the Frobenius operator, i.e. the fact that application of Frobp makes supersingular elliptic curves
‘more supersingular’ (as opposed to Up, which makes them ‘less supersingular’). However, as
noted by Gouvea (see the remark preceding [Gou88, Corollary II.2.5]), the Frobenius operator
Frobp is not ‘integral’ (but up to a power of the Hasse invariant), and precisely because of this,
Kassaei needed to do a delicate calculation in [Kas06, Lemma 3.3] to ensure convergence of the
infinite sum.

We generalise Kassaei’s ideas to the setting of Hilbert modular forms and prove an analogue
in the Hilbert case of Coleman’s theorem [Col96] that an overconvergent p-adic Up-eigenform of
small slope is classical. More precisely, the result can be stated as follows.

Theorem. Let F be a totally real field with [F : Q] = g > 1, and let p be a prime which we
assume splits completely in F . Let f be an overconvergent Hilbert modular form of weight
(k1, . . . , kg) and level Γ1(N) ∩ Γ0(p) which is an eigenvector of Uvi (where vi|p) with non-zero
eigenvalue ai. Assume that vp(ai)< ki − 1 for all 1 6 i 6 g. Then f is a classical Hilbert modular
form.

A constraint that has been necessary so far is that the prime p, which we fix, has to split
completely in F . The author is currently trying to remove this assumption.

Following closely the original construction of Coleman and Mazur [CM98], Kisin and Lai
constructed in [KL05] an ‘eigenvariety’ (a term coined by Buzzard in [Buz07]) for overconvergent
Hilbert modular forms for GL2 over a totally real field F . They substituted the Eisenstein series
of weight p− 1, whose p-adic variation property allowed Coleman to p-adically vary in [CM98]
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the weights of classical modular forms over Q, for a classical Hilbert modular form lifting a full
Hasse invariant of sufficiently large parallel weight. Since only full Hasse invariants of parallel
weight lift to classical Hilbert modular forms in characteristic zero, their construction is one-
dimensional; one would expect the weight space of the eigenvariety for Hilbert modular forms
over F to be [F : Q]. Buzzard, however, constructed an eigenvariety over the [F : Q]-dimensional
weight space by defining overconvergent Hilbert modular forms on a totally definite quaternion
algebra D over F , i.e. on a zero-dimensional ‘Hida variety’.

The missing ingredient in Kisin and Lai’s construction [KL05] is that the locus of parallel-
weight classical Hilbert modular forms is Zariski dense. For the Coleman–Mazur eigencurve, this
follows from the main theorem of Coleman [Col96] (see [Che05], for example); our main theorem
proves this. As a corollary, one can use the argument of [Che05] and p-adically vary the classical
Jacquet–Langlands correspondence for GL2 over F and D over F , for example. It should also
be possible to apply our results to a conjecture of Fontaine and Mazur as given in the work of
Kisin [Kis03]. Results of this kind will be proved elsewhere (see, e.g., [Sas]).

2. Hilbert modular varieties

Let F be a totally real field with [F : Q] = g > 1, and denote by d its different. Let c be a fractional
ideal of F with a notion of positivity (‘ordered’ in [Tay01]), i.e. the choice for each embedding
τ : F ↪→ R of an element of Aut(c⊗τ :F ↪→R R)' R×. The choice corresponds to the orientation
of a one-dimensional vector space c⊗ R. The isomorphism classes of such an object correspond
precisely to the narrow ideal class group, the quotient of the group of fractional ideals in F by
the principal ideals generated by totally positive elements. For fractional ideals a and b, if ab−1

is generated by a totally positive element in F , then we write a∼ b.
By an HBAV over a scheme S we shall mean an abelian variety A over S equipped with real

multiplication OF ↪→ End(A). Note that its dual A∨ is naturally also an HBAV.
We shall denote by (A/S, ı, ) a triple consisting of:

(i) an HBAV A over S of relative dimension g;

(ii) a Γ1(N)-level structure on the HBAV over S, that is, an embedding ı : (OF /NOF )(1) =
d−1 ⊗Z µN ↪→A[N ];

(iii) an OF -linear homomorphism  : c→P(A), where P(A) is the rank-one projective OF -
module of OF -linear homomorphisms f :A→A∨ which are symmetric (i.e. f∨ = f) and
such that:

– the cone of totally positive elements c+ in c maps to the cone P(A)+ of polarisations in
P(A);

– the induced morphism of sheaves (on the large étale site of S) A⊗OF c→A⊗ P(A)→
A∨, a⊗ x 7→ a⊗ (x) 7→ (x)(a), is an isomorphism.

If N > 4, the functor that associates to a Z[1/N ]-scheme S the set of isomorphism classes of
triples (A, ı, ) is represented by a scheme over Z[1/N ] (see [DT04]), which we shall henceforth
denote by YΓ1(N ;c ),Z[1/N ].

By calculating its local model, Deligne and Pappas [DP94] showed that the fibre over a prime
dividing the discriminant ∆ is singular in a codimension-two closed subscheme, but, when ∆ is
invertible, Lie A is a locally freeOF ⊗Z OS-module of rank one and thus YΓ1(N ;c ),Z[1/N∆] coincides
with Rapoport’s smooth moduli space (see [DP94, Corollaire 2.9]).
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We choose a set of representatives {c1, . . . , ch+} for the narrow class group. We let

YΓ1(N),Z[1/N ] '
∐

c ∈{c 1,...,c h+}

YΓ1(N ;c ),Z[1/N ]

and let
AΓ1(N) =

∐
c ∈{c 1,...,c h+}

AΓ1(N ;c ),

with each AΓ1(N ;c ) being the universal HBAV over YΓ1(N ;c ),Z[1/N ], denote the ‘universal’ HBAV
over YΓ1(N),Z[1/N ]. The HBAV AΓ1(N) comes equipped with the sheaf of relative differentials
ΩAΓ1(N)/YΓ1(N),Z[1/N ]

and we shall denote by ωYΓ1(N),Z[1/N ]
, or simply ω if there is no confusion

anticipated, the pull-back of ΩAΓ1(N)/YΓ1(N),Z[1/N ]
by the identity section. Following Rapoport

and Deligne as attributed in [Rap78], we shall define in the next section a Hilbert modular
form of weight ~k ∈ Z{τ :F ↪→R}

>0 and level Γ⊂ SL2(F ) to be a section of a certain invertible sheaf

ω
~k over the Hilbert modular variety YΓ. Note that ‘congruence subgroups’ are subgroups of

SL2(F ) rather than GL2(F ) or its subgroup GL+
2 (F ) of matrices in GL2(F ) with totally positive

determinants, which one might expect from the classical theory of Hilbert modular forms. This is
due to polarisations: the complex HBAVs, which canonically come equipped with ‘polarisations
faible’ [Del71, 4.4], are parameterised by the quotient by GL+

2 (F ) of [F : Q] copies of the complex
upper half plane; since GL+

2 (F ) acts on polarisations by determinant, the moduli space for
complex HBAVs with a ‘polarisation homogène’ [Del71, 4.3] is parameterised by the quotient by
the subgroup

{M ∈GL+
2 (F ) | det M ∈Q}= SL2(F ).

3. Hilbert modular forms

Let K ⊂ R be the Galois closure of F over Q containing all the conjugates of F , and let
OK be its ring of integers. For brevity, we write ω for ωYΓ1(N),Z[1/N ]×OK [1/(N∆)]. Since the
discriminant ∆ is invertible, this is a locally free (OF ⊗Z OYΓ1(N),Z[1/N ]×OK [1/(N∆)])-module of rank

one. We think of ZHom(F,Q) as the (algebraic) character group HomQ(ResF/QGL1 ×Q,GL1 ×Q)
by identifying ~k = (k1, . . . , kg) =

∑
τ∈Hom(F,Q) kττ with the character that sends x ∈ F× to∏

τ∈Hom(F,Q)(τ(x))kτ in Q×. The character corresponding to ~k gives rise to an invertible sheaf

ω
~k on YΓ1(N),Z[1/N ] ×OK [1/(N∆)], which we define to be

⊗
τ∈Hom(F,Q)(ωτ )⊗kτ , where by ωτ we

mean the invertible sheaf of the OYΓ1(N),Z[1/N ]×OK [1/(N∆)]-module obtained by tensoring ω with
OYΓ1(N),Z[1/N ]×OK [1/(N∆)] as follows:

OF ⊗Z OYΓ1(N),Z[1/N ]×OK [1/(N∆)] 'O
Hom(F,Q)
YΓ1(N),Z[1/N ]×OK [1/(N∆)]

τ−−→OYΓ1(N),Z[1/N ]×OK [1/(N∆)].

