SLICE MAPS AND MULTIPLIERS OF INVARIANT SUBSPACES

TAKAHIKO NAKAZI

Abstract

Let $\overline{D^{2}}$ be the closed bidisc and T^{2} be its distinguished boundary. For $(\alpha, \beta) \in \overline{D^{2}}$, let $\Phi_{\alpha \beta}$ be a slice map, that is, $\left(\Phi_{\alpha \beta} f\right)(\lambda)=f(\alpha \lambda, \beta \lambda)$ for $\lambda \in D$ and $f \in H^{2}\left(D^{2}\right)$. Then $\operatorname{ker} \Phi_{\alpha \beta}$ is an invariant subspace, and it is not difficult to describe $\operatorname{ker} \Phi_{\alpha \beta}$ and $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}\right)=\left\{\phi \in L^{\infty}\left(T^{2}\right): \phi \operatorname{ker} \Phi_{\alpha \beta} \subset H^{2}\left(D^{2}\right)\right\}$. In this paper, we study the set $\mathcal{M}(M)$ of all multipliers for an invariant subspace M such that the common zero set of M contains that of $\operatorname{ker} \Phi_{\alpha \beta}$.

1. Introduction. Let D^{2} be the open unit disc in \mathbf{C}^{2} and T^{2} be its distinguished boundary. Normalized Lebesgue measure on T^{2} is denoted by $d m$. For $1 \leq p \leq \infty$, $H^{p}\left(D^{2}\right)$ is the Hardy space and $L^{p}\left(T^{2}\right)$ is the Lebesgue space on T^{2}. Let $N\left(D^{2}\right)$ denote the Nevanlinna class. Each f in $N\left(D^{2}\right)$ has radial limits f^{*} defined on T^{2} a.e. Moreover, there is a singular measure $d \sigma_{f}$ on T^{2} determined by f such that the least harmonic majorant $u(\log |f|)$ of $\log |f|$ is given by $u(\log |f|)(\zeta)=P_{\zeta}\left(\log \left|f^{*}\right|+d \sigma_{f}\right)$ where P_{ζ} denotes Poisson integration and $\zeta=(z, w) \in D^{2}$. Put $N_{*}\left(D^{2}\right)=\left\{f \in N\left(D^{2}\right) ; d \sigma_{f} \leq 0\right\}$; then $H^{p}\left(D^{2}\right) \subset$ $N_{*}\left(D^{2}\right) \subset N\left(D^{2}\right)$ and $H^{p}\left(D^{2}\right)=N_{*}\left(D^{2}\right) \cap L^{p}\left(T^{2}\right) \subset N\left(D^{2}\right) \cap L^{p}\left(T^{2}\right)$. These facts are shown in [6, Theorem 3.3.5].

A closed subspace M of $H^{2}\left(D^{2}\right)$ is said to be invariant if $z M \subset M$ and $w M \subset M$. For an invariant subspace M of $H^{2}\left(D^{2}\right)$, set

$$
\mathcal{M}(M)=\left\{\phi \in L^{\infty}\left(T^{2}\right) ; \phi M \subseteq H^{2}\left(D^{2}\right)\right\} .
$$

If $M=q H^{2}\left(D^{2}\right)$ for some inner function q, it is trivial to see $\mathcal{M}(M)=\bar{q} H^{\infty}\left(D^{2}\right)$. In the case of one variable, an arbitrary invariant subspace M has the form $q H^{2}(D)$ for some inner function q by the famous Beurling theorem [1]. Hence $\mathcal{M}(M)=\bar{q} H^{\infty}(D)$. Hence the map : $M \rightarrow \mathcal{M}(M)$ is one-to-one. However this result for invariant subspaces of $H^{2}\left(D^{2}\right)$ is not true. The author [4] studied the relation between M and $\mathcal{M}(M)$. To study $\mathcal{M}(M)$, R. G. Douglas and K. Yan [2] introduced the common zero set $Z(M)$ and the singular measure $Z_{\partial}(M)$, that is,

$$
Z(M)=\left\{\zeta \in D^{2} ; f(\zeta)=0 \text { for } f \in M\right\}
$$

and

$$
Z_{\partial}(M)=\inf \left\{-d \sigma_{f} ; f \in M, f \neq 0\right\} .
$$

[^0]They showed that if the real 2-dimensional Hausdorff measure of $Z(M)$ is zero and $Z_{\hat{\partial}}(M)=0$, then $\mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$. In this paper, we are interested in invariant subspaces M of $H^{2}\left(D^{2}\right)$ such that the real 2-dimensional Hausdorff measure of $Z(M)$ is positive and $Z_{\partial}(M)=0$.

