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A DUAL VIEW OF THE CLIFFORD THEORY OF
CHARACTERS OF FINITE GROUPS, II

RICHARD L. ROTH

Introduction. This paper continues the analysis of Clifford theory for the
case of a finite group G, K a normal subgroup of G and G/K abelian which was
developed in [7]. In [7] the permutation actions of G/K on the characters of
K and of (G/K)" on the characters of G were studied in relation to their effects
on induction and restriction of group characters. With x an irreducible
character of G, and ¢ an irreducible component of x|k, the chain of subgroups
K C J(x) € I(¢) € G was investigated, where I = I(¢) is the usual inertial
subgroup for ¢ and J = J(x) is a subgroup called the dual inertial group for x.
Corresponding to the orbit of x under (G/K)" and of ¢ under G/K we investi-
gated a tableau of characters on J. In this paper a similar tableau is developed
for I. A further subgroup M, called an intermediary subgroup, is introduced
with J £ M £ I which has the property that ¢ extends to a character p of M
and p¢ = x. There are in fact ex (x) such choices for p forming one orbit under
the actions of I/ M and of (M /J)". (Here, the two types of actions are observed
on the same set of characters.) The permutations involved are in fact identical,
which leads to an isomorphism of I/M and (M/J)". Thus also I/M = M/J.
M is not unique and an example is given with two intermediary subgroups
Ml, M2 with MI/J sé MZ/J.

Since writing [7], the author has become aware that some of the results on
“dual Clifford theory” had been previously established in [4, Section 4] and
[5, Section 3]; see also the more recent article [9, (Section 1)]. It should further
be remarked that Dade, using a somewhat different approach, has also investi-
gated the special properties of Clifford theory for G/K abelian in [1, Chapter 3].

1. Background. The notation in this paper will be the same as in [7]. All
groups are finite and all characters come from representations over the complex
numbers. As in [7], K is a normal subgroup of G, and the paper in general is
concerned with the case that G/K is abelian.

As is well-known (see for example [3, Chapter V, Section 17]), if x is an
irreducible character of G and ¢ an irreducible component of x|x then the
usual Clifford decomposition gives

m
(1) x|lx = ex(x) '21 a”
i=
where g1, ..., g, are coset representatives for G modulo I(s), the inertial
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group of ¢, and ex (x) is Clifford’s index of ramification of x with respect to K.
If G/K is abelian, it follows from [7 (see Theorem 3.2, (vi) for example)] that
given g, ex(x) = ex(x’) for any irreducible character x’ of G whose restric-
tion to K contains ¢. Hence ¢ = ex(x) might be regarded dually as the
“ramification index of ¢ with respect to G, independent of choice of x.

G/K acts by conjugation on the characters of K while (G/K)", the dual
group of one dimensional characters of G/K, acts by multiplication on the
characters of G. In Section 2 of [7], the effects of these actions on induction and
restriction of group characters were compared and can be summarized in the
following scheme:

THEOREM 1.1. Let G/K be abelian. Let x be an trreducible character of G,
o an irreducible character of K.
I. (a) (G/K)" operates faithfully on x & x|k ts trreducible.
(b) (G/K)" fixes x < ex is induced from an irreducible character of K.
Here e is the ramification index of x with respect to K.
I1. (a) G/K operates faithfully on ¢ < o is 1rreducible.
(b) G/K fixes o <> eq is the restriction of am irreducible character of G.
Here e is the ramification index of o with respect to G.

Proof. 1(a) is Corollary 2.6, I (b) is Theorem 2.1, and II(a) is Theorem 2.7
(these references being to [7]). 11 (b) is seen as follows: Let x be an irreducible
character of G such that ¢ is a component of x|x. Then in Equation (1),
G/K fixeso &m =1 x|x = 0.

Remark. 1f G/K is cyclic, then it is known that e = 1 (|7, Lemma 1.1]; see
[2, Theorem 9.12] for proof). Thus Theorem 1.1 in this case becomes precisely
the “‘summary for G/K cyclic” given in [7, bottom of p. 260].

The following lemma will be useful later in the article.

LemMa 1.2. Let G/K be abelian, L any subgroup between G and K. Let
NE (L/K) and g € G. Then N7 = A\,

Proof. lf x € Land g € G, then gxg™! = kx, & € K and M (x) = N(gxg™!) =
MEx) = NE)N(x) = Nx).

In [7], the dual inertial group J (x) with respect to K was defined as follows:
Let H(x) = {\ € (G/K)"|\x = x}. Then

J(x) =N {Ker\:\ € H(x)}.