Definition. For an OK [1/(∆N)]-algebra R, an element of

H0(YΓ1(N),Z[1/N ] ×OK [1/(N∆)] R, (ω ×OK [1/(∆N)] R)~k)

is called a Hilbert modular form defined over R of weight ~k and level Γ1(N).

Fix a prime p not dividing N , and assume that it splits completely in F . Let v1, . . . , vg denote
the prime ideals in F above p, which we may think of as the (finite) places defining F ↪→Qp. Fix
an embedding ı : Q ↪→Qp once and for all.
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Let K0 be the compositum of the images of F by all the field embeddings F ↪→Q ı
↪→Qp.

Since p splits completely in F , it is Qp. The composition with ı naturally defines a surjective
map

Hom(F,Q) = {τ}→Hom(F,Qp) = {v|p},
which is bijective since p splits completely in F . We assume that τi : F ↪→K ↪→ R corresponds
to vi|p for every 1 6 i 6 g.

For ~k ∈ ZHom(F,Q), define ı~k ∈ ZHom(F,Qp) by (ı~k)v = kı−1(v), which corresponds to the
character sending

x ∈ (F ⊗Qp)× = ResF/QGL1(Qp) to
∏
v|p

x(ı~k)v
v .

4. Hilbert modular varieties with Iwahori level structure

Let YΓ1(N ;c )∩Γ0(p),Z[1/N ] be the scheme over Z[1/N ] in [Pap95], which represents the functor that
sends a Z[1/N ]-scheme S to OF -linear isogenies α : (A, ı, )→ (A′, ı′, ′) of degree pg such that:

(i) (A, ı, ) ∈ YΓ1(N ;c ),Z[1/N ](S) and (A′, ı′, ′) ∈ YΓ1(N ;c ),Z[1/N ](S);
(ii) the kernel of α :A→A′ is annihilated by p;

(iii) for every x ∈ c, we have α∨ ◦ ′(x) ◦ α= p(x);
(iv) the level structures are compatible: to be precise, ı′ = α ◦ ı.

Remark . It does not seem possible to work with the ‘Γ0(p)-level structure’ as in [KM85, (3.4)].
The proof in [KM85] of its representability certainly does not work in the higher-dimensional
case, so we work instead with a ‘moduli space of isogenies’ as in [KM85, (6.5)].

Lemma 1. Let v1, . . . , vg be the prime ideals in OF lying above p. Giving a OF -linear degree-pg

isogeny α : (A, ı, )→ (A′, ı′, ′) over S as above is equivalent to giving (A, ı, , C) where C is
an OF -stable finite flat subgroup scheme of A[p] over S of order pg, which by the action of OF
decomposes as C =

∏
16i6g Ci with each Ci being a finite flat subgroup of A[vi] of order equal

to the cardinality of OF /vi.

Proof. This follows from [Pap95]. 2

For each prime vi above p, we choose a uniformiser $i of the integers of the completion of Fvi .
For 1 6 i 6 g and 1 6 j 6 h+, we have $icj ∼ cj′ for some j′ ∈ [1, h+] depending on $i and j, and
we shall fix such a j′. With these choices made, we let

YΓ1(N)∩Γ0(p),Z[1/N ] '
∐

c ∈{c 1,...,c h+}

YΓ1(N ;c )∩Γ0(p),Z[1/N ].

Except when necessary, from now on we shall no longer mention c-polarisations.
There are canonically defined (representable) morphisms of schemes

π1 : YΓ1(N)∩Γ0(p),Z[1/N ]→ YΓ1(N),Z[1/N ]

taking (A, C, ı) to (A, ı) and, for each

1 6 i 6 g, π2,i : YΓ1(N)∩Γ0(p),Z[1/N ]→ YΓ1(N),Z[1/N ]

taking (A, C, ı) to (A/Ci, ı mod Ci). Here, by (ı mod Ci) we mean the composition of ı with the
isogeny A→A/Ci.
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For every 1 6 i 6 g, we have an automorphism wi of YΓ1(N)∩Γ0(p) × Zp which takes (A, C =∏
16j6g Cj , ı) to (A/Ci, C ′,mod Ci), where C ′ is the OF -stable subgroup of (A/Ci)[p] of order

pg defined by C ′j = (Cj + Ci)/Ci for all j 6= i and C ′i =A[vi]/Ci. Note that (Ci + Ci)/Ci is none
other than the schematic closure in A[p]/Ci of the image of Cj under the map A[p]→A[p]/Cj .
It is now clear that π2,i = π1 ◦ wi.

For each prime v above p, we let YΓ1(N)∩Γ0(p)∩Γ0(v),Z[1/(Np)] denote the Hilbert modular variety
parameterising A, C, ı and  as above, equipped with a finite flat subgroup D ⊂A[v] of order p
which, locally f.p.p.f, admits a OF /v-generator in the sense of [KM85] and has trivial intersection
with C. One can show that this is relatively representable to YΓ1(N)∩Γ0(p),Z[1/N ] × Z[1/(Np)], as
in [KM85, proof of Theorem 3.7.1], and therefore defines a scheme in characteristic prime to Np.
There is a natural map

π1 : YΓ1(N)∩Γ0(p)∩Γ0(v)Z[1/(Np)]→ YΓ1(N)∩Γ0(p) × Z[1/(Np)]

which forgets D, and also a natural map

π2,v : YΓ1(N)∩Γ0(p)∩Γ0(v),Z[1/(Np)]→ YΓ1(N)∩Γ0(p) × Z[1/(Np)]

which quotients out by D. With these maps, we define a Hecke operator Uv on
YΓ1(N)∩Γ0(p),Z[1/N ] × Z[1/(Np)] as in [KL05, (1.11)] or [Dim05, 2.4].

For (~k, ~w) ∈ ZHom(F,Q) × ZHom(F,Q) such that kτ + 2wτ is independent of τ and w
def= kτ +

2wτ > 0, we define an invertible sheaf of the (OF ⊗Z OYΓ1(N)∩Γ0(p)×OK [1/N ])-module ω(~k,~w) to be

ΩAΓ1(N)∩Γ0(p)/YΓ1(N)∩Γ0(p)×OK [1/N ]

⊗
(⊗

τ

2∧
(R1π∗Ω•AΓ1(N)∩Γ0(p)/YΓ1(N)∩Γ0(p)×OK [1/N ])

⊗wτ
τ ⊗ ω~kτ−2

τ

)
,

where π denotes

AΓ1(N)∩Γ0(p)→ YΓ1(N)∩Γ0(p) ×OK [1/N ]

and a subscript τ means tensoring with OYΓ1(N)∩Γ0(p)×OK [1/N ] by

OF ⊗Z OYΓ1(N)∩Γ0(p)×OK [1/N ]
τ−−→OYΓ1(N)∩Γ0(p)×OK [1/N ].

Note that what Hida denotes by w (respectively, n+ 2v) in [Hid88] is our −~w (respectively,
−w). Following [KL05, (1.11)], we use the degeneracy maps π1 and π2,v above to define a Hecke
operator Uv on

H0(YΓ1(N)∩Γ0(p),Z[1/N ] ×OK [1/(Np)], ω(~k,~w))

which is compatible, via the projection map that ‘averages the action of the totally positive
units’ as in [KL05, (1.11.8)], with the classical Uv operator on the Hilbert modular forms on
ResF/QGL2. Upon changing base from OK [1/(Np)] to K and choosing a (canonical) trivialisation
of R1π∗Ω•AΓ1(N)∩Γ0(p)/YΓ1(N)∩Γ0(p)

, we have an isomorphism

H0(YΓ1(N)∩Γ0(p),Z[1/N ] ×K, ω(~k,~w))'H0(YΓ1(N)∩Γ0(p),Z[1/N ] ×K, ω
~k),

and we define Uv on H0(YΓ1(N)∩Γ0(p),Z[1/N ] ×K, ω
~k) by composing the operator with this

isomorphism.
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5. Generic fibres

As in [DR80, RT83], an (unramified) Γ1(N)-cusp C of YΓ1(N ;c ) over a ring R consists of the
following data, up to isomorphisms:

(i) projective rank-one OF -modules a and b such that b−1a' c;
(ii) an OF -linear isomorphism N−1OF /OF 'N−1a−1/a−1;

(iii) an (OF ⊗R)-linear isomorphism a−1 ⊗R'OF ⊗R.