Fix $(\alpha, \beta) \in \overline{D^{2}}$. For f in $H^{p}\left(D^{2}\right)$,

$$
\left(\Phi_{\alpha \beta}^{p} f\right)(\lambda)=f(\alpha \lambda, \beta \lambda) \quad(\lambda \in D)
$$

$\Phi_{\alpha \beta}^{p}$ is called a slice map. $\Phi_{\alpha \beta}^{2}$ maps $H^{2}\left(D^{2}\right)$ into $L_{a}^{2}(D)$, where $L_{a}^{2}(D)$ is the Bergman space (cf. [6, p. 53]). In this paper, we study the kernel $\operatorname{ker} \Phi_{\alpha \beta}^{p}$ and the range ran $\Phi_{\alpha \beta}^{p}$ for $p=2, \infty$. $\operatorname{ker} \Phi_{\alpha \beta}^{2}$ is an invariant subspace of $H^{2}\left(D^{2}\right)$ and the closure of $\operatorname{ran} \Phi_{\alpha \beta}^{2}$ is an invariant subspace of $L_{a}^{2}(D)$. Put

$$
D_{\alpha \beta}=\left\{(\alpha \lambda, \beta \lambda) \in D^{2} ; \lambda \in \mathbf{C}\right\} ;
$$

then $\mathcal{Z}\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=\mathcal{D}_{\alpha \beta}$ if $(\alpha, \beta) \in T^{2} \cup T \times D \cup D \times T$. The 2-dimensional Hausdorff measure of $Z\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)$ is positive and $Z_{\partial}\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=0$. In this paper, we show $\mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$ when $Z(M)=\mathcal{D}_{\alpha \beta}$ for some $(\alpha, \beta) \in T^{2}$ and $Z_{\partial}(M)=0$ and M satisfies some additional natural condition. The main result in this paper is Theorem 4 in Section 3. Theorem 1 of [2] has a lot of corollaries on the rigidity of invariant subspaces. Similarly Theorem 3 in this paper has such corollaries. Hence our results can be seen as the generalizations of results of R. G. Douglas and K. Yan.

For f in $N\left(D^{2}\right), f(\zeta)=\sum_{j=0}^{\infty} F_{j}(\zeta)$ is a homogeneous expansion of f and F_{j} is a polynomial which is homogeneous of degree j. The smallest $j=j(f)$ such that F_{j} is not the zero-polynomial is called the order of the zero which f has at $\zeta=(0,0)$. For $p \in D^{2}$, the order of the zero of f at p is simply the order of the zero of $f(p+\zeta)$ at $\zeta=(0,0)$. We will write $f_{p}(\zeta)=f(p+\zeta)$.
2. Slice maps. In this section, we study the slice map $\Phi_{\alpha \beta}=\Phi_{\alpha \beta}^{p}$ for $(\alpha, \beta) \in \overline{D^{2}}$.

Proposition 1. Let $(\alpha, \beta) \in \overline{D^{2}}$.
(1) $\Phi_{\alpha \beta}^{2}$ is a contractive map from $H^{2}\left(D^{2}\right)$ to $L_{a}^{2}(D)$.
(2) If $(\alpha, \beta) \in D^{2}$, then $\operatorname{ran} \Phi_{\alpha \beta}^{2}$ is a subset of analytic functions on \bar{D}.
(3) If $(\alpha, \beta) \in T^{2}$, then $\Phi_{\alpha \beta}^{2}$ is an onto map from $H^{2}\left(D^{2}\right)$ to $L_{a}^{2}(D)$ with $\left\|\Phi_{\alpha \beta}^{2}\right\|=1$.
(4) If $(\alpha, \beta) \in T \times D \cup D \times T$, then $\Phi_{\alpha \beta}^{2}$ is an onto map from $H^{2}\left(D^{2}\right)$ to $H^{2}(D)$ with $\left\|\Phi_{\alpha \beta}^{2}\right\| \leq\left(1-|\beta|^{2}\right)^{-1}$.
Proof. (1) For $f \in H^{2}\left(D^{2}\right)$, let $f(z, w)=\sum_{j=0}^{\infty} F_{j}(z, w)$ be a homogeneous expansion of f. Then $F_{j}(z, w)=\sum_{\ell=0}^{j} a_{\ell} z^{j-\ell} w^{\ell}$ and $\delta\left|F_{j}\right|^{2} d m=\sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2}$. Moreover

$$
\int|f|^{2} d m=\sum_{j=0}^{\infty} \int\left|F_{j}\right|^{2} d m=\sum_{j=0}^{\infty} \sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2}<\infty .
$$

