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A DUAL VIEW OF THE CLIFFORD THEORY OF 
CHARACTERS OF FINITE GROUPS, II 

RICHARD L. ROTH 

Introduction. This paper continues the analysis of Clifford theory for the 
case of a finite group G, K a normal subgroup of G and G/K abelian which was 
developed in [7]. In [7] the permutation actions of G/K on the characters of 
K and of (G/K)" on the characters of G were studied in relation to their effects 
on induction and restriction of group characters. With % an irreducible 
character of G, and a an irreducible component of X\K, the chain of subgroups 
K Ç J(x) Ç 1(a) Ç G was investigated, where I = 1(a) is the usual inertial 
subgroup for a and / = J(x) is a subgroup called the dual inertial group for %. 
Corresponding to the orbit of x under (G/K)" and of a under G/K we investi­
gated a tableau of characters on / . In this paper a similar tableau is developed 
for / . A further subgroup M, called an intermediary subgroup, is introduced 
with J ^ M ^ I which has the property that a extends to a character p of M 
and pG = x- There are in fact eK(x) such choices for p forming one orbit under 
the actions of I/M and of (M/J)". (Here, the two types of actions are observed 
on the same set of characters.) The permutations involved are in fact identical, 
which leads to an isomorphism of I/M and (M/J)". Thus also I/M = M/J. 
M is not unique and an example is given with two intermediary subgroups 
Mu M2 with Mi/J gk M2/J. 

Since writing [7], the author has become aware that some of the results on 
"dual Clifford theory" had been previously established in [4, Section 4] and 
[5, Section 3]; see also the more recent article [9, (Section 1)]. It should further 
be remarked that Dade, using a somewhat different approach, has also investi­
gated the special properties of Clifford theory for G/K abelian in [1, Chapter 3]. 

1. Background. The notation in this paper will be the same as in [7]. All 
groups are finite and all characters come from representations over the complex 
numbers. As in [7], K is a normal subgroup of G, and the paper in general is 
concerned with the case that G/K is abelian. 

As is well-known (see for example [3, Chapter V, Section 17]), if x is an 
irreducible character of G and a an irreducible component of xU then the 
usual Clifford decomposition gives 

m 

(1) X\K = eK(x) Z *" 

where gi, . . . , gm
 a r e coset representatives for G modulo I(<r), the inertial 
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group of (T, and eK(x) is Clifford's index of ramification of x with respect to K. 
If G/K is abelian, it follows from [7 (see Theorem 3.2, (vi) for example)] t h a t 
given o-, eK(x) = eK(x') for any irreducible character yf of G whose restric­
tion to K contains a. Hence e = eK(x) might be regarded dual ly as the 
"ramification index of a with respect to G", independent of choice of %• 

G/K acts by conjugation on the characters of K while (G/KY, the dual 
group of one dimensional characters of G/K, acts by multiplication on the 
characters of G. In Section 2 of [7], the effects of these actions on induction and 
restriction of group characters were compared and can be summarized in the 
following scheme: 

T H E O R E M 1.1. Let G/K be abelian. Let x be an irreducible character of G, 
<J an irreducible character of K. 

I. (a) (G/KY operates faithfully on x <=> X\K is irreducible. 
(b) (G/KY fixes x ^ eX is induced from an irreducible character of K. 

Here e is the ramification index of x with respect to K. 
I I . (a) G/K operates faithfully on a <=> aG is irreducible. 

(b) G/K fixes (j <=> ea is the restriction of an irreducible character of G. 
Here e is the ramification index of a with respect to G. 

Proof. 1(a) is Corollary 2.6, 1(b) is Theorem 2.1 , and 11(a) is Theorem 2.7 
(these references being to [7]). 11(b) is seen as follows: Le t x be an irreducible 
character of G such t h a t a is a component of xU- T h e n in Equa t ion (1), 
G/K fixes a <̂=> m = 1 «=> X\K — <*> 

Remark. If G/K is cyclic, then it is known t h a t e = 1 ([7, L e m m a 1.1]; see 
[2, Theorem 9.12] for proof). T h u s Theorem 1.1 in this case becomes precisely 
the " s u m m a r y for G/K cyclic" given in [7, bo t tom of p . 260]. 