Fix an (unramified) Γ1(N)-cusp C. Let UN ⊂O×F denote the group of units in OF which are

congruent to 1 mod N . Let X = ab, let X∗ denote its dual HomOF (X, d−1)
trF/Q

= HomZ(M, Z),
and let X∗,+ denote the subset of X∗ consisting of totally positive elements. One can choose a
‘Γ1(N)-admissible’ smooth polyhedral cone decomposition {σ} of X∗,+ ⊗Z R ∪ {0}, depending
on C, such that {σ} is invariant under the action of U2

N and {σ}/U2
N is finite.

Let XN
def= N−1X. Then let S0

N = Spec Z[XN ] ↪→ SN ({σ}) be the torus embedding of a split
torus over Z corresponding to {σ} (see [CF90, ch. IV, Theorem 2.5]), and take ̂SN ({σ}) to
be the formal completion of SN ({σ}) along SN ({σ})\S0

N . Note that ̂SN ({σ}) has a covering

by open formal subschemes of the form ŜN (σ) def= Spf Rσ, where Rσ is the completion of
Z[qξ]ξ∈XN∩σ̌. Here, by σ̌ we mean the dual cone of a cone σ along the ideal

⋂
ξ∈XN∩σ̌(qξ).

We set R0
σ =Rσ[1/qξ]ξ∈σ̌∩XN .

By the ‘Mumford construction’, there exists a semi-abelian scheme with the action of OF over
SpecRσ extending an HBAV over R0

σ. The main theorem of [Rap78] for the full level-N structure
(and of [Dim04] for the level-Γ1(N) structure, following [Rap78]) says that one can construct an
algebraic space by ‘gluing’ a disjoint union of finitely many ‘good algebraic models’ (see [CF90,
ch. IV, Definition 4.5])

∐
C

∐
σ SpecRσ over Z[1/N, ζN ] to YΓ1(N ;c ),Z[1/N ] × Z[1/N, ζN ] and get

a proper scheme XΓ1(N ;c ),Z[1/N,ζN ] over Z[1/N, ζN ] (here ζN means the group scheme of Nth
roots of unity). In the Hilbert case, the Q-rank is zero; in other words, we deal only with ‘totally
degenerate cusps’, and the subtle analysis from [CF90, pp. 104–106 in ch. IV, § 3] is not necessary.
In particular, this scheme is smooth over the base. Also, from [KL05, (1.6.5)] we know that it
descends to XΓ1(N ;c ),Z[1/N ] over Z[1/N ]. We remark that since the torus embeddings are fibrewise
open dense by definition, YΓ1(N ;c ),Z[1/N ] is fibrewise open dense in XΓ1(N ;c ),Z[1/N ].

Let XΓ1(N) ×R denote a smooth toroidal compactification
∐

c∈{c 1,...,c h+} XΓ1(N ;c ) ×Z[1/N ] R

of YΓ1(N),Z[1/N ] ×R for any Z[1/N ]-algebra R as defined in [Rap78] or, in a more precise way,
in [Dim04]. It depends on our choice of polyhedral cone decompositions, but we omit this
dependence from the notation.

Let XΓ1(N ;c )∩Γ0(p),Z[1/N ] be a ‘partial’ toroidal compactification of YΓ1(N ;c )∩Γ0(p) × Z[1/N ]
as in [Cha90, 4.5.2]. The partial compactification XΓ1(N ;c )∩Γ0(p),Z[1/N,ζN ] is obtained from
YΓ1(N ;c )∩Γ0(p),Z[1/N,ζN ] by compactifying at the (isomorphism classes of) unramified Γ1(N) cusps
of YΓ1(N),Z[1/N,ζN ], and it descends to a proper scheme over Z[1/N ] as argued in [KL05, 1.6.5]. We
remark that [KL05] uses the partial compactification of level-Γ1(Npr) Hilbert modular varieties
to construct an eigenvariety for Hilbert modular forms. We then let XΓ1(N)∩Γ0(p) ×R denote the
toroidal partial compactification

∐
c ∈{c 1,...,c h+} XΓ1(N ;c )∩Γ0(p) ×Z[1/N ] R of YΓ1(N)∩Γ0(p),Z[1/N ] ×

R, for any Z[1/N ]-algebra R.
The morphisms π1 , π2,i (1 6 i 6 g) and wi (1 6 i 6 g) as well as the Hecke operators Uvi

(1 6 i 6 g) on YΓ1(N)∩Γ0(p),Z[1/(Np)] ×R naturally extend to the cusps. We think of these as
correspondences and take, for example, their schematic closures.
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For Γ being Γ1(N) or Γ1(N) ∩ Γ0(p), let ( ̂YΓ × Zp)rig (respectively, (X̂Γ × Zp)rig) be the
generic fibre, in the sense of Raynaud [Ber], of the formal completion ̂YΓ × Zp (respectively,
X̂Γ × Zp) of YΓ × Zp (respectively, XΓ × Zp) along its special fibre; moreover, let (YΓ ×Qp)an

(respectively, (XΓ ×Qp)an) be the rigid space, in the sense of [BGR84], associated to the generic
fibre YΓ ×Qp (respectively, XΓ ×Qp). One may think of (YΓ ×Qp)an as an admissible open
subset of (X̂Γ × Zp)rig containing ( ̂YΓ × Zp)rig via the canonical isomorphism

( ̂XΓ1(N) × Zp)rig ' (XΓ1(N) ×Qp)an←↩ (YΓ1(N) ×Qp)an;

see [Ber, Proposition 0.3.5].
For simplicity, we shall use the same notation π1 to represent (π1)an. Similarly, we write

(π2,i)an as π2,i and (wi)an as wi.

Definition. Taking Γ to be Γ1(N) or Γ1(N) ∩ Γ0(p), the sheaf ω on YΓ ×Qp is a locally free
(OF ⊗Z OYΓ×Qp)-module of rank one and, for ~k ∈ ZHom(F,R), we define ω~k to be the invertible

sheaf corresponding to ı~k, i.e.
⊗

v|p ω
⊗(ı~k)v
v , where by ωv we mean the invertible sheaf of the

OYΓ×Qp-module obtained by tensoring ω with OYΓ×Qp via

OF ⊗Z OYΓ×Qp 'O
Hom(F,Qp)
YΓ×Qp

v−−→OYΓ×Qp .

Because of Koecher’s principle, we may call an element of H0((YΓ ×Qp)an, ω
~k) a classical (p-adic)

Hilbert modular form of weight ~k and level Γ.

6. Overconvergent Hilbert modular forms of level Γ1(N)

We shall write down a function v on (XΓ1(N) ×Qp)an and define overconvergence in terms of v.
Let x ∈ (XΓ1(N) ×Qp)an be a point. If it is not a cusp, then it corresponds to a closed point of
YΓ1(N) ×Qp, and there is a finite extension L of Qp such that x corresponds to (A, ı, ) over L.
Consider a model over the ring of integers R of L, equipped with a norm which we normalise
so that |p|= 1/p. Suppose that it has good reduction. Then the Serre–Tate theorem gives that
its formal completion Â along the identity section on the closed fibre is smooth over R and is
equivalent to the connected component of the associated p-divisible group; in particular, it comes
with the action of OF . The underlying ring is a formal group in g parameters and decomposes
as the product of g one-parameter formal groups R[[Yi]], 1 6 i 6 g. If we take Xi =

∑
ζ∈µ[ζ]Yi/ζ,

where µ is the group of (p− 1)th roots of unity and [·] denotes the action of OFv ' Zp, then
[ζ]Xi = ζXi and we have isomorphisms R[[Xi]]'R[[Yi]] for all i. We then define v(x) to be the
g-tuple (vi(x))16i6g where each vi(x) is the minimum of 1 and the (normalised) p-adic variation
of the coefficient of Xp

i in [p]Xi. Note that although the coefficient itself depends on a choice of
parameters, its p-adic valuation does not when less than one and depending only on the HBAV.

