ANALOGUES OF ENTIRE FUNGTION INEQUALITIES FOR AN ANALYTIC FUNCTION

S. K. BAJPAI AND JOSEPH TANNE

1. Let $f(z)=\sum_{k=1}^{\infty} c_{k} z^{\lambda k}$ be an analytic function with radius of convergence $R(0<\mathrm{R}<\infty)$. Set

$$
\begin{aligned}
M(r) & =M(r, f)=\max _{|z|=r}|f(z)|, \quad m(r)=\max _{k \geqq 0}\left\{\left|c_{k}\right| r^{\lambda_{k}}\right\}, \\
\nu(r) & =\max \left\{\lambda_{k}\left|m(r)=\left|c_{k}\right| r^{\lambda_{k}}\right\},\right.
\end{aligned}
$$

and let the order ρ and lower order λ of $f(z)$ be defined by

$$
\begin{equation*}
{ }_{\lambda}^{\rho}=\lim _{r \rightarrow R} \sup _{\text {inf }}[\log x]^{-1} \log ^{+} \log ^{+} m(r) \tag{1.1}
\end{equation*}
$$

where $x=R r /(R-r)$. If $0<\rho<\infty$, we define the type T and lower type t of $f(z)$ by

$$
\begin{equation*}
T=\lim _{r \rightarrow R} \sup _{\text {inf }}\left[x^{-\rho} \log ^{+} m(r)\right] \tag{1.2}
\end{equation*}
$$

Also, if $0<\rho<\infty$, define the "growth numbers" γ and δ by

$$
\begin{equation*}
\stackrel{\gamma}{\delta}=\lim _{r \rightarrow R} \sup \left\{\frac{\nu(r)}{x^{\rho+1}}\right\} \tag{1.3}
\end{equation*}
$$

The purpose of our discussion will be to obtain some inequalities involving the growth constants defined above. Similar inequalities hold in the case where $f(z)$ is an entire function.
2. If $f(z)$ is an entire function of order $\rho(0<\rho<\infty)$ and if T, γ, δ are defined by

$$
T=\underset{r \rightarrow \infty}{\lim \sup } \frac{\log m(r)}{r^{\rho}}, \quad \begin{aligned}
& \gamma \\
& \delta
\end{aligned}=\lim _{r \rightarrow \infty} \sup \inf \frac{\nu(r)}{r^{\rho}},
$$

we have that $\delta \leqq \rho T \leqq \gamma \leqq e \rho T$ and $\gamma+\delta \leqq e \rho T$. (See Shah [3] and Singh [4]). In our case we have the following:

Theorem 1. Let $f(z)$ be an analytic function with radius of convergence R

Received August 24, 1973 and in revised form, February 7, 1975.
$(0<R<\infty)$ and order $\rho(0<\rho<\infty)$. Then
(2.1) $\delta R \leqq \rho t \leqq \rho T \leqq \gamma R \leqq \rho T\left(1+\frac{1}{\rho}\right)^{1+\rho}\left[1+\frac{\delta}{\gamma \rho}\right]^{-\rho-1}$,
where $\rho, \gamma, \delta, t, T$ are as in (1.1), (1.2), and (1.3).
Proof. We have that (Sons [5])
(2.2) $\log m(r)=O(1)+\int_{r_{0}}^{r} \frac{\nu(s)}{s} d s$.

Thus, for $k \geqq 1$, we have
(2.3) $\log m(r)=O(1)+\int_{r_{0}}^{R(r / R)^{k}} \frac{\nu(s)}{s} d s+\int_{R(r / R)^{k}}^{r} \frac{\nu(s)}{s} d s$.

Now, from (1.3), we have for $r \geqq r_{0}(\epsilon)\left(r_{0}<R\right)$,
(2.4) $\quad(\gamma+\epsilon) x^{\rho+1}>\nu(r)>(\delta-\epsilon) x^{\rho+1}$.

