A DUAL VIEW OF THE CLIFFORD THEORY OF CHARACTERS OF FINITE GROUPS, II

RICHARD L. ROTH

Introduction. This paper continues the analysis of Clifford theory for the case of a finite group G, K a normal subgroup of G and G/K abelian which was developed in [7]. In [7] the permutation actions of G/K on the characters of K and of $(G/K)^{\circ}$ on the characters of G were studied in relation to their effects on induction and restriction of group characters. With χ an irreducible character of G, and σ an irreducible component of $\chi|_{\kappa}$, the chain of subgroups $K \subseteq J(\chi) \subseteq I(\sigma) \subseteq G$ was investigated, where $I = I(\sigma)$ is the usual inertial subgroup for σ and $J = J(\chi)$ is a subgroup called the dual inertial group for χ . Corresponding to the orbit of χ under $(G/K)^{\wedge}$ and of σ under G/K we investigated a tableau of characters on J. In this paper a similar tableau is developed for I. A further subgroup M, called an intermediary subgroup, is introduced with $J \leq M \leq I$ which has the property that σ extends to a character ρ of M and $\rho^{G} = \chi$. There are in fact $e_{K}(\chi)$ such choices for ρ forming one orbit under the actions of I/M and of $(M/J)^{-}$. (Here, the two types of actions are observed on the same set of characters.) The permutations involved are in fact identical, which leads to an isomorphism of I/M and $(M/J)^{-}$. Thus also $I/M \cong M/J$. M is not unique and an example is given with two intermediary subgroups M_1, M_2 with $M_1/J \not\cong M_2/J$.

Since writing [7], the author has become aware that some of the results on "dual Clifford theory" had been previously established in [4, Section 4] and [5, Section 3]; see also the more recent article [9, (Section 1)]. It should further be remarked that Dade, using a somewhat different approach, has also investigated the special properties of Clifford theory for G/K abelian in [1, Chapter 3].

1. Background. The notation in this paper will be the same as in [7]. All groups are finite and all characters come from representations over the complex numbers. As in [7], K is a normal subgroup of G, and the paper in general is concerned with the case that G/K is abelian.

As is well-known (see for example [3, Chapter V, Section 17]), if χ is an irreducible character of G and σ an irreducible component of $\chi|_{\kappa}$ then the usual Clifford decomposition gives

(1)
$$\chi|_{K} = e_{K}(\chi) \sum_{i=1}^{m} \sigma^{g_{i}}$$

where g_1, \ldots, g_m are coset representatives for G modulo $I(\sigma)$, the inertial

Received July 11, 1972.

1113

group of σ , and $e_{\kappa}(\chi)$ is Clifford's index of ramification of χ with respect to K. If G/K is abelian, it follows from [7 (see Theorem 3.2, (vi) for example)] that given σ , $e_{\kappa}(\chi) = e_{\kappa}(\chi')$ for any irreducible character χ' of G whose restriction to K contains σ . Hence $e = e_{\kappa}(\chi)$ might be regarded dually as the "ramification index of σ with respect to G", independent of choice of χ .

G/K acts by conjugation on the characters of K while $(G/K)^{\uparrow}$, the dual group of one dimensional characters of G/K, acts by multiplication on the characters of G. In Section 2 of [7], the effects of these actions on induction and restriction of group characters were compared and can be summarized in the following scheme:

THEOREM 1.1. Let G/K be abelian. Let χ be an irreducible character of G, σ an irreducible character of K.

I. (a) $(G/K)^{\uparrow}$ operates faithfully on $\chi \Leftrightarrow \chi|_{K}$ is irreducible.

(b) $(G/K)^{\uparrow}$ fixes $\chi \Leftrightarrow e\chi$ is induced from an irreducible character of K. Here e is the ramification index of χ with respect to K.

II. (a) G/K operates faithfully on $\sigma \Leftrightarrow \sigma^G$ is irreducible.

(b) G/K fixes $\sigma \Leftrightarrow e\sigma$ is the restriction of an irreducible character of G. Here e is the ramification index of σ with respect to G.

Proof. I(a) is Corollary 2.6, I(b) is Theorem 2.1, and II(a) is Theorem 2.7 (these references being to [7]). II(b) is seen as follows: Let χ be an irreducible character of G such that σ is a component of $\chi|_{\kappa}$. Then in Equation (1), G/K fixes $\sigma \Leftrightarrow m = 1 \Leftrightarrow \chi|_{\kappa} = \sigma$.