If x does not have good reduction, define vi(x) to be zero for all 1 6 i 6 g.
This definition works in families. Let A be the universal HBAV over YΓ1(N) × Zp, and let

Â→ ŶΓ1(N) be the induced map of formal completions along special fibres. Since XΓ1(N) × Fp

is of finite type, one may choose a finite affine covering for it, {U = SpecR}. For each U , we
let Û be an open formal affine subscheme of ̂XΓ1(N) × Zp satisfying U = Û ∩ (XΓ1(N) × Fp). It

is then clear that {Û = Spf R} is a finite formal affine covering of ̂XΓ1(N) × Zp, and if we write
sp−1(Û) = Sp(R⊗Z Qp) simply as U rig, it follows from [Ber, Proposition 1.1.14] that {U rig} is
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an admissible covering of (XΓ1(N) ×Qp)an. In fact, ]U [= (XΓ1(N) ×Qp)an ∩ U rig upon identifying

(XΓ1(N) ×Qp)an with the Raynuad generic fibre of the formal completion ̂XΓ1(N) × Zp along its
special fibre (see [Ber, Proposition 0.3.5]).

Let Û ′ = Û × ̂XΓ1(N)×Zp
̂YΓ1(N) × Zp. By shrinking Û if necessary, we can assume that {Û ′ =

Spf R′} is an affine formal covering of ̂YΓ1(N) × Zp and that {U ′rig = sp−1(Û ′)} is an admissible

covering of the Raynaud generic fibre ( ̂YΓ1(N) × Zp)rig (see [Ber, Proposition 0.2.3(iii)]). By
shrinking the covering if necessary, we may assume that Lie(Â) is trivialised on each Û ′. Then
the formal group associated to Â/ ̂YΓ1(N) × Zp, when restricted to Û ′, gives a formal group in g
variables with coefficients in R′. Considering the action of OF , it is isomorphic to the product
of g one-parameter formal groups R′[[Xi]], where Xi is normalised as above. The coefficient in
R′ of Xp

i in [p]Xi = pXi + · · · can be thought of as a function on Û ′; we call it hi ∈ OÛ ′(Û
′).

One may think of this as a lift of the partial Hasse invariant. It follows from Koecher’s principle
that hi extends to the cusps and gives an element of O

Û
(Û), which we shall again denote by hi.

A point x ∈ (YΓ1(N) ×Qp)an corresponds to a map

x : Sp L→ (YΓ1(N) ×Qp)an ↪→ ( ̂XΓ1(N) × Zp)rig

for a finite extension L over Qp, and factors through U rig ↪→ ( ̂XΓ1(N) × Zp)rig for some U rig

in the covering. We then alternatively define v(x) to be the g-tuple (vi(x))16i6g with vi(x) =
min{1, vp(x∗hrig

i )} where hrig
i is the rigid analytic function on U rig defined as the image of

hi ∈ OÛ (Û) under the map

Γ(Û ,O ̂XΓ1(N)×Zp
⊗Zp Qp)→ Γ(U rig, (XΓ1(N) ×Qp)an);

see [Ber, (0.2.3.4)]. One can check that this does not depend on the choice of covering {Û}.
For a vector ([0, ri])16i6g of g intervals where ri ∈ pQ and ri ∈ [0, 1) for all i, we define for

each U rig a rational subdomain U rig([0, r1], [0, r2], . . . , [0, rg]) in the aforementioned covering of
(XΓ1(N) ×Qp)an to be the set of x ∈ U rig such that v(hrig

i (x)) ∈ [0, ri] for every 1 6 i 6 g. We
then define XΓ1(N)([0, r1], [0, r2], . . . , [0, rg]) by gluing U rig([0, r1], . . . , [0, rg]). By construction,
this is clearly an admissible subset of (XΓ1(N) ×Qp)an. Note that, as remarked in [Buz03], this
construction does not depend on the choices of parameters for the formal groups. We define
YΓ1(N)([0, r1], [0, r2], . . . , [0, rg]) to be

XΓ1(N)([0, r1], [0, r2], . . . , [0, rg])×(XΓ1(N)×Qp)an (YΓ1(N) ×Qp)an.

Definition. Let ~r = (ri)16i6g. We say that an element of

H0(YΓ1(N)([0, r1], [0, r2], . . . , [0, rg]), ω
~k)

is an ~r-overconvergent (p-adic) Hilbert modular form of weight ~k and level Γ1(N). We shall
denote the sections H0(YΓ1(N)([0, r1], [0, r2], . . . , [0, rg]), ω

~k) by M~k
(Γ1(N))([0, r1], . . . [0, rg]).

By Koecher’s principle [KL05, Lemma 4.1.4], the sections of ω
~k extend to sections over

the quasi-compact XΓ1(N)([0, r1], . . . , [0, rg]), and this naturally gives a Banach space.
See the remark in [KL05, (2.4)]. Alternatively, for 1 6 i 6 g, the collection of sections
H0(YΓ1(N)([0, r1], . . . , [0, rg]), ωkii ), which we think of as

H0(XΓ1(N)([0, r1], [0, r2], . . . , [0, rg]), ωkii ),
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has a natural norm (in the natural equivalence class) that makes it a Banach space. More
precisely, for f ∈Mki(Γ1(N))([0, r1], . . . , [0, rg]), set |f |~r = supx∈XΓ1(N)([0,r1],...,[0,rg ])|f |x with
|f |x being the p-adic norm of (f/hi)(x), where hi is as in the definition of overconvergent
modular forms above; we are deriving a Banach space structure by mapping the space into
the Banach space of overconvergent functions on XΓ1(N)([0, r1], . . . , [0, rg]). Finally, since all the
H0(XΓ1(N)([0, r1], [0, r2], . . . , [0, rg]), ωkii ) are complete,

M~k
(Γ1(N))([0, r1], . . . , [0, rg]) =

⊗
H0(XΓ1(N)([0, r1], [0, r2], . . . , [0, rg]), ωkii )

rather than their completed tensor product, which makes it a Banach space.

The union of all ~r-overconvergent modular forms of weight ~k and level N over all ~r satisfying
ri ∈ (0, 1) for all i is called the space of overconvergent (p-adic) Hilbert modular forms of weight
~k and level Γ1(N).

7. Overconvergent Hilbert modular forms of level Γ1(N) ∩ Γ0(p)

In this section, we define functions

v′ = (v′i)16i6g : (XΓ1(N)∩Γ0(p) ×Qp)an→ [0, 1]g

and overconvergent modular forms of level Γ1(N) ∩ Γ0(p) in terms of v′.
If a point x ∈ (XΓ1(N)∩Γ0(p) ×Qp)an is not a cusp, it corresponds to a closed point of

YΓ1(N)∩Γ0(p) ×Qp and hence there is a finite extension L of Qp equipped with the valuation,
normalised so that |p|= 1/p, such that x corresponds to a L-valued point of YΓ1(N)∩Γ0(p) ×Qp.
Suppose that it has good reduction. Let A be the model over the ring of integers R of L of the
corresponding HBAV over L, which comes equipped with the action of OF lifting the action on
the generic fibre. By taking the schematic closure in A[p], A has an OF -stable finite flat group
scheme C over R. For brevity, we shall denote the quotient A/C by B. The isogeny A→B
induces a map of locally free sheaves Lie∨ B→ Lie∨ A. It is OF -linear and decomposes as the
sum of morphisms (Lie∨ B)i→ (Lie∨ A)i, where (Lie∨ A)i and (Lie∨ B)i are both locally free
OSpecR-modules of rank one and OF acts by τi. We may assume that (Lie∨ A)i and (Lie∨ B)i are
simultaneously trivialised on SpecR, in which case, for each 1 6 i 6 g, the Fitting ideal [MW84]
of its cokernel is generated by one element, gi ∈R, say. We then define v′(x) to be the g-tuple
(1− v(gi))16i6g.