Various theorems concerning J = J(x) were established in [7]. For example,
(I:J) =¢* where I = I(s) and e = ex(x) = e;(x). There is a unique

irreducible character ¢ of J which is a component of x| ; and such that ¢|x = o
and ¢¢ = ex. This notation will be used throughout this paper.

2. The lower and upper tableaux. Let G/K be abelian, x, ¢, ¢, I = I(0),
J = J(x) be as described in Section 1. In [7, Theorem 3.2 (i)] it was observed
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that I(¢) = I(¢), the inertial subgroup of ¢ in G. The following theorem gives
a similar result for J.

THEOREM 2.1. Let v be any irreducible component of x |;. Let J(r) be the dual
imertial group of v (defined with respect to the groups I and K). Then J(r) =
J(x).

Proof. By [2, Theorem 9.11] applied to x on G and ¢ on J there exists an
irreducible character 6 on I = I(y) such that ¢ = x and ¢ is a component of
6| ;. Further e,;(x) = e,(8). Denote this as e, as usual. Then 6| ; = ey (Formu-
la (1) of Section 1). And, (¥%,60) = (¥,60],) = ¢,sodegy¢’ = [I: J]degy = ¢
deg ¢ = e deg 0, so that ¢ 7 = ef.

This means that (I/J)" fixes 6 (by Theorem 1.1, I(b)). Letting H(0) =
subgroup of (I/K)" which fixes 6, we have (I/J)" C H(6). Then

J@) =N {Kerx: N HO} SN {Kerh: A€ I/} = T(x).

But [1:J(x)] = ¢ = [I:J(0)] by [7, Theorem 3.2 (iii)] so J(8) = J(x).
Any irreducible component r of x| is of the form 6%, g € G and J(8) =
J(67) is seen, using Lemma 1.2, as follows:
IfA € (I/K)", M = 0 (\0)7 = 07 <> \% = 69 <> \6" = 6. So H () = H(6°)
and J(0) = J(67).

COROLLARY 2.2. With the same notation as above we have:

(a) there exists an irreducible character 0 such that ¢* = €6, 6| ; = ey and
0(} = x5

(bYyJ(N8) = J(O) =J07) = J(x) forany \ € (I/K)" and g € G.

Proof. For the first part of (b) note that if N € (I[/K)", then
NO =0 NN =N so H(NG) = H(§) and J(N0) = J(). The rest of the
corollary was seen in the course of the proof of Theorem 2.1.

In [7] an m by r tableau (henceforth to be called the lower tableau) of distinct

characters of J was described. Let g1, . . ., g, be a set of coset representatives
of G modulo I. Then {¢; = ¢%:2 = 1,...m} is the orbit of ¢ under G/K
(we may assume that ¢; = o). Let 74, . . ., 7, be elements of (G/K)" such that
{x:i=r7x:1=1,...,r} is the set of (distinct) elements of the orbit of x
under (G/K)" (we may assume x1 = x ). Let 7/, = A\, 2 = 1,...,7. Then

to each pair (x;,0:) is associated the unique character ¢,; in the sth row and
jth column of the lower tableau (this is a small change in notation from [7])
such that ¢;4|x = o;and (¥i;)9 =ex; G =1,...,m;j=1,...,7). In fact
Vi = (\)?% = Nyg? (note Lemma 1.2). There is considerable symmetry
concerning this tableau; for example J = J(x) = J(x;) for =1, ..., r;
I=1()=I(c;)i=1,...,m; I =1FW)=1I1,;) forallz,j;e=ex(x) =
ex(x;) = es(x;)7 =1,...,retc. And clearly, Theorem 2.1 and Corollary 2.2
apply with respect to any x;, ¢; and the corresponding ¢,;. Hence there
corresponds to ¢,; an irreducible character 6;; on such that (¢;;)7 = e,
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0.l s = ei;and (0,;)¢ = x.. The rm distinct characters of 1,6,;,0 = 1,...,m,
j=1,...,r form the upper tableau. Its properties, similar to those of the
lower tableau, are described in the next theorem.

THEOREM 2.3. (@) Let N\, =7/, j=1,...,7. Then 6,; = (\/0)7 = \/6'
where 8 = 011 corresponds to x and o.

(b) The elements of the jth column of the upper tableau are the distinct irreduci-
ble components of x;| r and they form a faithful orbit under the action of G/1.

(c) The rows of the upper tableau are the orbits under the action of (I/K)".

Proof. (a) Since ¢! = e and 0], = e, (\';87)|, = \,;(ey??) = ed,;, so by
Frobenius Reciprocity (¢Z,;, \;/677) = e. Since ¢ ?;; = eb;; clearly §,; = \,/6%:.
This equals (A\;/6)?¢ by Lemma 1.2.