$\left(\Phi_{\alpha \beta} f\right)(\lambda)=\sum_{j=0}^{\infty} F_{j}(\alpha, \beta) \lambda^{j}$ and

$$
\left|F_{j}(\alpha, \beta)\right|^{2} \leq\left(\sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2}\right)\left(\sum_{\ell=0}^{j}|\beta|^{2 \ell}\right) \leq(j+1)\left(\sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2}\right)
$$

Hence

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 \pi}\left|\Phi_{\alpha \beta} f\right|^{2}\left(r e^{i \theta}\right) r d \theta d r / \pi & =\int_{0}^{1} \sum_{j=0}^{\infty}\left|F_{j}(\alpha, \beta)\right|^{2} r^{2 j+1} 2 d r \\
& =\sum_{j=0}^{\infty}\left|F_{j}(\alpha, \beta)\right|^{2} \frac{1}{j+1} \leq \sum_{j=0}^{\infty} \sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2} \\
& =\int|f|^{2} d m .
\end{aligned}
$$

Thus $\Phi_{\alpha \beta} f \in L_{a}^{2}(D)$ and $\left\|\Phi_{\alpha \beta}\right\| \leq 1$.
(2) is clear. (3): For $g \in L_{a}^{2}(D)$ with $g(\lambda)=\sum_{j=0}^{\infty} b_{j} \lambda^{j}$, put $f(z, w)=$ $\sum_{j=0}^{\infty} \frac{b_{j}}{j+1}(\bar{\beta} w)^{j-\ell}(\bar{\alpha} z)^{\ell}$. Then $f \in H^{2}\left(D^{2}\right)$ and $\left(\Phi_{\alpha \beta} f\right)(\lambda)=g(\lambda)$. This and (1) imply (3). (4): We may assume $(\alpha, \beta) \in T \times D$. Then

$$
\left|F_{j}(\alpha, \beta)\right|^{2} \leq\left(1-|\beta|^{2}\right)^{-1} \sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2}
$$

and hence

$$
\int_{0}^{2 \pi}\left|\Phi_{\alpha \beta} f\right|^{2}\left(r e^{i \theta}\right) d \theta / 2 \pi \leq \sum_{j=0}^{\infty} \frac{1}{1-|\beta|^{2}} \sum_{\ell=0}^{j}\left|a_{\ell}\right|^{2} \leq \frac{1}{1-|\beta|^{2}} \int|f|^{2} d m .
$$

For $g \in H^{2}(D)$ with $g(\lambda)=\sum_{j=0}^{\infty} b_{j} \lambda^{j}$, put $f(z, w)=\sum_{j=0}^{\infty} b_{j}(\bar{\alpha} z)^{j}$. Then $f \in H^{2}\left(D^{2}\right)$ and $\left(\Phi_{\alpha \beta} f\right)(\lambda)=g(\lambda)$. This implies (4).
(3) of Proposition 1 is essentially known (see [6, p. 53]). Now we study the slice map $\Phi_{\alpha \beta}^{\infty}$ on $H^{\infty}\left(D^{2}\right)$. Let L be the norm closed linear span of $\overline{H^{\infty}\left(D^{2}\right)} H^{\infty}\left(D^{2}\right)$ in $L^{\infty}\left(T^{2}\right)$. Then $L \neq L^{\infty}\left(T^{2}\right)$ (see [5]).

PROPOSITION 2. Let $(\alpha, \beta) \in \overline{D^{2}}$.
(1) $\Phi_{\alpha \beta}^{\infty}$ is a contractive homomorphism from $H^{\infty}\left(D^{2}\right)$ to $H^{\infty}(D)$.
(2) If $(\alpha, \beta) \in T^{2} \cup T \times D \cup D \times T$, then $\Phi_{\alpha \beta}^{\infty}$ is a contractive homomorphism from $H^{\infty}\left(D^{2}\right)$ onto $H^{\infty}(D)$.
(3) If $(\alpha, \beta) \in T^{2}$, there exists a contractive $*$-homomorphism $\tilde{\Phi}_{\alpha \beta}^{\infty}$ from L onto $L^{\infty}(T)$ such that $\tilde{\Phi}_{\alpha \beta}^{\infty}\left|H^{\infty}\left(T^{2}\right)=\Phi_{\alpha \beta}^{\infty}\right| H^{\infty}\left(T^{2}\right)$.