The isogeny A→B induces a homomorphism of the formal groups over R; it is OF -linear and
decomposes as the product of g homomorphismsR[[Xi]]→R[[Yi]] of one-parameter formal groups
with the normalised parameters Xi and Yi, as before. In fact, it sends Xi to Yi =

∏
x G(Xi, x),

where x is a point in Ci and G denotes the group law on R[[Xi]] (see [Lub67]). The annihilator
of the cokernel of the induced map of the R-modules of the invariant differential forms on the
formal groups is the first derivative at Xi = 0 of the homomorphism with respect to Xi, and its
p-adic valuation is therefore (p− 1)v(c) with c ∈ {c0 = 0, c1, . . . , cp−1}= Ci(L). As a result, we
have v′i(x) = 1− (p− 1)v(c).

A more conceptual way of thinking about v′ is as follows. One can check that locally on
U = SpecOU , the Fitting ideal of the cokernel of (Lie∨ B)i→ (Lie∨ A)i is isomorphic to the
Fitting ideal of (Lie∨ C)i, which equals the Fitting ideal of R/δi if Ci, over U , is of the form
SpecOU [T ]/(T p − δiT ), i.e. if δi is the Oort–Tate or, more generally, the Raynaud parameter of
Ci. Note that (Lie∨ C)i ' Lie∨ Ci.
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If the model A over R does not have good reduction, i.e. if x is a cusp, we define (v′i(x))16i6g

to be that of any ordinary point in the same component.

More generally, and possibly more amenable to generalisation, one may paraphrase the above
in terms of cotangent complexes. Let A and B =A/C be HBAVs over SpecR as above; in
particular, they are smooth and locally complete intersections over R. Let LC/ SpecR denote the
cotangent complex of C over SpecR in the derived category D(OF ⊗Z OSpecR) (see [Ill71, Ill72])
of complexes of (OF ⊗Z OSpecR)-modules. If we let e be the unit section SpecR→ C, the complex
lC/ SpecR := Le∗LC/ SpecR of (OF ⊗Z OSpecR)-modules that are locally free as OSpecR-modules
is perfect and concentrated in degrees [−1, 0]. It turns out to be isomorphic to the two-term
complex 0→ Lie∨ B→ Lie∨ A→ 0 and, by taking ‘determinant divisors’, one can deduce the
same result.

For (A, C) as above, we fix i ∈ [0, g], take A′ =A/Ci and let C ′ ⊂A′ be the OF -stable
subgroup of A[p] of order pg defined by C ′j = (Cj + Ci)/Ci for all j 6= i and C ′i =A[vi]/Ci.
Note that FitR(Lie∨ Ci) · FitR(Lie∨ C ′i)⊂ FitR((Lie∨ A[p])i) (cf. [MW84, Appendix]), and since
Lie∨(A[p]) is a locally free ((OF /p)⊗Z OSpecR)-module of rank one, the right-hand side is the
R-module generated by p and we have v′i(A, C) + v′i(A

′, C ′) = 1.

For a vector ([0, ri])16i6g of g intervals where ri ∈ pQ and ri ∈ [0, 1) for all i, we define an
admissible subset YΓ1(N)∩Γ0(p)([0, r1], . . . , [0, rg]) (respectively, XΓ1(N)∩Γ0(p)([0, r1], . . . , [0, rg]))
of (YΓ1(N)∩Γ0(p))an (respectively, (XΓ1(N)∩Γ0(p))an) to be the component containing the points
whose v′i are all zero of the inverse image under π1 of YΓ1(N)([0, r1], . . . , [0, rg]) (respectively,
XΓ1(N)([0, r1], . . . , [0, rg])). One can check that this coincides with the set of points x ∈
(YΓ1(N)∩Γ0(p))an such that v′i(x) ∈ [0, ri] for all 1 6 i 6 g.

Definition. Let ~r = (ri)16i6g. We define an element of

H0(YΓ1(N)∩Γ0(p)([0, r1], [0, r2], . . . , [0, rg]), ω
~k)

to be a ~r-overconvergent (p-adic) Hilbert modular form of weight ~k and level Γ1(N) ∩ Γ0(p). We
shall denote the sections

H0(YΓ1(N)∩Γ0(p)([0, r1], [0, r2], . . . , [0, rg]), ω
~k)

by

M~k
(Γ1(N) ∩ Γ0(p))([0, r1], . . . [0, rg]).

This is a Banach space. The union of all ~r-overconvergent modular forms of weight ~k and level
N over all ~r satisfying ri ∈ (0, 1) for all i is called the space of overconvergent (p-adic) Hilbert
modular forms of weight ~k and level Γ1(N) ∩ Γ0(p).

We remark that if we let ( ̂YΓ1(N)∩Γ0(p) × Zp)rig([0, r1], . . . , [0, rg]) be the admissible open

subset of the points x ∈ ( ̂YΓ1(N)∩Γ0(p) × Zp)rig such that v′i(x) ∈ [0, ri] for all 1 6 i 6 g, then we
have natural morphisms

H0(XΓ1(N)∩Γ0(p)([0, r1], . . . , [0, rg]), ω
~k)→ H0(YΓ1(N)∩Γ0(p)([0, r1], . . . , [0, rg]), ω

~k)

→ H0(( ̂YΓ1(N)∩Γ0(p) × Zp)rig([0, r1], . . . , [0, rg]), ω
~k),

which are isomorphisms. To check this, follow [KL05, proof of Lemma 4.1.4]. Henceforth, we
tacitly extend overconvergent modular forms to the cusps.
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8. Canonical subgroups of Hilbert–Blumenthal abelian varieties

In this section, we extend the notion of canonical subgroups of elliptic curves over p-adically
complete rings, as in the work of Katz [Kat73], to the case of abelian varieties with the action
of real multiplication OF .

Definition. Let A be an HBAV over a p-adically complete Zp-algebra R, and assume that
0< vi(A)< p/(p+ 1) for 1 6 i 6 g. Then the identity component of the p-divisible group A[v∞i ] is
formally smooth of dimension one, and we letR[[Xi]] denote the underlying formal group with one
variable Xi, normalised as before. We define the canonical subgroup Hi of A to be the finite flat
group scheme of order p in the p-torsion subgroup of R[[Xi]], defined by the equation Xp

i − tcanXi

as in Katz’s paper [Kat73]. If vi(A) = 0, then hi(A) is invertible and the ith component of the
kernel of Frobenius in the special fibre of A gives a finite flat group scheme of order p. Since its
dual is étale, one can lift the dual to R by Hensel’s lemma, and the dual of such an object is the
canonical subgroup Hi in this case.

The following lemma will be needed. For an HBAV A over R as above such that vi(A) ∈
[0, p/(p+ 1)), we follow [Kat73] and write p/hi(A) as r1. Then r1 ∈R and v(r1)> 1/(p+ 1),
and we have the following result.

Lemma 2. Modulo r1, the canonical subgroup Hi of A is the kernel of Frobenius.

Proof. Note that, modulo r1, the canonical subgroup is defined by Xp
i in ker[p]. In the notation

of [Kat73], r1 = 0 in R/rR implies that t0 = 0, and thus tcan = 0 mod r1. 2

Definition. Let L be a finite extension of Qp and let A be an HBAV over L. We say that A
over L is not too vi-non-ordinary if, after changing base to a finite extension L′ of L as necessary,
vi(A×Spec L Spec L′)< p/(p+ 1).

One can readily generalise the argument of Katz in [Kat73, Theorem 3.10.7] to associate
a canonical subgroup Hi to a not too vi-non-ordinary HBAV A, since this essentially involves
calculations with formal groups. It is then easy to deduce the following.

Lemma 3. Let A be an HBAV over a finite extension L of Qp.

(i) If vi(A) = 0, then the canonical subgroup Hi of A is the finite étale subgroup of A[vi].

(ii) If vi(A)< 1/(p+ 1), then A/Hi is not too vi-non-ordinary and vi(A/Hi) = pvi(A) while
vj(A/Hi) = vj(A) for all j with 1 6 j 6 g, j 6= i.

(iii) If vi(A) = 1/(p+ 1), then A/Hi is too vi-non-ordinary.

(iv) If 1/(p+ 1)< vi(A)< p/(p+ 1), then A/Hi is not too vi-non-ordinary and vi(A/Hi) =
1− vi(A) while vj(A/Hi) = vj(A) for all j with 1 6 j 6 g, j 6= i. Furthermore, the canonical
subgroup of A/Hi is A[vi]/Hi.