Since $(R / \log (R / r)) \sim x$, as $r \rightarrow R$, we can obtain, for $r \geqq r_{0}$,

$$
\begin{equation*}
(\gamma+\epsilon)\left(R / \log \frac{R}{r}\right)^{\rho+1}>\nu(r)>(\delta-\epsilon)\left(R / \log \frac{R}{r}\right)^{\rho+1} \tag{2.5}
\end{equation*}
$$

Thus, from (2.3) and (2.5) we get

$$
\begin{aligned}
\log m(r) & \geqq O(1)+\int_{r_{0}}^{R(r / R)^{k}} \frac{(\delta-\epsilon) R^{\rho+1} d s}{s[\log (R / s)]^{+1}}+\nu\left(R\left(\frac{r}{R}\right)^{k}\right) \int_{R(r / R)^{k}}^{r} \frac{d s}{s} \\
& =O(1)+\frac{(\delta-\epsilon) R}{\rho k^{\rho}}\left(\frac{R}{\log (R / r)}\right)^{\rho}+(k-1) \nu\left(R\left(\frac{r}{R}\right)^{k}\right) \log \frac{R}{r} \\
& \sim O(1)+\frac{(\delta-\epsilon) R x^{\rho}}{\rho k^{\rho}}+\frac{(k-1) R \nu\left(R(r / R)^{k}\right)}{x}
\end{aligned}
$$

Thus,

$$
T \geqq \frac{\delta R}{\rho k^{\rho}}+(k-1) R \limsup _{r \rightarrow R} \frac{\nu\left(R(r / R)^{k}\right)}{[R r /(R-r)]^{\rho+1}}
$$

But

$$
\begin{aligned}
& \limsup _{r \rightarrow R} \frac{\nu\left(R(r / R)^{k}\right)}{\left\{\left[R\left(R(r / R)^{k}\right)\right] /\left[R-R(r / R)^{k}\right]\right\}^{\rho+1}} \\
& \quad \frac{\left\{\left[R\left(R(r / R)^{k}\right)\right] /\left[R-R(r / R)^{k}\right]\right\}^{\rho+1}}{[R r /(R-r)]^{\rho+1}} \\
& \quad \geqq \gamma \liminf _{r \rightarrow R}\left\{\frac{r^{k-1}(R-r)}{\left(R^{k}-r^{k}\right)}\right\}^{\rho+1}=\frac{\gamma}{k^{\rho+1}}
\end{aligned}
$$

Hence,

$$
T \geqq \frac{\delta R}{\rho k^{\rho}}+\frac{R(k-1) \gamma}{k^{\rho+1}},
$$

so that

$$
\begin{equation*}
\rho T \geqq \frac{R[\delta k+(k-1) \rho \gamma]}{k^{\rho+1}} \tag{2.6}
\end{equation*}
$$

The right-hand side of (2.6) is maximized for

$$
k=\frac{\gamma \rho+\gamma}{\delta+\gamma \rho} .
$$

Substituting this value for k in (2.6) yields

$$
\rho T \geqq \gamma R\left(\frac{\rho}{1+\rho}\right)^{1+\rho}\left(1+\frac{\delta}{\gamma \rho}\right)^{1+\rho}
$$

which gives the right-most inequality of (2.1). The other inequalities in (2.1) follow readily from (1.2), (2.2), and (2.4).
3. We now establish some inequalities involving certain mean moduli of an analytic function and its derivative proceeding along the lines of Lakshminarasimhan [2]. First of all, let

$$
A^{*}(r, f)=\max _{|z|=r}|\operatorname{Re} f(z)|
$$

and define $I_{\delta}(r, f)$ and $J_{\delta}(r, f)$ for $\delta>0$ by

$$
\begin{aligned}
& I_{\delta}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta} \\
& J_{\delta}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta}
\end{aligned}
$$

Lakshminarasimhan [2] has shown that $I_{\delta}(r, f), J_{\delta}(r, f)$, and $A^{*}(r, f)$ are monotonic increasing functions of r, that $\lim _{\delta \rightarrow \infty} I_{\delta}(r, f)=M(r, f)$, $\lim _{\delta \rightarrow \infty} J_{\delta}(r, f)=A^{*}(r, f)$, and that

$$
\log J_{\delta}(r, f) \sim \log I_{\delta}(r, f) \sim \log A^{*}(r, f) \sim \log M(r, f)
$$

provided $\log m(r) \sim \log M(r)$. He also gives the following two lemmas (given as Lemma 1 and Lemma 6 in [2]) which we shall need.