Proof. (1) is clear. (2): If $g \in H^{\infty}(D)$ with $g(\lambda)=\sum_{j=0}^{\infty} b_{j} \lambda^{j}$ and $|\alpha|=1$, then $f(z, w)=\sum_{j=0}^{\infty} b_{j}(\bar{\alpha} z)^{j} \in H^{\infty}\left(D^{2}\right)$ and $\left(\Phi_{\alpha \beta} f\right)(\lambda)=g(\lambda)$. This and (1) imply (2).
(3): For $f_{j}, g_{j} \in H^{\infty}\left(D^{2}\right)$ and $j=1, \ldots, n$, put

$$
\left\{\tilde{\Phi}_{\alpha \beta}\left(\sum_{j=1}^{n} f_{j} \bar{g}_{j}\right)\right\}(\lambda)=\sum_{j=1}^{n} f_{j}(\alpha \lambda, \beta \lambda) \overline{g_{j}(\alpha \lambda, \beta \lambda)}
$$

for $\lambda \in D$, then $\tilde{\Phi}_{\alpha \beta}\left(\sum_{j=1}^{n} f_{j} \bar{g}_{j}\right)$ can be seen as an element in $L^{\infty}(T)$ by its radial limits.

Hence for a.e. $\lambda \in T$

$$
\begin{aligned}
\left|\Phi_{\alpha \beta}\left(\sum_{j=1}^{n} f_{j} \bar{g}_{j}\right)(\lambda)\right| & \leq \underset{\lambda \in T}{\operatorname{ess} \sup }\left|\sum_{j=1}^{n} f_{j}(\alpha \lambda, \beta \lambda) \overline{g_{j}(\alpha \lambda, \beta \lambda)}\right| \\
& \leq \underset{(z, w) \in T^{2}}{\operatorname{ess} \sup }\left|\sum_{j=1}^{n} f_{j}(\alpha z, \beta w) \overline{g_{j}(\alpha z, \beta w)}\right| \\
& =\left\|\sum_{j=1}^{n} f_{j} \bar{g}_{j}\right\|_{\infty}
\end{aligned}
$$

because $(\alpha, \beta) \in T^{2}$. Then $\tilde{\Phi}_{\alpha \beta}$ is the extension of $\Phi_{\alpha \beta}$ from $H^{\infty}\left(D^{2}\right)$ to L, and then $\tilde{\Phi}_{\alpha \beta}$ is a contractive $*$-homomorphism from L to $L^{\infty}(T)$. If $U(\lambda)=\sum_{j=1}^{n} F_{j}(\lambda) \bar{G}_{j}(\lambda)$ a.e. on T where $F_{j}, G_{j} \in H^{\infty}(D)$, then $u(z, w)=\sum_{j=1}^{n} F_{j}(\bar{\alpha} z) \bar{G}_{j}(\beta w)$ belongs to L and $\left(\tilde{\Phi}_{\alpha \beta} u\right)(\lambda)=U(\lambda)$ a.e. on T. Since arbitrary function U in $L^{\infty}(T)$ can be approximated by such functions, $\tilde{\Phi}_{\alpha \beta}$ is onto.

The following lemma will be used in the proofs in the following proposition and the main theorem. We can prove it by an approximation method as in [4] but we prove it using Proposition 2.

Lemma. If $\phi \in L^{\infty}\left(T^{2}\right),(\alpha, \beta) \in T^{2}$ and $\phi(z, w)(\beta z-\alpha w) \in H^{\infty}\left(D^{2}\right)$, then $\phi \in$ $H^{\infty}\left(D^{2}\right)$.