(v) If vi(A)< p/(p+ 1) and Ci ⊂A[vi] is a finite subgroup not equal to Hi and of order p, then
vi(A/Ci) = vi(A)/p while vj(A/Ci) = vj(A) for all j with 1 6 j 6 g, j 6= i. The canonical
subgroup of A/Ci is A[vi]/Ci.

(vi) If p/(p+ 1) 6 vi(A) and Ci ⊂A[vi] is a finite flat subgroup of order p, then vi(A/Ci) =
1/(p+ 1) and the canonical subgroup of A/Ci is A[vi]/Ci.

Remark . Let (A, C, ı) over R correspond to a point of (XΓ1(N)∩Γ0(p) ×Qp)an. One can check that
v′i(A, C) = vi(A) if A has the canonical subgroup and Ci =Hi. In fact, this follows from [Kat73].
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Note that it is impossible that Ci ⊂A[vi] and A[vi]/Ci ⊂A[p]/Ci are not canonical at the
same time; therefore, if v′i(A, C)< 1/(p+ 1), A has to have the canonical subgroup and Ci =Hi;
on the other hand, if v′i(A, C)> p/(p+ 1), then Ci cannot be the canonical subgroup.

9. Analytic continuation of overconvergent eigenforms

For ~I = (Ii)16i6g where each Ii ⊆ [0, 1] is an interval of the form [0, ri) or [0, ri] for 0< ri 6 1,
we let XΓ1(N)∩Γ0(p)(~I) denote the set of points x ∈ (XΓ1(N)∩Γ0(p) ×Qp)an such that vi(x) ∈ Ii
for all 1 6 i 6 g and let M~k

(Γ1(N) ∩ Γ0(p))(~I) denote the space H0(XΓ1(N)∩Γ0(p)(~I), ω~k) of
overconvergent modular forms of weight ~k.

Let f be an overconvergent Hilbert modular form over Qp of weight ~k and level Γ1(N) ∩ Γ0(p).
Then there exists a g-tuple ~r = (ri)16i6g such that f ∈M~k

(Γ1(N) ∩ Γ0(p))([0, r1], . . . , [0, rg]).

9.1 Analytic continuation of overconvergent Uv-eigenforms, I
Fix 1 6 i 6 g. We shall take XΓ1(N)∩Γ0(p)(Ii) to mean XΓ1(N)∩Γ0(p)(~I) and M~k

(Γ1(N) ∩ Γ0(p))(Ii)
to mean M~k

(Γ1(N) ∩ Γ0(p))(~I). Similarly for XΓ1(N).

Proposition 4. The XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]), n ∈ Z>0, form an admissible
covering of XΓ1(N)∩Γ0(p)([0, 1)).

Proof. It essentially follows from the maximum modulus principle [BGR84] that these sets form
an admissible covering of the admissible open set XΓ1(N)∩Γ0(p)([0, 1)). See, for example, [BGR84,
9.1.4, Proposition 5]. 2

For π1 and

π2,v : (XΓ1(N)∩Γ0(p)∩Γ0(v) ×Qp)an→ (XΓ1(N)∩Γ0(p) ×Qp)an

as above, if U and V are admissible open subsets of (XΓ1(N)∩Γ0(p) ×Qp)an such that (π1)−1(U)⊆
(π2,v)−1(V ), one can define the ‘trace map’ trv :H0(V, ω~k)→H0(U, ω~k) as in [Buz03, § 5];
if, furthermore, U and V satisfy V ⊆ U , we define Uv to be p−1trv followed by the restriction
map H0(U, ω~k)→H0(V, ω~k).

Proposition 5. If f ∈M~k
(Γ1(N) ∩ Γ0(p))([0, r]) is an eigenform for Uv with non-zero

eigenvalue a, then it extends to an eigenform in M~k
(Γ1(N) ∩ Γ0(p))([0, 1)).

In order to prove this, we need two lemmas.

Lemma 6. Let (A, C, ı) correspond to a point x in XΓ1(N)∩Γ0(p)([0, 1− 1/(pn(p+ 1))]). Let
Di be a subgroup of A[vi] of order p which does not meet C non-trivially. If we let y
denote the point corresponding to (A/Di, (C +Di)/Di, ı mod Di), then y ∈XΓ1(N)∩Γ0(p)([0, 1−
1/(pn−1(p+ 1))]).

Proof. This follows from case-by-case calculations as in [Buz03, Lemma 4.2]. 2

Lemma 7. If f ∈M~k
(Γ1(N) ∩ Γ0(p))([0, ri]) is an eigenform for Uvi with non-zero eigenvalue ai,

then it extends to an eigenform in M~k
(Γ1(N) ∩ Γ0(p))([0, 1− 1/(p−1(p+ 1))]).

Proof. If 0< v′i(A, C)< p/(p+ 1), then

v′i(A, C)> v′i(A/Di, (C +Di)/Di) = v′i(A, C)/p
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for a subgroup Di of A[vi] of order p such that Di 6= Ci. To prove this, observe that since
Ci =Hi, we have v′i(A, C) = vi(A) (and also v′i(A/Di, (C +Di)/Di) = v′i(A/Di)); it then follows
from Lemma 3(v) that vi(A)> vi(A/Di) = vi(A)/p. If ri > 1/(p+ 1), there is nothing to prove,
so we assume that ri < 1/(p+ 1). Suppose that f ∈M~k

(Γ1(N) ∩ Γ0(p))([0, ti]) for some ri 6 ti <
1/(p+ 1) and that it is an eigenform for Uvi with eigenvalue ai. Then

(f |p−1trvi)/ai ∈M~k
(Γ1(N) ∩ Γ0(p))([0, pti]),

since for (A, C, ı) ∈XΓ1(N)∩Γ0(p)([0, pti]) we have by definition that

((f |p−1trvi)/ai)(A, C, ı) = 1/(aip)
∑
Di

(pri)
∗f(A/Di, (C +Di)/Di, ı mod Di),

where pri denotes A→A/Di. Since f is an eigenform for Uvi , the restriction to
XΓ1(N)∩Γ0(p)([0, ti]) of f |p−1trvi is aif ; in other words, the restriction of (f |p−1trvi)/ai
to XΓ1(N)∩Γ0(p)([0, ti]) is f , and therefore f |p−1trvi extends f . Since the trace map and the
restriction map ‘commute’, as observed in [Kas09, Lemma 2.18(1)], one can check that f |p−1trvi
is also an eigenform for Uvi with eigenvalue ai. Repeating the argument gives the result. 2

Remark . In [Buz03], the analytic continuation of overconvergent eigenforms is typically proved
by first showing that admissible open subsets, over which overconvergent modular forms are
defined, are connected, and then using the q-expansion principle at cusps to ensure that f |p−1tr
does in fact extend f because they have the same q-expansions. In calculating q-expansions,
p−1tr is not any different from Up. Kassaei, however, observes in [Kas09, § 3] that establishing
that admissible subsets are connected is not actually necessary; this substantially simplifies the
argument in [Buz03]: in fact, one does not need to compute q-expansions! Although almost all
the admissible subsets that we consider in this paper are undoubtedly connected, we shall follow
Kassaei’s approach.

Proof of Proposition 5. It follows from the preceding lemma that the Hecke operator p−1trvi
defines a map of sections

p−1trvi :H0(XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]), ω~k)

→H0(XΓ1(N)∩Γ0(p)([0, 1− 1/(pn(p+ 1))]), ω~k).

More explicitly, for an element

fn ∈ H0(XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]), ω~k)

= M~k
(Γ1(N) ∩ Γ0(p))([0, 1− 1/(pn−1(p+ 1))])

and for (A, C, ı) ∈XΓ1(N)∩Γ0(p)([0, 1− 1/(pn(p+ 1))]),

fn|p−1trvi ∈M~k
(Γ1(N) ∩ Γ0(p))([0, 1− 1/(pn(p+ 1))])

is defined by

(fn|p−1trvi)(A, C, ı) = (1/p)
∑
Di 6=Ci

(pri)
∗fn(A/Di, (C +Di)/Di, ı mod Di).