Lemma 1. Suppose $P(z)$ is a polynomial of degree n having derivative $P^{\prime}(z)$. Then for any constant δ such that $1 \leqq \delta \leqq \infty$ and $z=r e^{i \theta}$,

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta} \leqq A_{\delta} \frac{n}{r}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} P\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta}
$$

where

$$
A_{\delta}^{\delta}=\sqrt{ } \pi \frac{\Gamma(1+\delta / 2)}{\Gamma(1 / 2+\delta / 2)}, \quad A_{\delta} \rightarrow 1 \text { as } \delta \rightarrow \infty
$$

Lemma 2. Define $I_{\delta}(r, f)$ and $J_{\delta}(r, f)$ for $a \delta \geqq 1$. Then, for almost all r,
(i) $I_{\delta}\left(r, f^{\prime}\right) \geqq \frac{d}{d r} I_{\delta}(r, f)$
(ii) $J_{\delta}\left(r, z f^{\prime}\right) \geqq r \frac{d}{d r} J_{\delta}(r, f)$
(iii) $A^{*}\left(r, z f^{\prime}\right) \geqq r \frac{d}{d r} A^{*}(r, f)$.

Lakshminarasimhan gives the preceding lemma for an entire function but the same proofs hold in the case where $f(z)$ is an analytic function with a finite radius of convergence.

The next lemma is analogous to Lemma 2 of Lakshminarasimhan.
Lemma 3. Let $f(z)=\sum_{k=0}^{\infty} c_{k} z^{\lambda_{k}}$ be an analytic function with radius of convergence $R(0<R<\infty)$, order $\rho(0<\rho<\infty)$ and type $T(0 \leqq T<\infty)$. Let β be chosen so that $0<\beta<1$. Then there exists a positive integer $K(\beta)$ tending to ∞ as β tends to 0 such that

$$
g(z)=\sum_{k=K(\beta)+1}^{\infty} c_{k} z^{\lambda_{k}}
$$

where

$$
\begin{aligned}
|z|=R \exp \left[-\lambda_{K(\beta)}\right)^{-1 /(1+\rho)}(L+\beta)^{1 /(1+\rho)} /(1 & -\beta)] \\
L & =T(1+\rho)^{1+\rho}(R / \rho)^{\rho}
\end{aligned}
$$

satisfies the inequalities

$$
\begin{aligned}
& |g(z)| \leqq B(\beta), \quad\left|z g^{\prime}(z)\right| \leqq A(\beta) \\
& B(\beta)<A(\beta) \rightarrow 0 \text { as } K \rightarrow \infty \text { and } \beta \rightarrow 0 .
\end{aligned}
$$

Proof. The type T can be given by

$$
T=\limsup _{k \rightarrow \infty} \frac{\left[\log ^{+}\left(\left|c_{k}\right| R^{\lambda_{k}}\right)\right]^{\rho+1}}{(1+\rho)^{1+\rho}(R / \rho)^{\rho} \lambda_{k}^{\rho}}
$$

Thus, for $k \geqq K(\beta)$ we have

$$
\left|c_{k}\right|<R^{-\lambda_{k}} \exp \left[(L+\beta) \lambda_{k}\right]^{1 /(\rho+1)} .
$$

Thus,

$$
|g(z)|<\sum_{k=K(\beta)+1}^{\infty}\left|c_{k}\right| r^{\lambda_{k}}
$$

$$
\text { where } r=R \exp \left[-\lambda_{k}^{-1 /(1+\rho)}(L+\beta)^{1 /(1+\rho)} /(1-\beta)\right]
$$

so that

$$
|g(z)|<\sum_{k=K(\beta)+1}^{\infty} \exp \left[-\lambda_{k}^{1 /(1+\rho)} B(L+\beta)^{1 /(1+\rho)} /(1-\beta)\right]=B(\beta)<\infty
$$

Also,

$$
\begin{aligned}
\left|z g^{\prime}(z)\right| & \leqq \sum_{k=K(\beta)+1}^{\infty} \lambda_{k}\left|c_{k}\right| r^{\lambda_{k}} \\
& <\sum_{k=K(\beta)+1}^{\infty} \lambda_{k} \exp \left[-\beta(L+\beta)^{1 /(1+\rho)} \lambda_{k}^{1 /(1+\rho)} /(1-\beta)\right]=A(\beta) \\
& <\infty
\end{aligned}
$$

We are now able to prove the following theorem, which is analogous to Theorem 1 of Lakshminarasimhan [2].