T h e following lemma will be useful later in the article. 

L E M M A 1.2. Let G/K be abelian, L any subgroup between G and K. Let 
X G (L/KY and g G G. Then X9 = X. 

Proof. If x G L and g G G, then gxg~l = kx, k Ç K and \9(x) = \(gxg~l) = 
\(kx) = \(k)\(x) = \(x). 

In [7], the dual inertial group J(x) with respect to K was defined as follows: 

L e t t f ( x ) = | H (G/KY\\x = x} . Then 

J(x) = f M K e r X : X G # ( x ) } . 

Various theorems concerning J = J(x) were established in [7]. For example, 
(I : J) = e2 where I = 1(a) and e = eK(x) = ^j-(x)- There is a unique 
irreducible character yp of J which is a component of x| J and such t h a t \p\K = a 
and \f/G = ex- This nota t ion will be used th roughout this paper. 

2. T h e lower a n d upper t a b l e a u x . Let G/K be abelian, x, \p, a, I = /(or), 
J = J(x) be as described in Section 1. In [7, Theorem 3.2 (i)] it was observed 
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t h a t 1(a) = Ity), the inertial subgroup of \p in G. The following theorem gives 
a similar result for / . 

T H E O R E M 2.1. Let r be any irreducible component of x |/- Let J{r) be the dual 

inertial group of r (defined with respect to the groups / and K). Then J(r) = 

J(x). 
Proof. By [2, Theorem 9.11] applied to x on G and \{/ on J there exists an 

irreducible character d on I = I(\f/) such tha t 6G = x and \p is a component of 
6\ j . Fur ther ej(x) = ej(6). Denote this as e, as usual. Then 6\ j = e\f/ (Formu­
la (1) of Section 1). And, OA7,0) = G M | , ) = e ^ s o d e g ^ 7 = [/ : J] deg ^ = e2 

deg >$/ = e deg 0, so t ha t \pI = ed. 
This means t h a t (I/JY fixes 0 (by Theorem 1.1, 1(b)) . Let t ing H(0) = 

subgroup of (1/K.y which fixes 0, we have (I/JY C i ï ( 0 ) . Then 

7(0) = H {Ker X : X G ff(ô)| ç H {KerX : X G (J/7)A} = J ( x ) . 

Bu t [J : J(x)] = e2 = [I : 7(0)] by [7, Theorem 3.2 (hi)] so 7(0) = J(x). 
Any irreducible component r of x| / is of the form 6°, g G G and 7(0) = 

J(6s) is seen, using Lemma 1.2, as follows: 

if x G (i/Ky, \e = e ̂  (\ey = e° <=> x v = e9 «=> xe9 = e9. So H (e) = H(e9) 
and J(d) = J(69). 

COROLLARY 2.2. With the same notation as above we have: 
(a) there exists an irreducible character 0 such that \f/T = ed, 6\j = e\p and 

eG = x ; 
(b) J (KO) = J (6) = J(69) = J(x)for any X G (I/KY and g G G. 

Proof. For the first par t of (b) note t ha t if X' G (I/KY, then 
\ ' 0 = 0 ^ X ' X 0 = X0 so H(KB) = H(d) and J(kd) = J(6). The rest of the 
corollary was seen in the course of the proof of Theorem 2.1. 