Remark. If G/K is cyclic, then it is known that e = 1 ([7, Lemma 1.1]; see [2, Theorem 9.12] for proof). Thus Theorem 1.1 in this case becomes precisely the "summary for G/K cyclic" given in [7, bottom of p. 260].

The following lemma will be useful later in the article.

LEMMA 1.2. Let G/K be abelian, L any subgroup between G and K. Let $\lambda \in (L/K)^{\wedge}$ and $g \in G$. Then $\lambda^{g} = \lambda$.

Proof. If $x \in L$ and $g \in G$, then $gxg^{-1} = kx$, $k \in K$ and $\lambda^{g}(x) = \lambda(gxg^{-1}) = \lambda(kx) = \lambda(k)\lambda(x) = \lambda(x)$.

In [7], the dual inertial group $J(\chi)$ with respect to K was defined as follows: Let $H(\chi) = \{\lambda \in (G/K)^{\uparrow} | \lambda \chi = \chi\}$. Then

$$J(\boldsymbol{\chi}) = \bigcap \{ \operatorname{Ker} \lambda : \lambda \in H(\boldsymbol{\chi}) \}.$$

Various theorems concerning $J = J(\chi)$ were established in [7]. For example, $(I:J) = e^2$ where $I = I(\sigma)$ and $e = e_K(\chi) = e_J(\chi)$. There is a unique irreducible character ψ of J which is a component of $\chi|_J$ and such that $\psi|_K = \sigma$ and $\psi^G = e_{\chi}$. This notation will be used throughout this paper.

2. The lower and upper tableaux. Let G/K be abelian, $\chi, \psi, \sigma, I = I(\sigma)$, $J = J(\chi)$ be as described in Section 1. In [7, Theorem 3.2 (i)] it was observed

that $I(\sigma) = I(\psi)$, the inertial subgroup of ψ in G. The following theorem gives a similar result for J.

THEOREM 2.1. Let τ be any irreducible component of $\chi|_I$. Let $J(\tau)$ be the dual inertial group of τ (defined with respect to the groups I and K). Then $J(\tau) = J(\chi)$.

Proof. By [2, Theorem 9.11] applied to χ on G and ψ on J there exists an irreducible character θ on $I = I(\psi)$ such that $\theta^G = \chi$ and ψ is a component of $\theta|_J$. Further $e_J(\chi) = e_J(\theta)$. Denote this as e, as usual. Then $\theta|_J = e\psi$ (Formula (1) of Section 1). And, $(\psi^I, \theta) = (\psi, \theta|_J) = e$, so deg $\psi^I = [I : J] \deg \psi = e^2$ deg $\psi = e \deg \theta$, so that $\psi^I = e\theta$.

This means that $(I/J)^{\uparrow}$ fixes θ (by Theorem 1.1, I(b)). Letting H(θ) = subgroup of $(I/K)^{\uparrow}$ which fixes θ , we have $(I/J)^{\uparrow} \subseteq H(\theta)$. Then

$$J(\theta) = \bigcap \{ \operatorname{Ker} \lambda : \lambda \in H(\theta) \} \subseteq \bigcap \{ \operatorname{Ker} \lambda : \lambda \in (I/J)^{\wedge} \} = J(\chi).$$

But $[I: J(\chi)] = e^2 = [I: J(\theta)]$ by [7, Theorem 3.2 (iii)] so $J(\theta) = J(\chi)$.

Any irreducible component τ of $\chi|_I$ is of the form θ^g , $g \in G$ and $J(\theta) = J(\theta^g)$ is seen, using Lemma 1.2, as follows:

If $\lambda \in (I/K)^{\uparrow}$, $\lambda \theta = \theta \Leftrightarrow (\lambda \theta)^{g} = \theta^{g} \Leftrightarrow \lambda^{g} \theta^{g} = \theta^{g} \Leftrightarrow \lambda \theta^{g} = \theta^{g}$. So $H(\theta) = H(\theta^{g})$ and $J(\theta) = J(\theta^{g})$.

COROLLARY 2.2. With the same notation as above we have:

(a) there exists an irreducible character θ such that $\psi^{I} = e\theta$, $\theta|_{J} = e\psi$ and $\theta^{G} = \chi$;

(b) $J(\lambda\theta) = J(\theta) = J(\theta^g) = J(\chi)$ for any $\lambda \in (I/K)^{\wedge}$ and $g \in G$.