(b) Since ¢ = x, x|y = 2 i=18%¢ and hence x;|; = 7;x|r = N,/ 20 = > 0.

(c) The » = [J : K] elements in any row clearly belong to an orbit under
(I/K)". Applying [7, Theorem 3.2] to ¢ and I (in place of x and G) we see
that [J(7¢) : K] equals the size of the orbit under ({/K)". This equals [J : K]
by Corollary 2.2 so the 7th row forms the complete orbit.

3. The intermediary subgroups.

Definition. Let G be any finite group, K a normal subgroup, x an irreducible
character of G, and ¢ an irreducible component of x|g. Let M be a subgroup
such that K € M C G with a character p such that p|x = ¢ and p¢ = x.
We call M an intermediary subgroup for x and o, with intermediary character p.

THEOREM 3.1. Let G/K be abelian, x an irreducible character of G and o an
irreducible component of x|x. Then there exisis an intermediary subgroup M
for x and o.

Proof. By induction on [G : K]. As noted earlier, we have K C J C I C G
and an irreducible character ¢ on J such that ¢ is an extension of ¢ and ¢ ¢ = ex.
By Corollary 2.2 (or directly from [2, Theorem 9.11]) there exists an irreducible
character 0 on I such that ¢7 = ef, 0|, = ey and 6¢ = . If either I # G or
J # K, then [I: J] < [G : K] and by induction there exists a subgroup M,
J € M C I and character p on M such that p extends ¥ and p? = 6. Then
clearly p also extends ¢ and p¢ = (p?)¢ = ¢ = x.

Suppose now that G = I and K = J. If (I/J)" were cyclic, then I/J would
also be cyclic and hence I = J by [7, Theorem 3.4] and the case is trivial.
Otherwise, let H be a non-trivial proper cyclic subgroup of (//J)" and let N
be the subgroup of I such that (N/J)t = H. Then (I/N)" = H (see |7,
Lemma 1.2]). Thus I/N is cyclic and ey(x) = 1 (see ‘‘Remark’ in section 1).
Since (I/N)" C (I/J)" and the elements of (I/J)" all fix x, we have that
v¢ = ey(x)x = x where v is an irreducible component of x|y, by Theorem
1.1, I(b). Now x|, = es where e = e,(x) so o is also a component of v| ;. By
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induction, there exists a subgroup M, J € M C N, and an irreducible char-
acter p on M such that ¢ extends to p and p¥ = v. Hence p? = y7 = y.

Remark. Independently of the author, it has recently been shown by 1. M.
Isaacs and David Price that Theorem 3.1 (the existence of intermediary sub-
groups) in fact holds for a considerably wider class of groups G/K, including
the case that G/K is supersolvable (see [6]).

TuEOREM 3.2. Let G/K be abelian with notation as above. Let M be any inter-
mediary subgroup (with character p) for x and o. Then J(x) € M C I(s).
Further if ¥ is the unique trreducible character of J with ¢ = ex and ¢|, = o,
and Y1 = e (i.e., ¥ and 0 are the elements of the lower and upper tableaux cor-
responding to x and o as tn Section 2) then M is an intermediary subgroup for 0
and  with character p.

Proof. Since p extends o to M, if g€ M, p’ =psod’ =g, and M C I(c) =1.
Since p¢ = x, if N € (G/M)", \x = x hence

M=N {Kerx: N€ (G/M)"} DN {Ker\: € (G/K)"and M fixesx} = J(x).

Since p extends ¢ to M, p|; is an extension of ¢ to J, hence equals one of the
characters in the top line of the lower tableau: i.e. p|, = ¢1;, say. Since
p% = x, x|u contains p, hence also ¢y;. By [7, Theorem 3.1]j = 1 and y¢,; =
Y11 = ¥, s0 p|; = ¢. Since p¢ = x is irreducible, p7 is an irreducible character

of I whose restriction to I contains ¢, hence pf = 6.

LEmMA 3.3. Under the same hypotheses as in Theorem 3.2, [I: M] =
[M:J] =e

Proof. [I : J] = €* by [7, Theorem 3.2 (iii)]. Since p|; = ¢, p? = 0, ¢ 7 = €
and 0|, = ey, we have e deg ¥ = deg 0 = deg p? = [I: M] deg . Thus
[I:M]=c¢and [M:J]=[1:J])/[L: M] =e.