Theorem 2. Let $f(z)=\sum_{k=0}^{\infty} c_{k} z^{\lambda_{k}}$ have radius of convergence $R(0<R<\infty)$, order $\rho(0<\rho<\infty)$, and type $T(0 \leqq T<\infty)$. Then, if $\log m(r) \sim \log \mathrm{M}(r)$.

$$
\begin{equation*}
\rho R^{\rho} T \leqq \limsup _{r \rightarrow R} \frac{r I_{\delta}\left(r, f^{\prime}\right)}{I_{\delta}(r, f)(\log R / r)^{-\rho-\overline{1}}} \leqq A_{\delta \rho} R^{\rho} T\left(1+\frac{1}{\rho}\right)^{1+\rho}, \tag{3.1}
\end{equation*}
$$

where A_{δ} is as in Lemma 1.
Proof. We first prove the left-hand inequality.
In view of Lemma 2(i) it suffices to prove that
(3.2) $\quad \limsup _{r \rightarrow R}\left[\frac{r(d / d r) I_{\delta}(r, f)}{I_{\delta}(r, f)(\log R / r)^{-\rho-1}}\right] \geqq \rho T R^{\rho}$.

Suppose now that inequality (3.2) does not hold. Then we must have for some $h(h>0)$ that

$$
\begin{equation*}
\frac{d}{d r} I_{\delta}(r, f)<\frac{1}{r} I_{\delta}(r, f)\left(\log \frac{R}{r}\right)^{-\rho-1} \rho T R^{\rho}(1-h) \tag{3.3}
\end{equation*}
$$

for all $r \geqq r_{0}(h)$ for which the left-hand side of (3.3) exists. Thus,

$$
\begin{aligned}
\log I_{\delta}(r, f)-\log I_{\delta}\left(r_{0}, f\right) & <\rho T R^{\rho}(1-h) \int_{r_{0}}^{r} \frac{1}{r}\left(\log \frac{R}{r}\right)^{-\rho-1} d r \\
& =T R^{\rho}\left(\log \frac{R}{r}\right)^{-\rho}(1-h)+O(1)
\end{aligned}
$$

Since $(\log R / r)^{-\rho} \sim R^{-\rho}(R r /(R-r))^{\rho}$ we obtain that $T \leqq(1-h) T$, a contradiction for $T \neq 0$. Thus, the left-hand inequality of (3.1) is established.

Now let $P\left(r e^{i \theta}\right)$ and $g\left(r e^{i \theta}\right)$ be respectively the sum of powers of $r e^{i \theta}$ up to $K(\beta)$ and the sum of powers from $K(\beta)+1$ onwards in

$$
f\left(r e^{i \theta}\right)=\sum_{k=0}^{\infty} c_{k}\left(r e^{i \theta}\right)^{\lambda_{k}},
$$

$K(\beta)$ and r being chosen with reference to an arbitrary β as in Lemma 3. Then,
using Lemma 3 and Minkowski's inequality we get

$$
\begin{aligned}
I_{\delta}\left(r, f^{\prime}\right) & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta} \\
& \leqq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P^{\prime}\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right)^{1 / \delta}+\frac{A(\beta)}{r} .
\end{aligned}
$$

Applying Lemma 1 we have

$$
I_{\delta}\left(r, f^{\prime}\right) \leqq A_{\delta} \frac{{ }^{\lambda} K(\beta)}{r}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{P\left(r e^{i \theta}\right)\right\}\right|^{\delta} d \theta\right)^{1 / \delta}+\frac{A}{r} .
$$

Since $\left|\operatorname{Re}\left\{P\left(r e^{i \theta}\right)\right\}\right| \leqq\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|+\left|\operatorname{Re} g\left(r e^{i \theta}\right)\right|$, we obtain (again using Minkowski's inequality and Lemma 3)

$$
\begin{equation*}
r I_{\delta}\left(r, f^{\prime}\right) \leqq A_{\delta} \lambda_{K(\beta)} J_{\delta}(r, f)+\lambda_{K(\beta)} B r A_{\delta}+A \tag{3.4}
\end{equation*}
$$