In [7] an m by r tableau (henceforth to be called the lower tableau) of distinct 
characters of J was described. Let g\, . . . , gm be a set of coset representat ives 
of G modulo / . Then {at = a9i : i = 1, . . . m) is the orbit of a under G/K 
(we may assume tha t a\ = a). Let n , . . . , rr be elements of (G/KY such t h a t 
{Xi = TiX : i = 1, • • • , A is the set of (distinct) elements of the orbit of x 
under (G/KY (we may assume xi = x ) - Let TI\J = \ t l i = 1, . . . , r. Then 
to each pair (xj^t) is associated the unique character ^tj in the ith row and 
j t h column of the lower tableau (this is a small change in notat ion from [7]) 
such t h a t \l/a\K = at and (f/^)0 = exj (i = 1, . . . , m; j = 1, . . . , r). In fact 
$ij = Q^$)0i = ^$di (note Lemma 1.2). There is considerable symmet ry 
concerning this tableau; for example J = J(x) = J(Xj) f ° r j = 1> • • > r\ 
I = 1(a) = I(a{) i = 1, . . . , m\ I = I(j/) = I(pij) for all ij; e = eK(x) = 
€K(XJ) = ej(Xj)j = I» • • • > f e t e . And clearly, Theorem 2.1 and Corollary 2.2 
apply with respect to any xu <*$•> a n d the corresponding \ptj. Hence there 
corresponds to ^ an irreducible character 0O- on such t ha t (Pa)1 = eO^, 
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Ou] J = e&ij a n d (Oij)G = Xi- T h e rm dist inct characters of 7, 0^-, i = 1, . . . , m, 
j = 1, . . . , r form the upper tableau. I ts properties, similar to those of the 
lower tableau, are described in the next theorem. 

T H E O R E M 2.3. (a) Let X/ = Tj\ 7 , j = 1, . . . , r. Then 6tj = (\/0)Oi = \/60i 

where 0 = 0n corresponds to x and (J-
(b) The elements of thejth column of the upper tableau are the distinct irreduci­

ble components of Xj\ i and they form a faithful orbit under the action of G/I. 
(c) The rows of the upper tableau are the orbits under the action of (I/KY-

Proof, (a) Since ty1 = ed and 0\j = e$, ( X ' ^ O U = h(^Si) = <$ih s o bY 
Frobenius Reciprocity (\l/I

ij1 \/60i) = e. Since \l/I
ij = ed^; clearly 6{j = \/60i. 

This equals (\/O)0i by L e m m a 1.2. 

(b) Since 6G = x, x\i = T,?=id9i and hence XJ\I = rjX\i = X / X ^ = E ^ -
(c) T h e r = [J : K] elements in any row clearly belong to an orbit under 

(I/KY- Applying [7, Theorem 3.2] to 6di and 7 (in place of x a n d G) we see 
tha t [J(6Qi) : K] equals the size of the orbit under (I/Ky. This equals [J : K] 
by Corollary 2.2 so the ith row forms the complete orbit . 

3. The intermediary subgroups. 

Definition. Let G be any finite group, K a normal subgroup, x a n irreducible 
character of G, and a an irreducible component of x U- Let i f be a subgroup 
such t h a t K Ç M Ç G with a character p such t h a t p ^ = a and pG = x-
We call M an intermediary subgroup for x and o-, with intermediary character p. 

T H E O R E M 3.1. Let G/K be abelian, x an irreducible character of G and a an 
irreducible component of X\K- Then there exists an intermediary subgroup M 
for x and a. 

Proof. By induction on [G : K]. As noted earlier, we have K Ç / Ç I C G 
and an irreducible character \f/onJ such t h a t ^ is an extension of a and ^ G = ex. 
By Corollary 2.2 (or directly from [2, Theorem 9.11]) there exists an irreducible 
character 0 on I such t h a t xp1 = ed, 0| j = e\p and 6G = \p. If either I ^ G or 
J ?£ K, then [ I : J] < [G : X] and by induction there exists a subgroup M, 
J Cl M Ç1 I and character p on ilf such t h a t p extends \{/ and p1 = 6. Then 
clearly p also extends o- and pG = (pT)G = 6G = x-