THEOREM 3.4. Let G/K be abelian, x an irreducible character on K, o an
irreducible component of x|x. Let M be an intermediary subgroup for x and o.
Then there exist precisely e intermediary characters py, . . . , p. for x and o on M.
They form an orbit under both the actions of I/M by conjugation and (M/J)"
by multiplication. Under these actions I/M and (M/J)" are represented faith-
fully by the same regular permutation group; thus I/ M = (M/J)".

Proof. Let p be an intermediary character for x and ¢ on M. By Theorem 3.2
we may regard M as intermediary subgroup for ¢ and 6 where ¢ is an irreducible
character of J = J(x) = J(0) (by Theorem 2.1) and 6 is an irreducible char-
acter of I = I(s) = I(Y). Also p|; = ¢, p? = 0. Since p? is irreducible, I/ M
operates faithfully on p yielding the orbit {pi,...,p} with e = [I: M]
elements and these are the only characters which induce to 6. Since p is an
extension of ¥, (M /J)" operates faithfully on p, forming an orbitof e = [M : J]
elements which are precisely the extension of ¢ to M. Let v € (M/J)". Then
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vp is an element of the latter orbit. Extend v to v’ € (I /J )". Then (yp)’ =
v'p? = ~'0 = 6 (by definition of J = J(f)). Hence vp = p* some k € I. We

label the elements of (M/J)" here vy, ..., v. (so that y;0 = p;). Then choose
coset representatives ki, ..., h, of I modulo M such that vy, = p",
1 =1,2,...,e That this bijective correspondence of (M/J)" with I/M

is an isomorphism is seen as follows: Suppose that #/; = h; modulo M. Since
(y)* = (y:) by Lemma 1.2, we have

yip = pMt = p®) = (p")i = (yip)" = (vi)"ip"i = v = vivsp.

Hence v; = vy, since (M/J)" acts faithfully on p. (Note: the initial choice of
terminology in [7], i.e. that ¢/(x) = o(gxg™') causes I/M apparently to act
here as a permutation group on the right, but since I/M is abelian it may also
be interpreted as affording permutations on the left).

COROLLARY 3.5. I/M = M/J.

THEOREM 3.6. Let G/K be abelian and M an tntermediary subgroup for x and
a. Then for each x; in the orbit of x under (G/K)" and each o; in the orbit of o
under G/K, M is an intermediary subgroup with e intermediary characters. M is
an tntermediary subgroup for each corresponding pair 0,; and ,; from the upper
and lower tableaux.

Proof. Let p be a character on M which is intermediary for x and o. Then by
Theorem 3.2 it is also intermediary for 8 and y. Following the notation
of Theorem 2.3, we let \,/ = 7,|;, 7 =1, ..., r. Further let N\, = \/[s,
i=1, ..., r pls =y so N\j/'p%|; = Ny’ = ;. [t may be verified that
(e’ = (. Then since p7 = 0, (\/'p’)T = N (o) = N (p")'i =
\,//07t = 0,;. Thus \;//p? is an intermediary character for ,; and ¢ ;. Lt follows
that it is also an mtermedldry character for x; and o;.

Remark. If S;; denotes the set of e intermediary characters on M for 6,; and
¥.; then the union of the S;; is a set S of erm characters on M corresponding to
the entire tableaux. Each character ¢; has exactly er extensions to M
Sy i =1,...,r) while there are precisely em characters on M
(I Si:i=1,...,m) which give x; when induced to G.

4. An Example. It is known that [/J = H; X H, (direct product) with
H, = H, (see [5, p. 126]) and since [/ M = M/J, where M is an intermediary
subgroup, this suggests that I/J might be expressed as a direct product
(M/J) X Hs with H, = M/J. That this is not true in general is shown by the
following example.

Let G be a group of order 64, generated by elements «, b, ¢ with ac = ca.
bc = cb, a* = ¢2, b* = 1, b'ab = ac (group number 180 in [8]). Let J = (¢),
the subgroup generated by c. Let ¥ be the linear character of {¢) given by
Y (c) =1 and extend ¢ to pon M; = (a?, b2, ¢) by setting p(b?) =1, p(a?) = —1i.
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Then it can be checked that p¢ = 6 is irreducible, G = I(y) = I, M; is
an intermediary subgroup for 6 and ¢ and I/J is not the direct product of
M,/J with any other subgroup. However if M, = {(a, ¢), then it is now easily
seen that if p’ is any extension of ¢ to Ms, we will have (o’)¢ = 0 so that M, is
also an intermediary subgroup. In this case, I/J = (M./J) X H/J with
H = (b, ¢). Further, M,/J 22 M,/J (the first being the Klein Four-group,
while the second one is cyclic). [Added in proof: ¢t = 1;J = J(9)]
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