Now $J_{\delta}(r, f)$ is monotonic increasing and thus has a positive lower bound, so that, since from Lemma 3

$$
\lambda_{K(\beta)}=\frac{L+\beta}{(1-\beta)^{1+\rho}(\log R / r)^{\rho+1}},
$$

We obtain

$$
\limsup _{r \rightarrow R}\left\{\frac{r I_{\delta}\left(r, f^{\prime}\right)(1-\beta)^{1+\rho}}{J_{\delta}(r, f)(L+\beta)(\log R / r)^{-\rho-1}}\right\} \leqq A_{\delta}
$$

Letting $\beta \rightarrow 0$ and using the fact that $J_{\delta}(r, f) \leqq I_{\delta}(r, f)$, we obtain

$$
\limsup _{r \rightarrow R}\left\{\frac{r I_{\delta}\left(r, f^{\prime}\right)}{I_{\delta}(r, f)(\log R / r)^{-\rho-1}}\right\} \leqq L A_{\delta}
$$

Corollary. For $f(z)$ as in Theorem 2 we have

$$
\begin{equation*}
\rho R^{\rho} T \leqq \limsup _{r \rightarrow R} \frac{r M\left(r, f^{\prime}\right)}{M(r, f)[\log R / r]^{-\rho-1}} \leqq \rho R^{\rho} T\left(1+\frac{1}{\rho}\right)^{1+\rho} \tag{3.5}
\end{equation*}
$$

Proof. Letting $\delta \rightarrow \infty$ in (3.4), we have

$$
\begin{aligned}
r M\left(r, f^{\prime}\right) & \leqq \lambda_{K(\beta)} A^{*}(r, f)+\lambda_{K(\beta)} B_{r}+A \\
& \leqq \lambda_{K(\beta)} M(r, f)+\lambda_{K(\beta)} B r+A
\end{aligned}
$$

Thus,

$$
\limsup _{r \rightarrow R} \frac{r M\left(r, f^{\prime}\right)}{M(r, f)[\log R / r]^{-\rho-1}} \leqq \rho R^{\rho} T\left(1+\frac{1}{\rho}\right)^{1+\rho}
$$

The left-hand inequality of (3.5) is proven in the same manner as in the theorem.

In a similar manner we can show that, if $\log m(r) \sim \log M(r)$,

$$
\rho R^{\rho} T \leqq \lim _{r \rightarrow R} \sup \frac{J_{\delta}\left(r, z f^{\prime}\right)}{J_{\delta}(r, f)[\log R / r]^{-\rho-1}} \leqq A_{\delta \rho} R^{\rho} T\left(1+\frac{1}{\rho}\right)^{1+\rho}
$$

and

$$
\rho R^{\rho} T \leqq \lim _{r \rightarrow R} \sup \frac{A^{*}\left(r, z f^{\prime}\right)}{A^{*}(r, f)[\log R / r)^{-\rho-1}} \leqq \rho R^{\rho} T\left(1+\frac{1}{\rho}\right)^{1+\rho} .
$$

From inequality (3.5) we now obtain the following theorem which is analogous to a result of G. H. Fricke, S. M. Shah, and W. C. Sisarcick [1].

Theorem 3. Let $f(z)$ be as in Theorem 2. Then, given $R_{1}\left(0<R_{1}<R\right)$, we have that there exists a constant $K>0$ such that for $r \geqq R_{1}$,

$$
\begin{equation*}
M\left(r, f^{\prime}\right) \leqq \frac{K \rho R^{\rho}}{r}\left(\log \frac{R}{r}\right)^{-\rho-1} M(r) \tag{3.6}
\end{equation*}
$$