Proof. Note that $\beta z-\alpha w \in \operatorname{ker} \Phi_{\alpha \beta}$. If $\phi(\beta z-\alpha w)=g$ for some $g \in H^{\infty}\left(D^{2}\right)$, then g belongs to $\operatorname{ker} \Phi_{\alpha \beta}$. In fact, $\hat{\phi}(\beta z-\alpha w)^{\wedge}=\hat{g}$ on $\operatorname{Spec} L^{\infty}\left(T^{2}\right)$ which is the maximal ideal space of $L^{\infty}\left(T^{2}\right)$ and $(\beta z-\alpha w)^{\wedge}=0$ on hull($\left.\operatorname{ker} \tilde{\Phi}_{\alpha \beta}\right)$. Hence $\hat{g}=0$ on hull $\left(\operatorname{ker} \tilde{\Phi}_{\alpha \beta}\right) \cap \operatorname{Spec} L^{\infty}\left(T^{2}\right)$. Since L is a commutative C^{*}-algebra, every element of $\operatorname{Spec} L$ extends to an element of $\operatorname{Spec} L^{\infty}\left(T^{2}\right)$. Therefore $\hat{g}=0$ on hull($\left.\operatorname{ker} \tilde{\Phi}_{\alpha \beta}\right)$. Thus $g \in\left(\operatorname{ker} \tilde{\Phi}_{\alpha \beta}\right) \cap H^{\infty}\left(D^{2}\right)=\operatorname{ker} \Phi_{\alpha \beta}$. Hence if $g=\sum_{j=0}^{\infty} G_{j}$ and $G_{j}(z, w)=\sum_{\ell=0}^{j} b_{\ell} z^{j-\ell} w^{\ell}$, then

$$
G_{j}(z, w)=z^{j} \sum_{\ell=0}^{j} b_{\ell}(\bar{z} w)^{\ell}=k \prod_{\ell=1}^{j}\left(w-k_{\ell} z\right)
$$

where $k \in \mathbf{C}$ and $k_{\ell} \in \mathbf{C}$ for $1 \leq \ell \leq j$ and $G_{j}(\alpha \lambda, \beta \lambda) \equiv 0$ for $\lambda \in D$ because $g \in \operatorname{ker} \Phi_{\alpha \beta}^{2}$. Thus $G_{j}(z, w)=m(\beta z-\alpha w) \Pi_{\ell=2}^{j}\left(w-m_{\ell} z\right)$ where $m \in \mathbf{C}$ and $m_{\ell} \in \mathbf{C}$ for $2 \leq \ell \leq j$ and hence $g /(\beta z-\alpha w)$ is analytic on D^{2}. Since $d \sigma_{\beta z-\alpha w}=0, g /(\beta z-\alpha w) \in$ $N_{*}\left(D^{2}\right) \cap L^{\infty}\left(T^{2}\right)=H^{\infty}\left(D^{2}\right)$ and hence ϕ belongs to $H^{\infty}\left(D^{2}\right)$.

Proposition 3. Let $(\alpha, \beta) \in \overline{D^{2}}$.
(1) For any $r \in(0,1], \operatorname{ker} \Phi_{\alpha \beta}^{2}=\operatorname{ker} \Phi_{r \alpha, r \beta}^{2}$.
(2) $\operatorname{ker} \Phi_{\alpha \beta}^{2}$ is an invariant subspace of $H^{2}\left(D^{2}\right)$,

$$
Z\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=\mathcal{D}_{\alpha \beta} \text { and } Z_{\partial}\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=0
$$

For any $p \in \mathcal{D}_{\alpha \beta}, \beta z-\alpha w \in \operatorname{ker} \Phi_{\alpha \beta}^{2}$ has a zero of order 1 at p.
(3) If $(\alpha, \beta) \in T^{2}$, then $(\beta z-\alpha w) H^{2}\left(D^{2}\right)$ is dense in $\operatorname{ker} \Phi_{\alpha \beta}^{2}$ but $\operatorname{ker} \Phi_{\alpha \beta}^{2} \neq(\beta z-$ $\alpha w) H^{2}\left(D^{2}\right)$. If $(\alpha, \beta) \in T \times D \cup D \times T$, then $\operatorname{ker} \Phi_{\alpha \beta}^{2}=(\beta z-\alpha w) H^{2}\left(D^{2}\right)$.
(4) If $(\alpha, \beta) \in T^{2}$, then $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=H^{\infty}\left(D^{2}\right)$ and if $(\alpha, \beta) \in T \times D \cup D \times T$, then $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}^{2}\right)=(\beta z-\alpha w)^{-1} H^{\infty}\left(D^{2}\right)$.
(5) If $(\alpha, 0) \in \bar{D} \times D$ and $\alpha \neq 0$, then $\operatorname{ker} \Phi_{\alpha 0}^{2}=w H^{2}\left(D^{2}\right)$ and hence $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha 0}^{2}\right)=$ $w^{-1} H^{\infty}\left(D^{2}\right)$.
(6) Let M be an invariant subspace of $H^{2}\left(D^{2}\right)$ with $\operatorname{ker} \Phi_{\alpha \beta}^{2} \subset M, \mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$. If $(\alpha, \beta) \in T^{2}$, then $Z(M)=\left\{\left(\alpha a_{j}, \beta a_{j}\right) \in D^{2} ; \sum_{j=0}^{\infty}\left(1-\left|a_{j}\right|\right) \times[-\log (1-\right.$ $\left.\left.\left|a_{j}\right|\right)\right]^{1-\varepsilon}<\infty$ for all $\left.\varepsilon>0\right\}$. If $(\alpha, \beta) \in T \times D \cup D \times T$, then $Z(M)=$ $\left\{\left(\alpha a_{j}, \beta a_{j}\right) \in D^{2} ; \sum_{j=1}^{\infty}\left(1-\left|a_{j}\right|\right)<\infty\right\}$. If $(\alpha, 0) \in \bar{D} \times D$ and $\alpha \neq 0$, then $M=q H^{2}(D) \oplus w H^{2}\left(D^{2}\right)$ where q is a one variable inner function with $q=q(z)$ and hence $Z(M)=\left\{(s, 0) \in D^{2} ; q(s)=0\right.$ and $\left.s \in D\right\}$.