Suppose now tha t G = I and i£ = J. If (I/JY were cyclic, then 7 / 7 would 
also be cyclic and hence I = J by [7, Theorem 3.4] and the case is trivial. 
Otherwise, let H be a non-trivial proper cyclic subgroup of {I/JY and let TV 
be the subgroup of I such t h a t (N/J)1- = i7. Then {I/NY ^ 7T (see [7, 
L e m m a 1.2]). T h u s I/N is cyclic and eN(x) = 1 ( s ee " R e m a r k " in section 1). 
Since (I'/NY ^ (I/JY a n d the elements of (I/JY aU fix x> we have t h a t 
yG = eN(x)x = X where 7 is an irreducible component of X\N, by Theorem 
1.1, 1(b). Now X\J = e(J where e = ej(x) so a is also a component of y\j. By 
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induction, there exists a subgroup M, J Ç M Ç N, and an irreducible char­

acter p on M such t h a t a extends to p and pN = y. Hence p1 = y1 = x-

Remark. Independent ly of the author, it has recently been shown by I. M. 
Isaacs and David Price t ha t Theorem 3.1 (the existence of intermediary sub­
groups) in fact holds for a considerably wider class of groups G/K, including 
the case tha t G/K is supersolvable (see [6]). 

T H E O R E M 3.2. Let G/K be abelian with notation as above. Let M be any inter­
mediary subgroup (with character p) for x an& a- Then J(x) £ M Ç 1(a). 
Further if \p is the unique irreducible character of J with \pG = ex and \p\j = a, 
and \f/J = ed (i.e., \f/ and 6 are the elements of the lower and upper tableaux cor­
responding to x and a as in Section 2) then M is an intermediary subgroup for 6 
and \p with character p. 

Proof. Since p extends a to M, if g £ M, p° = p so aç = a, and M Ç 1(a) = 1. 

Since pG = x, if X 6 (G/MY, X% = x hence 

M = C\ {KerX: XG (G/MY} 3 H { K e r X : X £ (G/KYand X fixesx) = J ( x ) . 

Since p extends a to M, p\j is an extension of a to / , hence equals one of the 
characters in the top line of the lower tableau: i.e. p\j = \pij, say. Since 
PG = XJ X\M contains p, hence also \f/ij. By [7, Theorem 3.1] j = 1 and ^ = 
^ n = ti so p\ J = \f/. Since pG = x 1S irreducible, p1 is an irreducible character 
of I whose restriction to I contains \f/, hence p1 = 6. 

L E M M A 3.3. Under the same hypotheses as in Theorem 3.2, [/ : M] = 
[M:J]= e. 

Proof. [I : J] = e2 by [7, Theorem 3.2 (iii)]. Since p\j = f, p1 = 0, t 1 = ed 
and 6\j = e\[/, we have e deg \p = deg 6 = deg p1 = [I : M] deg \p. T h u s 
[I : M] = e and [M : J] = [I : J]/[I : M] = e. 

T H E O R E M 3.4. Let G/K be abelian, x an irreducible character on K, a an 
irreducible component of %U- Let M be an intermediary subgroup for x and v. 
Then there exist precisely e intermediary characters pi, . . . , pefor x and °" on M. 
They form an orbit under both the actions of I/M by conjugation and (M/JY 
by multiplication. Under these actions I/M and (M/JY are represented faith­
fully by the same regular permutation group; thus I/M = (M/JY. 

Proof. Let p be an intermediary character for x a n d o" on M. By Theorem 3.2 
we may regard M as intermediary subgroup for ^ and 6 where \j/ is an irreducible 
character of J = J(x) — J(0) (by Theorem 2.1) and 6 is an irreducible char­
acter of I = 1(a) = I(\p). Also p\ j = \p, p1 = 6. Since p1 is irreducible, I/M 
operates faithfully on p yielding the orbit {pi, . . . , pe) with e = [I : M] 
elements and these are the only characters which induce to 6. Since p is an 
extension of \p, (M/JY operates faithfully on p, forming an orbit of e = [M : J] 
elements which are precisely the extension of ^ to M. Let y G (M/JY. Then 
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yp is an element of the latter orbit. Extend y to yf 6 (I/JY- Then (YP)7 = 
y'p1 = y'B = 6 (by definition of / = J'(6)). Hence yp = ph some h £ I. We 
label the elements of {M/JY here 71, . . . , ye (so t h a t ytp = pt). Then choose 
coset representat ives hi, . . . , he of / modulo M such t h a t ytp= ph\ 
i = 1, 2, . . . , e. T h a t this bijective correspondence of {M/JY with I/M 
is an isomorphism is seen as follows: Suppose t h a t hthj = hk modulo M. Since 
{yt)hi = {yù by L e m m a 1.2, we have 