Furthermore, if inequality (3.6) holds for a given R_{1} and $K, r \geqq R_{1}$, then $T \leqq K$. Also, given $\epsilon>0$, there exists $R_{0}(\epsilon)$ such that for $r \geqq R_{0}(\epsilon)$ and $n=1,2,3, \ldots$

$$
\begin{equation*}
M_{n}(r) \leqq \frac{n!}{r_{1}} M\left(r_{1}+r\right) \leqq\left\{\frac{n!}{r_{1}} \exp \left[d R^{\rho}\left(\log \frac{R}{r+r_{1}}\right)^{-\rho}\right]\right\} M(r) \tag{3.7}
\end{equation*}
$$

where $d=T(1+1 / \rho)^{1+\rho}+\epsilon, M_{n}(r)=M\left(r, f^{(n)}\right)$, and r_{1} is chosen so that $r<r_{1}<R$. (Choosing r_{1} to satisfy

$$
\left[n\left(r_{1}+r\right) / r_{1}\right]\left[\log \frac{R}{r+r_{1}}\right]^{1+\rho}=d R^{\rho} \rho
$$

will minimize the bracketed expression in (3.7).)
Proof. Let $R_{1}>0$ be given. Then, given $\theta>0$, we have from (3.5) that there exists $R_{0}(\epsilon)<R$ such that for $r \geqq R_{0}(\epsilon)$

$$
\begin{equation*}
M\left(r, f^{\prime}\right) \leqq\left(T\left(1+\frac{1}{\rho}\right)^{1+\rho}+\epsilon\right) \frac{\rho R^{\rho}}{r}\left[\log \frac{R}{r}\right]^{-\rho-1} M(r) \tag{3.8}
\end{equation*}
$$

Letting

$$
\begin{aligned}
K_{1} & =\max \left\{\left.\frac{M\left(r, f^{\prime}\right)}{M(r)} \right\rvert\, R_{1} \leqq r \leqq R_{0}(\epsilon)\right\} \text { and } \\
K & =\max \left\{\left(T\left(1+\frac{1}{\rho}\right)^{1+\rho}+\epsilon\right), K_{1}\right\},
\end{aligned}
$$

we have inequality (3.6).
Now suppose there exist two positive numbers K and R_{1} such that (3.6)
holds if $r \geqq R_{1}$. Then, letting $M^{\prime}(r)=(d / d r) M(r)$ where it exists, we have

$$
\begin{aligned}
\log \frac{M(r)}{M\left(R_{1}\right)} & =\int_{R_{1}}^{r} \frac{M^{\prime}(t)}{M(t)} d t \leqq \int_{R_{1}}^{r} \frac{M\left(t, f^{\prime}\right)}{M(t)} d t \\
& \leqq K \rho R^{\rho} \int_{R_{1}}^{r} \frac{1}{t}\left[\log \frac{R}{t}\right]^{-\rho-1} d t=K R^{\rho}\left[\log \frac{R}{r}\right]^{-\rho}+O(1)
\end{aligned}
$$

Since $x=R r /(R-r) \sim R / \log R / r$, we have that $T \leqq K$.
Finally, for $d=T(1+1 / \rho)^{1+\rho}+\epsilon$ and $r \geqq R_{0}(\epsilon)$ we have from (3.8) that

$$
\frac{M\left(r, f^{\prime}\right)}{M(r)} \leqq \frac{d \rho R^{\rho}}{r}\left[\log \frac{R}{r}\right]^{-\rho-1}
$$

Hence, for $r \geqq R_{0}(\epsilon), r<r_{1}<R$, we find that

$$
\log \frac{M\left(r+r_{1}\right)}{M(r)}<d R^{\rho}\left[\log \frac{R}{r+r_{1}}\right]^{-\rho}
$$

Using Cauchy's integral formula we have

$$
M_{n}(r) \leqq \frac{n!}{r_{1}^{n}} M\left(r+r_{1}\right) \leqq\left\{\frac{n!}{r_{1}^{n}} \exp \left[d R^{\rho}\left(\log \frac{R}{r+r_{1}}\right)^{-\rho}\right]\right\} M(r)
$$

establishing (3.7).

References

1. G. H. Fricke, S. M. Shah, and W. C. Sisarcick, A characterization of entire functions of exponential type and M-bounded index (to appear).
2. T. V. Lakshminarasimhan, Inequalities between means involving an entire function or its real part and means involving the derived function, J. Math. Anal. Appl. 27 (1969), 624-635.
3. S. M. Shah, The maximum term of an entire series III, Quart. J. Math. Oxford Ser. 19 (1948), 220-223.
4. S. K. Singh, On the maximum term and the rank of an entire function, Acta Math. 94 (1955), 1-11.
5. L. R. Sons, Regularity of growth and gaps, J. Math. Anal. Appl. 24 (1968), 296-306.

Clark University,
Worcester, Massachusetts