Proof. For the first part of (b) note that if $\lambda' \in (I/K)^{\uparrow}$, then $\lambda'\theta = \theta \Leftrightarrow \lambda'\lambda\theta = \lambda\theta$ so $H(\lambda\theta) = H(\theta)$ and $J(\lambda\theta) = J(\theta)$. The rest of the corollary was seen in the course of the proof of Theorem 2.1.

In [7] an *m* by *r* tableau (henceforth to be called the *lower tableau*) of distinct characters of *J* was described. Let g_1, \ldots, g_m be a set of coset representatives of *G* modulo *I*. Then $\{\sigma_i = \sigma^{g_i} : i = 1, \ldots, m\}$ is the orbit of σ under G/K(we may assume that $\sigma_1 = \sigma$). Let τ_1, \ldots, τ_r be elements of $(G/K)^{\wedge}$ such that $\{\chi_i = \tau_i \chi : i = 1, \ldots, r\}$ is the set of (distinct) elements of the orbit of χ under $(G/K)^{\wedge}$ (we may assume $\chi_1 = \chi$). Let $\tau_i|_J = \lambda_i, i = 1, \ldots, r$. Then to each pair (χ_j, σ_i) is associated the unique character ψ_{ij} in the *i*th row and *j*th column of the lower tableau (this is a small change in notation from [7]) such that $\psi_{ij}|_K = \sigma_i$ and $(\psi_{ij})^G = e\chi_j$ ($i = 1, \ldots, m; j = 1, \ldots, r$). In fact $\psi_{ij} = (\lambda_j \psi)^{g_i} = \lambda_j \psi^{g_i}$ (note Lemma 1.2). There is considerable symmetry concerning this tableau; for example $J = J(\chi) = J(\chi_j)$ for $j = 1, \ldots, r$; $I = I(\sigma) = I(\sigma_i) i = 1, \ldots, m; I = I(\psi) = I(\psi_{ij})$ for all *i*, *j*; $e = e_K(\chi) =$ $e_K(\chi_j) = e_J(\chi_j) j = 1, \ldots, r$ etc. And clearly, Theorem 2.1 and Corollary 2.2 apply with respect to any χ_i, σ_j , and the corresponding ψ_{ij} . Hence there corresponds to ψ_{ij} an irreducible character θ_{ij} on such that $(\psi_{ij})^I = e\theta_{ij}$, $\theta_{ij}|_J = e\psi_{ij}$ and $(\theta_{ij})^G = \chi_i$. The *rm* distinct characters of $I, \theta_{ij}, i = 1, \ldots, m$, $j = 1, \ldots, r$ form the *upper tableau*. Its properties, similar to those of the lower tableau, are described in the next theorem.

THEOREM 2.3. (a) Let $\lambda_j' = \tau_j |_I$, j = 1, ..., r. Then $\theta_{ij} = (\lambda_j' \theta)^{g_i} = \lambda_j' \theta^{g_i}$ where $\theta = \theta_{11}$ corresponds to χ and σ .

(b) The elements of the *j*th column of the upper tableau are the distinct irreducible components of $\chi_i|_I$ and they form a faithful orbit under the action of G/I.

(c) The rows of the upper tableau are the orbits under the action of $(I/K)^{2}$.

Proof. (a) Since $\psi^{I} = e\theta$ and $\theta|_{J} = e\psi$, $(\lambda'_{j}\theta^{g_{i}})|_{J} = \lambda_{j}(e\psi^{g_{i}}) = e\psi_{ij}$, so by Frobenius Reciprocity $(\psi^{I}_{ij}, \lambda'_{j}\theta^{g_{i}}) = e$. Since $\psi^{I}_{ij} = e\theta_{ij}$ clearly $\theta_{ij} = \lambda'_{j}\theta^{g_{i}}$. This equals $(\lambda'_{j}\theta)^{g_{i}}$ by Lemma 1.2.

(b) Since $\theta^{g} = \chi$, $\chi|_{I} = \sum_{i=1}^{m} \theta^{g_{i}}$ and hence $\chi_{j}|_{I} = \tau_{j}\chi|_{I} = \lambda_{j}' \sum \theta^{g_{i}} = \sum_{i} \theta_{ij}$. (c) The r = [J : K] elements in any row clearly belong to an orbit under $(I/K)^{\wedge}$. Applying [7, Theorem 3.2] to $\theta^{g_{i}}$ and I (in place of χ and G) we see that $[J(\theta^{g_{i}}) : K]$ equals the size of the orbit under $(I/K)^{\wedge}$. This equals [J : K] by Corollary 2.2 so the *i*th row forms the complete orbit.