Proof. (1) and (2) are clear. (3): Let $(\alpha, \beta) \in T^{2}$. If $f \in \operatorname{ker} \Phi_{\alpha \beta}, f=\sum_{j=0}^{\infty} F_{j}$ and $F_{j}(z, w)=\sum_{\ell=0}^{j} a_{\ell} z^{j-\ell} w^{\ell}$, then $F_{j}(z, w)=c(\beta z-\alpha w) \Pi_{\ell=2}^{j}\left(w-c_{\ell} z\right)$ and hence f can be approximated by the functions in $(\beta z-\alpha w) H^{2}\left(D^{2}\right)$. This implies that $(\beta z-\alpha w) H^{2}\left(D^{2}\right)$ is dense in $\operatorname{ker} \Phi_{\alpha \beta}^{2}$. Suppose $\operatorname{ker} \Phi_{\alpha \beta}=(\beta z-\alpha w) H^{2}\left(D^{2}\right)$; then the multiplication operator by $\beta z-\alpha w$ is a left invertible operator from $H^{2}\left(D^{2}\right)$ to $\operatorname{ker} \Phi_{\alpha \beta}$. Hence there exists a positive constant ε such that

$$
\int_{T^{2}}|g|^{2}|\beta z-\alpha w|^{2} d m \geq \varepsilon \int_{T^{2}}|g|^{2} d m
$$

for all $g \in H^{\infty}\left(D^{2}\right)$ and so

$$
\int_{T^{2}} u|\beta z-\alpha w|^{2} d m \geq \varepsilon \int_{T^{2}} u d m
$$

for all nonnegative continuous functions u on T^{2}. Thus $|\beta z-\alpha w|^{2} \geq \varepsilon>0$ a.e. on T^{2} and this contradiction implies that $\operatorname{ker} \Phi_{\alpha \beta} \neq(\beta z-\alpha w) H^{2}\left(D^{2}\right)$. Let $(\alpha, \beta) \in T \times D \cup D \times T$. Since $\beta z-\alpha w$ is invertible in $L^{\infty}, \operatorname{ker} \Phi_{\alpha \beta}=(\beta z-\alpha w) H^{2}\left(D^{2}\right)$ because $(\beta z-\alpha w) H^{2}\left(D^{2}\right)$ is dense in $\operatorname{ker} \Phi_{\alpha \beta}$.
(4): Let $(\alpha, \beta) \in T^{2}$. If $\phi \in \mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}\right)$, then $\phi(\beta z-\alpha w)=g$ for some $g \in H^{\infty}\left(D^{2}\right)$. By the Lemma, ϕ belongs to $H^{\infty}\left(D^{2}\right)$ and hence $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}\right)=H^{\infty}\left(D^{2}\right)$. Let $(\alpha, \beta) \in$ $T \times D \cup D \times T$ and $\phi \in \mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}\right)$. By (3), $\operatorname{ker} \Phi_{\alpha \beta}=(\beta z-\alpha w) H^{2}\left(D^{2}\right)$ and hence

$$
\phi(\beta z-\alpha w) H^{2}\left(D^{2}\right) \subset H^{2}\left(D^{2}\right)
$$