7,p = p*& = p<*<*'> = (p**)*1' = (7iP)*y = ( Y < ) V ' = 7iP*' = 7z7;P. 

Hence yk = 7*7^, since {M/JY acts faithfully on p. (Note: the initial choice of 
terminology in [7], i.e. t h a t <rg{x) = v{gxg~l) causes I/M apparen t ly to act 
here as a permuta t ion group on the right, bu t since I/M is abelian it m a y also 
be interpreted as affording permuta t ions on the left). 

COROLLARY 3.5. I/M ^ M/J. 

T H E O R E M 3.6. Let G/K be abelian and M an intermediary subgroup for x and 
a. Then for each Xj in the orbit of % under {G/K)" and each at in the orbit of a 
under G/K, M is an intermediary subgroup with e intermediary characters. M is 
an intermediary subgroup for each corresponding pair Btj and yp^from the upper 
and lower tableaux. 

Proof. Le t p be a character on M which is in termediary for x a n d 0-. T h e n by 
Theorem 3.2 it is also intermediary for 6 and \p. Following the nota t ion 
of Theorem 2.3, we let X/ = TJ\ 7, j = 1, . . . , r. Fu r the r let A/ ' = \/\M, 
j = 1, . . . , r. p\ j = \p so \/'p0i\j = ^j*Pgi = *Pij. I t m a y be verified t h a t 
(pa)* = {piyi. Then since p1 = 6, ( X / V O 7 = V ( p ^ ) 7 = X / ( P 7 ) ^ ' = 
\/6gi = Bij. T h u s \j'p0i is an intermediary character for Btj and \pn. I t follows 
t h a t it is also an intermediary character for Xj a n d at. 

Remark. If S^ denotes the set of e in termediary characters on M for Btj and 
\pij then the union of the Stj is a set 5 of erm characters on M corresponding to 
the entire tableaux. Each character at has exactly er extensions to M 
{\J Sfj : i = 1, . . . , r) while there are precisely em characters on M 
(\J Sij : i = 1, . . . , m) which give Xj when induced to G. 

4. A n E x a m p l e . I t is known t h a t I/J — Hi X H2 (direct product) with 
Hi ^ H2 (see [5, p . 126]) and since I/M ^ M/J, where M is an in termediary 
subgroup, this suggests t h a t I/J might be expressed as a direct product 
{M/J) X H2 with H2 = M/J. T h a t this is not t rue in general is shown by the 
following example. 

Le t G be a group of order 64, generated by elements a, b, c with ac = ca. 
be = cb, a4 = c2, 64 = 1, b~lab = ac (group number 180 in [8]). Le t / = (c), 
the subgroup generated by c. Le t \p be the linear character of (c) given by 
\(/{c) = i and extend ^ to p on M\ = {a2, b2, c) by set t ing p{b2) = 1, p{a2) = —i. 
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Then it can be checked that pG = 6 is irreducible, G = I(\p) = I, Mi is 
an intermediary subgroup for 6 and \p and / / / is not the direct product of 
Mi/J with any other subgroup. However if M2 = (a, c), then it is now easily 
seen that if p' is any extension of \p to M2, we will have {p')G = 6 so that M2 is 
also an intermediary subgroup. In this case, I/J = (M2/J) X H/J with 
H = (b, c). Further, Mi/J 9É M2/J (the first being the Klein Four-group, 
while the second one is cyclic). [Added in proof: à = 1 ; / = J(6)] 
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