3. The intermediary subgroups.

Definition. Let G be any finite group, K a normal subgroup, χ an irreducible character of G, and σ an irreducible component of $\chi|_{K}$. Let M be a subgroup such that $K \subseteq M \subseteq G$ with a character ρ such that $\rho|_{K} = \sigma$ and $\rho^{G} = \chi$. We call M an *intermediary subgroup* for χ and σ , with intermediary character ρ .

THEOREM 3.1. Let G/K be abelian, χ an irreducible character of G and σ an irreducible component of $\chi|_{\kappa}$. Then there exists an intermediary subgroup M for χ and σ .

Proof. By induction on [G: K]. As noted earlier, we have $K \subseteq J \subseteq I \subseteq G$ and an irreducible character ψ on J such that ψ is an extension of σ and $\psi^G = e\chi$. By Corollary 2.2 (or directly from [2, Theorem 9.11]) there exists an irreducible character θ on I such that $\psi^I = e\theta$, $\theta|_J = e\psi$ and $\theta^G = \psi$. If either $I \neq G$ or $J \neq K$, then [I:J] < [G:K] and by induction there exists a subgroup M, $J \subseteq M \subseteq I$ and character ρ on M such that ρ extends ψ and $\rho^I = \theta$. Then clearly ρ also extends σ and $\rho^G = (\rho^I)^G = \theta^G = \chi$.

Suppose now that G = I and K = J. If $(I/J)^{\wedge}$ were cyclic, then I/J would also be cyclic and hence I = J by [7, Theorem 3.4] and the case is trivial. Otherwise, let H be a non-trivial proper cyclic subgroup of $(I/J)^{\wedge}$ and let Nbe the subgroup of I such that $(N/J)^{\perp} = H$. Then $(I/N)^{\wedge} \cong H$ (see [7, Lemma 1.2]). Thus I/N is cyclic and $e_N(\chi) = 1$ (see "Remark" in section 1). Since $(I/N)^{\wedge} \subseteq (I/J)^{\wedge}$ and the elements of $(I/J)^{\wedge}$ all fix χ , we have that $\gamma^G = e_N(\chi)\chi = \chi$ where γ is an irreducible component of $\chi|_N$, by Theorem 1.1, I(b). Now $\chi|_J = e\sigma$ where $e = e_J(\chi)$ so σ is also a component of $\gamma|_J$. By induction, there exists a subgroup M, $J \subseteq M \subseteq N$, and an irreducible character ρ on M such that σ extends to ρ and $\rho^N = \gamma$. Hence $\rho^I = \gamma^I = \chi$.

Remark. Independently of the author, it has recently been shown by I. M. Isaacs and David Price that Theorem 3.1 (the existence of intermediary subgroups) in fact holds for a considerably wider class of groups G/K, including the case that G/K is supersolvable (see [6]).

THEOREM 3.2. Let G/K be abelian with notation as above. Let M be any intermediary subgroup (with character ρ) for χ and σ . Then $J(\chi) \subseteq M \subseteq I(\sigma)$. Further if ψ is the unique irreducible character of J with $\psi^{G} = e\chi$ and $\psi|_{J} = \sigma$, and $\psi^{I} = e\theta$ (i.e., ψ and θ are the elements of the lower and upper tableaux corresponding to χ and σ as in Section 2) then M is an intermediary subgroup for θ and ψ with character ρ .

Proof. Since ρ extends σ to M, if $g \in M$, $\rho^g = \rho$ so $\sigma^g = \sigma$, and $M \subseteq I(\sigma) = I$. Since $\rho^G = \chi$, if $\lambda \in (G/M)^{\uparrow}$, $\lambda \chi = \chi$ hence

$$M = \bigcap \{ \operatorname{Ker} \lambda : \lambda \in (G/M)^* \} \supseteq \bigcap \{ \operatorname{Ker} \lambda : \lambda \in (G/K)^* \text{ and } \lambda \operatorname{fixes} \chi \} = J(\chi).$$

Since ρ extends σ to M, $\rho|_J$ is an extension of σ to J, hence equals one of the characters in the top line of the lower tableau: i.e. $\rho|_J = \psi_{1j}$, say. Since $\rho^G = \chi$, $\chi|_M$ contains ρ , hence also ψ_{1j} . By [7, Theorem 3.1] j = 1 and $\psi_{1j} = \psi_{11} = \psi$, so $\rho|_J = \psi$. Since $\rho^G = \chi$ is irreducible, ρ^I is an irreducible character of I whose restriction to I contains ψ , hence $\rho^I = \theta$.