This implies that $\phi(\beta z-\alpha w) \in H^{\infty}\left(D^{2}\right)$ and so $\mathcal{M}\left(\operatorname{ker} \Phi_{\alpha \beta}\right)=(\beta z-\alpha w)^{-1} H^{\infty}\left(D^{2}\right)$. (5) is easy to see. (6): If $(\alpha, \beta) \in T^{2}$ and $\operatorname{ker} \Phi_{\alpha \beta} \subset M$, then by (3) of Proposition 1 and [3, Corollary 3.6], $Z\left(\left[\Phi_{\alpha \beta} M\right]_{2}\right)=\left\{a_{j} \in D ; \sum_{j=1}^{\infty}\left(1-\left|a_{j}\right|\right)\left[-\log \left(1-\left|a_{j}\right|\right)\right]^{1-\varepsilon}<\infty\right.$ for all $\varepsilon>0\}$. This and Theorem 1 in [2] imply the first part. For $(\alpha, \beta) \in T \times D \cup D \times T$, we can show similarly by (4) of Proposition 1.
3. Multipliers. By (4) of Proposition 3, we know the set of all multipliers $\mathcal{M}(M)$ of an invariant subspace such that $\operatorname{ker} \Phi_{\alpha \beta}^{2} \subseteq M \subseteq H^{2}\left(D^{2}\right)$ when $(\alpha, \beta) \in T^{2} \cup T \times D \cup D \times T$ or $(\alpha, 0) \in D \times D \backslash(0,0)$. When $(\alpha, \beta) \in D \times D$ and $|\alpha|=|\beta|>0$, there exists $\left(\alpha_{0}, \beta_{0}\right) \in T \times T$ such that $\alpha=r \alpha_{0}$ and $\beta=r \beta_{0}$ for some $r \in(0,1)$. When $(\alpha, \beta) \in D \times D$ and $0 \leq|\alpha|<|\beta|$, there exists $\left(\alpha_{0}, \beta_{0}\right) \in D \times T$ such that $\alpha=r \alpha_{0}$ and $\beta=r \beta_{0}$ for some $r \in(0,1)$. (1) of Proposition 3 implies $\operatorname{ker} \Phi_{\alpha \beta}^{2}=\operatorname{ker} \Phi_{\alpha_{0} \beta_{0}}^{2}$. Hence for arbitrary $(\alpha, \beta) \in \bar{D} \times \bar{D} \backslash(0,0)$, we can describe $\mathcal{M}(M)$ by Proposition 3. In this section, we study $\mathcal{M}(M)$ without such a condition. In this section, for example, we study $\mathcal{M}(M)$ of an invariant subspace such that $M \subseteq \operatorname{ker} \Phi_{\alpha \beta}^{2}$. In fact, we study such a problem more generally, that is, when the 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}_{\alpha \beta}^{c}$ is zero. For $\Lambda \subset T^{2} \cup T \times D \cup D \times T$, put

$$
\mathcal{D}_{\Lambda}=\left\{\cup \mathcal{D}_{\alpha \beta} ;(\alpha, \beta) \in \Lambda\right\} \backslash\{(0,0)\} .
$$

Note that if $Z(M) \supseteq \mathcal{D}_{\Lambda}$ and Λ is an infinite set such that $\mathcal{D}_{\alpha \beta} \cap \mathcal{D}_{\gamma \delta}=\{(0,0)\}$ when $(\alpha, \beta) \neq(\gamma, \delta)$, then $M=\{0\}$.

Theorem 4. Let Λ be a finite set of T^{2}. If M is an invariant subspace of $H^{2}\left(D^{2}\right)$ which satisfies the following (1)-(3), then $\mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$.
(1) For any $p \in \mathcal{Z}(M) \cap \mathcal{D}_{\Lambda}$, there exists a function f in M such that f has a zero of order 1 at p.
(2) The 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}_{\Lambda}^{c}$ is zero.
(3) $Z_{\partial}(M)=0$.

Proof. Suppose $\phi \in \mathscr{M}(M)$. Fix $p \in Z(M) \cap \mathcal{D}_{\Lambda}$. By (1), let f be a function in M such that f has a zero of order 1 at p. Let $(\alpha, \beta) \in \Lambda$ with $p \in \mathcal{D}_{\alpha \beta}$. By definition of $\mathcal{M}(M), \phi f=g$ for some $g \in H^{2}\left(D^{2}\right)$. Put $k(z, w)=\beta z-\alpha w$; then $k_{p}(\zeta)=k(\zeta+p)=k(\zeta)$ and $k_{p}(\zeta) \phi_{p}(\zeta) f_{p}(\zeta)=k(\zeta) g_{p}(\zeta)$. Suppose $f_{p}(\zeta)=\sum_{j=0}^{\infty} F_{j}(\zeta)$ is a homogeneous expansion of f_{p}. Since $1=s\left(f_{p}\right), F_{1}(0, w)=c w$ for $c \neq 0$. By the Weierstrass preparation theorem (cf. [6, Theorem 1.2.1]), there exists a polydisc Δ in \mathbf{C}^{2}, centered at $(0,0)$, such that