By the preceding lemma, f ∈M~k
(Γ1(N) ∩ Γ0(p))([0, ri]) extends to a Uvi-eigenform f0 ∈

M~k
(Γ1(N) ∩ Γ0(p))([0, 1/(p+ 1)]). Inductively, we define fn+1 ∈M~k

(Γ1(N) ∩ Γ0(p))([0, 1−
1/(pn(p+ 1))]) by (fn|p−1trvi)/ai for all n ∈ Z>0, which is an Uvi-eigenform with eigenvalue
ai when restricted to XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]). Since fn is an eigenform for Uvi ,
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the restriction of fn+1 to XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]) is therefore fn, and hence fn+1

extends fn. Since the

{XΓ1(N)∩Γ0(p)([0, 1− 1/(pn−1(p+ 1))]}n∈Z>0

form an admissible covering of XΓ1(N)∩Γ0(p)([0, 1)), this inductive construction gives an element
of M~k

(Γ1(N) ∩ Γ0(p))([0, 1)) that extends f ; it is still an eigenform for Uvi with eigenvalue ai. 2

Corollary 8. If f is an overconvergent Hilbert modular form of weight ~k which is an
eigenform for Uv with non-zero eigenvalue for all v|p, then it extends to an eigenform in
M~k

(Γ1(N) ∩ Γ0(p))([0, 1), . . . , [0, 1)).

9.2 Analytic continuation of overconvergent Uv-eigenforms, II

Fix any 0 6 ti < 1/(p+ 1). For convenience, we useYΓ1(N)∩Γ0(p)([1− ti, 1)]) to represent

YΓ1(N)∩Γ0(p)([1− ti, 1)) or YΓ1(N)∩Γ0(p)([1− ti, 1]),

since the following construction applies to both of these. Similarly for XΓ1(N)∩Γ0(p)([1− ti, 1)]).
Define

si : YΓ1(N)∩Γ0(p)([1− t1/p, 1)])→ YΓ1(N)∩Γ0(p)([1− t1, 1)])

as taking (A, C, ı) to (A/Hi, (C +Hi)/Hi, ı mod Hi) where Hi ⊂A[vi] is the canonical subgroup
of A. It is important to have Ci 6=Hi; see the end of the last section. Note that si extends to

XΓ1(N)∩Γ0(p)([1− ti/p)])→XΓ1(N)∩Γ0(p)([1− ti)]).

At a cusp with a choice of polyhedral cone decomposition {σ}, for an OF -stable semi-abelian
scheme Gσ over Spec(Rσ ⊗ Zp) extending a c-polarised HBAV Aσ over Spec(R0

σ ⊗ Zp), si
corresponds to the isogeny Aσ→Aσ/Hσ,i where Hσ,i is the kernel of the morphism of p-divisible
groups Aσ[v∞i ]→Aσ[v∞i ] corresponding to q 7→ qp in the base. Since XN ∩ σ̌ 3 ξ 7→ ξp leaves
XN ∩ σ̌ stable, the isogeny extends to Gσ, and consequently si extends to

XΓ1(N)∩Γ0(p)([1− ti/p)])→XΓ1(N)∩Γ0(p)([1− ti)]),

which we shall again denote by si.
Define

id :XΓ1(N)∩Γ0(p)([1− ti/p, 1)])→XΓ1(N)∩Γ0(p)([1− ti, 1)])

as taking (A, C, ı) to itself.
We shall define the operator

Vi : M~k
(Γ1(N) ∩ Γ0(p))[1− ti, 1)]→M~k

(Γ1(N) ∩ Γ0(p))([1− ti/p, 1)])

as follows. Let p∗i denote the natural morphism of sheaves s∗iω→ (id)∗ω on YΓ1(N)∩Γ0(p)([0, 1−
ti/p]) which takes the universal HBAV over YΓ1(N)∩Γ0(p)([0, 1− ti/p]) to its quotient by the
canonical subgroup in the vi-torsion points. It clearly extends to the cusps. We shall use the same
notation for the variant s∗iω

~k→ (id)∗ω~k. Now define Vi to be the composite

Vi : M~k
(Γ1(N) ∩ Γ0(p))[1− ti, 1)]

s∗i−−→H0(XΓ1(N)∩Γ0(p)([1− ti/p, 1)]), s∗iω
~k)

p−kip∗i−−−−−→H0(XΓ1(N)∩Γ0(p)([1− ti/p, 1)]), (id∗)ω~k)
−→M~k

(Γ1(N) ∩ Γ0(p))[1− ti/p, 1)].
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Let x ∈XΓ1(N)∩Γ0(p)([1− ti/p, 1)]) be a point corresponding to Sp L→XΓ1(N)∩Γ0(p)([1−
ti/p, 1)]) for some finite extension L of Qp. Denote by x1 (respectively, x2) the composite

Sp L x−−→XΓ1(N)∩Γ0(p)([1− ti/p, 1)])
id (respectively, si)−−−−−−−−−−−−−→XΓ1(N)∩Γ0(p)([1− ti, 1)])(↪→ (XΓ1(N)∩Γ0(p) ×Qp)an).

Upon specialisation to x, the map p∗i induces a map of the sections,

p∗i :H0(Sp L, x∗2ω
~k)→H0(Sp L, x∗1ω

~k),

and one can check that for f ∈M~k
(Γ1(N) ∩ Γ0(p))([1− ti, 1)]),

f |Vi ∈M~k
(Γ1(N) ∩ Γ0(p))([1− ti/p, 1)])

satisfies (f |Vi)(x1) = p−kip∗i (x
∗
2f) = p−kip∗i f(x2). In other words, if x corresponds to a point

(A, C, ı), then
(f |Vi)(A, C, ı) = p−kipr∗i f(A/Hi, (C +Hi)/Hi, ı mod Hi),

where by pr∗i we mean the pull-back by the isogeny pri :A→A/Hi.

Lemma 9. Let x ∈XΓ1(N)∩Γ0(p)([1− ti/p, 1)]) be a point corresponding to

Sp L→XΓ1(N)∩Γ0(p)([1− ti/p, 1)])

for some finite extension L over Qp. Let hi be an element of L such that |hi|= |hi(π1(x))|, and
let x1 ∈XΓ1(N)∩Γ0(p)([1− ti, 1)]) (respectively, x2 ∈XΓ1(N)∩Γ0(p)([1− ti, 1)])) be the image of x
under id (respectively, si). Then, for f ∈M~k

(Γ1(N) ∩ Γ0(p))([1− ti, 1)]), we have |(f |Vi)(xi)| 6
|f(x2)||hi|−ki with respect to the normalised norm on L.

Proof. If x is a point in XΓ1(N)∩Γ0(p)([1− ti/p, 1]), its image in (XΓ1(N) ×Qp)an under π2,i has
vi(x) satisfying 0 6 vi(x) 6 ti/p < p/(p+ 1). Let x correspond to an HBAV over a finite extension
L of Qp, with residue field k, which has a model A over the ring of integers OL. Assume first that
A has good reduction. Then A has the canonical subgroup Hi ⊂A[vi] and we let Bi =A/Hi.
Observe that p∗i : s∗iω

~k→ (id)∗ω~k induces the map of sections p∗i :H0(Bi, Ω
~k
Bi

)→H0(A, Ω~kA) of
sheaves of relative differentials over SpecOL. We claim that the ‘unit ball’ sections

H0(Bi[v∞i ], Ωki
Bi[v∞i ],vi

)⊂H0(Bi[p∞], Ωki
Bi[p∞],vi

)⊂H0(Bi, Ω
~k
Bi)

of the sheaf of relative differentials of the p-divisible group Bi[v∞i ] over Spf OL on which OF
acts by OF ↪→OFvi→OL map under p∗i to (p/hi)kiH0(A[v∞i ], Ωki

A[v∞i ],vi
)⊂H0(A, Ωki

A/S). This
follows from observing that the map ΩBi[v∞i ],vi → ΩA[v∞i ],vi reduces modulo p/hi (see Lemma 2)
to ϕ∗Ω(A[v∞i ]×k)(p),vi

→ Ωki
A[v∞i ]×k,vi where ϕ is the relative Frobenius, which is zero. For

f =
g⊗
j=1

fj ∈H0

(
YΓ1(N)∩Γ0(p)([1− ti/p, 1]),

g⊗
j=1

ω
kj
vj

)
,

if |fi(x2)| 6 1, then fi(x2) ∈H0(B1[v∞1 ], Ωk1

B[v∞i ],vi
) and therefore

|(fi|Vi)(x1)|= |p−kip∗i fi(x1)|= |p−ki(p/hi)kifi(x1)| 6 |hi|−ki ,

since fi(x1) ∈H0(A[v∞i ], Ωki
A[v∞i ],vi

) and so |fi(x1)| 6 1, which, as in [Kat73], suffices.