LEMMA 3.3. Under the same hypotheses as in Theorem 3.2, [I:M] = [M:J] = e.

Proof. $[I:J] = e^2$ by [7, Theorem 3.2 (iii)]. Since $\rho|_J = \psi, \rho^I = \theta, \psi^I = e\theta$ and $\theta|_J = e\psi$, we have $e \deg \psi = \deg \theta = \deg \rho^I = [I:M] \deg \psi$. Thus [I:M] = e and [M:J] = [I:J]/[I:M] = e.

THEOREM 3.4. Let G/K be abelian, χ an irreducible character on K, σ an irreducible component of $\chi|_K$. Let M be an intermediary subgroup for χ and σ . Then there exist precisely e intermediary characters ρ_1, \ldots, ρ_e for χ and σ on M. They form an orbit under both the actions of I/M by conjugation and $(M/J)^{\circ}$ by multiplication. Under these actions I/M and $(M/J)^{\circ}$ are represented faithfully by the same regular permutation group; thus $I/M \cong (M/J)^{\circ}$.

Proof. Let ρ be an intermediary character for χ and σ on M. By Theorem 3.2 we may regard M as intermediary subgroup for ψ and θ where ψ is an irreducible character of $J = J(\chi) = J(\theta)$ (by Theorem 2.1) and θ is an irreducible character of $I = I(\sigma) = I(\psi)$. Also $\rho|_J = \psi$, $\rho^I = \theta$. Since ρ^I is irreducible, I/M operates faithfully on ρ yielding the orbit $\{\rho_1, \ldots, \rho_e\}$ with e = [I : M] elements and these are the only characters which induce to θ . Since ρ is an extension of ψ , $(M/J)^{\circ}$ operates faithfully on ρ , forming an orbit of e = [M : J] elements which are precisely the extension of ψ to M. Let $\gamma \in (M/J)^{\circ}$. Then

 $\gamma\rho$ is an element of the latter orbit. Extend γ to $\gamma' \in (I/J)^{\wedge}$. Then $(\gamma\rho)^{I} = \gamma'\rho^{I} = \gamma'\theta = \theta$ (by definition of $J = J(\theta)$). Hence $\gamma\rho = \rho^{h}$ some $h \in I$. We label the elements of $(M/J)^{\wedge}$ here $\gamma_{1}, \ldots, \gamma_{e}$ (so that $\gamma_{i}\rho = \rho_{i}$). Then choose coset representatives h_{1}, \ldots, h_{e} of I modulo M such that $\gamma_{i}\rho = \rho^{h_{i}}$, $i = 1, 2, \ldots, e$. That this bijective correspondence of $(M/J)^{\wedge}$ with I/M is an isomorphism is seen as follows: Suppose that $h_{i}h_{j} = h_{k}$ modulo M. Since $(\gamma_{i})^{h_{i}} = (\gamma_{i})$ by Lemma 1.2, we have

$$\gamma_k \rho = \rho^{h_k} = \rho^{(h_i h_j)} = (\rho^{h_i})^{h_j} = (\gamma_i \rho)^{h_j} = (\gamma_i)^{h_j} \rho^{h_j} = \gamma_i \rho^{h_j} = \gamma_i \gamma_j \rho.$$

Hence $\gamma_k = \gamma_i \gamma_j$, since $(M/J)^{\circ}$ acts faithfully on ρ . (Note: the initial choice of terminology in [7], i.e. that $\sigma^g(x) = \sigma(gxg^{-1})$ causes I/M apparently to act here as a permutation group on the right, but since I/M is abelian it may also be interpreted as affording permutations on the left).

Corollary 3.5. $I/M \cong M/J$.

THEOREM 3.6. Let G/K be abelian and M an intermediary subgroup for χ and σ . Then for each χ_j in the orbit of χ under $(G/K)^{\circ}$ and each σ_i in the orbit of σ under G/K, M is an intermediary subgroup with e intermediary characters. M is an intermediary subgroup for each corresponding pair θ_{ij} and ψ_{ij} from the upper and lower tableaux.