Secondly, if A does not have good reduction, then by definition we have v′i(x) = 1. We denote
by (YΓ1(N) × Fp)vi ord (respectively, (XΓ1(N) × Fp)vi ord) the open subscheme of YΓ1(N) × Fp
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(respectively, XΓ1(N) × Fp) where the ith partial Hasse invariant (respectively, the extension
by Koecher’s principle of the ith partial Hasse invariant) does not vanish. We also let

̂(YΓ1(N) × Zp)vi ord (respectively, ̂(XΓ1(N) × Zp)vi ord) denote the formal completion of YΓ1(N) × Zp
(respectively, XΓ1(N) × Zp) along (YΓ1(N) × Fp)vi ord (respectively, (XΓ1(N) × Fp)vi ord).

Let x1 (respectively, x2) again denote the composition

Sp L x−−→ YΓ1(N)∩Γ0(p)([1, 1])
id (respectively si)−−−−−−−−−−−−→ YΓ1(N)∩Γ0(p)([1, 1])

π1−−→XΓ1(N)([0, 0])' ( ̂(XΓ1(N) × Zp)vi ord)rig,

let x̂1 (respectively, x̂2) denote its formal model Spf OL→ ̂(XΓ1(N) × Zp)ord, and let x1

(respectively, x2) denote its specialisation in (XΓ1(N) × Fp)ord. Note that x1 and x2 lie in the
complement of YΓ1(N) × Fp in XΓ1(N) × Fp or, in other words, the cusps of YΓ1(N) × Fp.

Now, p∗i induces x∗2ω→ x∗1ω upon specialising to x, and it suffices to establish that

H0(Spf OL, (x̂2)∗ω)⊂H0(Spf OL, (x̂2)∗ω)⊗ L'H0((Spf OL)rig, x∗2ω)'H0(Sp L, x∗2ω)

maps under p∗i to pH0(Spf OL, (x̂1)∗ω)⊂H0(Sp L, x∗1ω). This follows from observing that p∗i
induces the zero morphism on ̂(YΓ1(N) × Zp)vi ord × Fp by the preceding argument and that,

since ̂(YΓ1(N) × Zp)vi ord × Fp is open dense in ̂(XΓ1(N) × Zp)vi ord × Fp, p∗i has to be zero on
̂(XΓ1(N) × Zp)vi ord × Fp. The rest of the argument is analogous to that in the first case. 2

We shall prove that if f ∈M~k
(Γ1(N) ∩ Γ0(p))([0, 1)) is an eigenvactor for Uvi with non-

zero eigenvalue ai such that v(ai)< ki − 1, then f extends to M~k
(Γ1(N) ∩ Γ0(p))([0, 1]). Fix

ti ∈ (0, p/(p+ 1)). For simplicity, we shall typically use f to mean the restriction of f ∈
M~k

(Γ1(N) ∩ Γ0(p))([0, 1)) to XΓ1(N)∩Γ0(p)([1− ti, 1)]). Write bi = pki−1/ai for brevity. We then
have the following lemma.

Lemma 10. f − bi(f |Vi) ∈M~k
(Γ1(N) ∩ Γ0(p))([1− ti/p, 1)) extends to M~k

(Γ1(N) ∩ Γ0(p))([1−
ti/p, 1]).

Proof. On the non-cuspidal points, simply define f ′ ∈M~k
(Γ1(N) ∩ Γ0(p))([1− ti/p, 1]) to be

f ′((A, C, ı)) = 1/(aip)
∑

Di 6=Hi,Di 6=Ci

p∗i f((A/Di, (C +Di)/Di, ı mod Di))

and follow the remark at the end of § 7 to extend to the cusps. Then, for

(A, C, ı) ∈XΓ1(N)∩Γ0(p)([1− ti/p, 1)),

we have

f ′(A, C, ı) = (1/ai)(f |Uvi)(A, C, ı)− (1/(aip))f(A/Hi, (C +Hi)/Hi, (ı mod Hi))
= (f − (pki−1/ai)f |V )(A, C, ı). 2

For n ∈ Z>1, define gn ∈M~k
(Γ1(N) ∩ Γ0(p))([1− ti/pn, 1]) to be

∑n−1
j=0 b

j
i (f
′|V j

i ), where by
f ′|V j

i we mean the iterated expression (· · · ((f ′|Vi)|Vi) · · · )|Vi. One can check that, since the
restriction of f ′ to XΓ1(N)∩Γ0(p)([1− ti/p, 1)) is f − bi(f |Vi) by definition, the restriction of gn
to XΓ1(N)∩Γ0(p)([1− ti/pn, 1)) is f |XΓ1(N)∩Γ0(p)([1−ti/pn,1)) − bni (f |V n

i ). Since v(bi) = v(pki−1/ai) =

(ki − 1)− v(ai)> 0 and because it follows from Lemma 9 that for all j we have |f ′|V j
i | 6 |f ′|<∞

on XΓ1(N)∩Γ0(p)([1, 1]), gn converges to give a section of ω~k over XΓ1(N)∩Γ0(p)([1, 1]), which we
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shall denote by g. This is the (over)convergent form that we will glue to f . Unravelling the
definition, one can verify that g − bni (g|V n

i ) is in fact equal to
∑n−1

j=0 b
j
i (f |V

j
i ) for any n ∈ Z>1.

However, observe that the former is defined over XΓ1(N)∩Γ0(p)([1, 1]), and therefore the latter is
none other than the restriction of gn to XΓ1(N)∩Γ0(p)([1, 1]).

In order to apply Kassaei’s gluing lemma, we need the following result.

Lemma 11. The g|V n
i on XΓ1(N)∩Γ0(p)([1, 1]) and the f |V n

i on XΓ1(N)∩Γ0(p)([1− t1/pn, 1)) are
uniformly bounded.

Proof. For any

n ∈ Z>1, |(g|V n
i )|XΓ1(N)∩Γ0(p)([1,1]) 6 |g|XΓ1(N)∩Γ0(p)([1,1]) <∞.

This follows from Lemma 9 and the quasi-compactness of XΓ1(N)∩Γ0(p)([1, 1]). See [Kas06,
Lemmas 4.4 and 4.5] for the second assertion; note that [Kas06, Lemma 3.3] is critical to the
proof of [Kas06, Lemma 4.5], but we have its generalisation in Lemma 9 and thus can argue
similarly to prove the assertion. 2

To summarise, for f ∈H0(XΓ1(N)∩Γ0(p)([1− ti, 1)), ω~k), we have

gn ∈H0(XΓ1(N)∩Γ0(p)([1− ti/pn, 1]), ω~k) and g ∈H0(XΓ1(N)∩Γ0(p)([1, 1]), ω~k),

which satisfy

|f − gn|XΓ1(N)∩Γ0(p)([1−ti/pn,1))→ 0 and |gn − g|XΓ1(N)∩Γ0(p)([1,1])→ 0

as n→∞. As a result, we have the following proposition.

Proposition 12. Let f ∈M~k
(Γ1(N) ∩ Γ0(p))([0, 1)). If f is eigenform for Uvi with non-zero

eigenvalue ai such that v(ai)< ki − 1, then it extends to M~k
(Γ1(N) ∩ Γ0(p))([0, 1]).

Proof. This follows from [Kas06, Lemma 3.2]: apply the lemma to affinoid coverings of
XΓ1(N)∩Γ0(p)([1− ti, 1]). 2

We can repeat the argument, essentially, for the remaining indices.

Theorem 13. Let f be an overconvergent Hilbert modular form of weight ~k = (ki)16i6g and
level Γ1(N) ∩ Γ0(p). If f is an eigenform for Uvi with non-zero eigenvalue ai satisfying v(ai)<
ki − 1 for all 1 6 i 6 g, then it is a classical Hilbert eigenform.
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http://perso.univ-rennes1.fr/pierre.berthelot.
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