Proof. Let ρ be a character on M which is intermediary for χ and σ . Then by Theorem 3.2 it is also intermediary for θ and ψ . Following the notation of Theorem 2.3, we let $\lambda_j' = \tau_j |_I$, $j = 1, \ldots, r$. Further let $\lambda_j'' = \lambda_j'|_M$, $j = 1, \ldots, r$. $\rho|_J = \psi$ so $\lambda_j'' \rho^{g_i}|_J = \lambda_j \psi^{g_i} = \psi_{ij}$. It may be verified that $(\rho^{g_i})^I = (\rho^I)^{g_i}$. Then since $\rho^I = \theta$, $(\lambda_j'' \rho^{g_i})^I = \lambda_j' (\rho^{g_i})^I = \lambda_j' (\rho^I)^{g_i} =$ $\lambda_j' \theta^{g_i} = \theta_{ij}$. Thus $\lambda_j'' \rho^{g_i}$ is an intermediary character for θ_{ij} and ψ_{ij} . It follows that it is also an intermediary character for χ_j and σ_i .

Remark. If S_{ij} denotes the set of *e* intermediary characters on *M* for θ_{ij} and ψ_{ij} then the union of the S_{ij} is a set *S* of *erm* characters on *M* corresponding to the entire tableaux. Each character σ_i has exactly *er* extensions to *M* $(\bigcup S_{ij}: i = 1, \ldots, r)$ while there are precisely *em* characters on *M* $(\bigcup S_{ij}: i = 1, \ldots, r)$ which give χ_j when induced to *G*.

4. An Example. It is known that $I/J \cong H_1 \times H_2$ (direct product) with $H_1 \cong H_2$ (see [5, p. 126]) and since $I/M \cong M/J$, where M is an intermediary subgroup, this suggests that I/J might be expressed as a direct product $(M/J) \times H_2$ with $H_2 \cong M/J$. That this is not true in general is shown by the following example.

Let G be a group of order 64, generated by elements a, b, c with ac = ca. bc = cb, $a^4 = c^2$, $b^4 = 1$, $b^{-1}ab = ac$ (group number 180 in [8]). Let $J = \langle c \rangle$, the subgroup generated by c. Let ψ be the linear character of $\langle c \rangle$ given by $\psi(c) = i$ and extend ψ to ρ on $M_1 = \langle a^2, b^2, c \rangle$ by setting $\rho(b^2) = 1$, $\rho(a^2) = -i$. Then it can be checked that $\rho^G = \theta$ is irreducible, $G = I(\psi) = I$, M_1 is an intermediary subgroup for θ and ψ and I/J is not the direct product of M_1/J with any other subgroup. However if $M_2 = \langle a, c \rangle$, then it is now easily seen that if ρ' is any extension of ψ to M_2 , we will have $(\rho')^G = \theta$ so that M_2 is also an intermediary subgroup. In this case, $I/J = (M_2/J) \times H/J$ with $H = \langle b, c \rangle$. Further, $M_1/J \not\cong M_2/J$ (the first being the Klein Four-group, while the second one is cyclic). [Added in proof: $c^4 = 1$; $J = J(\theta)$]

References

- 1. E. C. Dade, *Characters and solvable groups* (preprint), University of Illinois, Urbana, Illinois (1967).
- 2. Walter Feit, Characters of finite groups (Benjamin, New York, 1967).
- 3. B. Huppert, Endliche Gruppen. I (Springer-Verlag, Berlin-Heidelberg-New York, 1967).
- 4. N. Iwahori and H. Matsumoto, Several remarks on projective representations of finite groups, J. Fac. of Sci. Univ. Tokyo Sect. I A Math. 10 (1964), 129–146.
- 5. G. J. Janusz, Some remarks on Clifford's theorem and the Schur index, Pacific J. Math. 32 (1970), 119–129.
- 6. David T. Price, A generalization of M groups, Ph.D. dissertation, University of Chicago, 1971.
- Richard L. Roth, A dual view of the Clifford theory of characters of finite groups, Can. J. Math. 23 (1971), 857–865.
- **8.** M. Hall and J. K. Senior, The groups of order 2^n $(n \leq 6)$ (Macmillan, New York, 1964).
- 9. M. Takeuchi, A remark on the character ring of a compact Lie group, J. Math. Soc. Japan 23 (1971), 662–675.

University of Colorado, Boulder, Colorado