$$
f_{p}(z, w)=W(z, w) h(z, w)
$$

for $(z, w) \in \Delta$ where h is analytic in Δ, h has no zero in $\Delta, W(z, w)=w+b_{0}(z)$ and b_{0} is analytic in Δ with $b_{0}(0)=0$. Since $f_{p}(\alpha \lambda, \beta \lambda) \equiv 0$ on $D, \beta \lambda+b_{0}(\alpha \lambda)=0$ if $(\alpha \lambda, \beta \lambda) \in \Delta$ and hence $b_{0}(\alpha \lambda)=-\beta \lambda$. Thus $b_{0}(z)=-\frac{\beta}{\alpha} z$ and $W(z, w)=-\frac{1}{\alpha}(\beta z-\alpha w)$. Therefore $k_{p} \phi_{p}=k g_{p} / f_{p}$ is analytic in Δ and so $k \phi$ is analytic in $\Delta+p$, in a sense of R. G. Douglas and K. Yan [2]. Therefore

$$
\prod_{(\alpha, \beta) \in \Lambda}(\beta z-\alpha w) \phi(z, w)
$$

is analytic in a neighborhood of $Z(M) \cap \mathcal{D}_{\Lambda}$.
If $p \notin Z(M)$, then there exists a function k in M such that k has no zeros in some polydisc Δ_{p}, centered at p. As in the proof above, $\phi(z, w)$ is analytic in Δ_{p} and hence ϕ is analytic in $D^{2} \backslash Z(M)$. Thus $\Pi(\beta z-\alpha w) \phi(z, w)$ is analytic in $D^{2} \backslash Z(M) \cap \mathcal{D}_{\Lambda}^{c}$. By
(2), $Z(M) \cap \mathcal{D}_{\Lambda}^{c}$ is a removable singularity for analytic functions, and hence $\psi(z, w)=$ $\Pi(\beta z-\alpha w) \phi(z, w)$ is analytic in D^{2}. By the proof of [2, Theorem 1], $\psi \in N\left(D^{2}\right) \cap L^{\infty}\left(T^{2}\right)$ and $d \sigma_{\psi} \leq-Z_{\partial}(M)$ because $d \sigma_{\phi}=d \sigma_{\psi}$. By (3), $d \sigma_{\psi}=0$ and hence $\psi \in H^{\infty}\left(D^{2}\right)$. By the Lemma, ϕ belongs to $H^{\infty}\left(D^{2}\right)$ and hence $\mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$.

THEOREM 5. Let Λ be a finite set of $T \times D \cup D \times T$. If M is an invariant subspace of $H^{2}\left(D^{2}\right)$ which $Z(M) \supseteq \mathcal{D}_{\Lambda}$ and satisfies the following (1)-(3), then

$$
\mathcal{M}(M)=\prod_{(\alpha, \beta) \in \Lambda}(\beta z-\alpha w)^{-1} H^{\infty}\left(D^{2}\right)
$$

(1) For any $p \in Z(M)$, there exists a functionf in M such that f has a zero of order 1 at p.
(2) The 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}_{\Lambda}^{c}$ is zero.
(3) $Z_{\partial}(M)=0$.

Proof. By the proof of Theorem 4, if $\phi \in \mathcal{M}(M)$, then $\Pi(\beta z-\alpha w) \phi(z, w) \in$ $H^{\infty}\left(D^{2}\right)$ where (α, β) ranges over Λ. Hence $\phi \in \Pi(\beta z-\alpha w)^{-1} H^{\infty}\left(D^{2}\right)$. Conversely if $\phi \in \Pi(\beta z-\alpha w)^{-1} H^{\infty}\left(D^{2}\right)$ and $f \in M$, then $f=0$ on \mathcal{D}_{Λ}; hence by the Weierstrass preparation theorem, $\Pi(\beta z-\alpha w)^{-1} f(z, w)$ is analytic in D^{2} and ϕ belongs to $\mathcal{M}(M)$.
4. Two general cases and remarks. Let a and b be two functions in $H^{\infty}(D)$ with $\|a\|_{\infty} \leq 1$ and $\|b\|_{\infty} \leq 1$. For f in $H^{p}\left(D^{2}\right)$,

$$
\left(\Phi_{a b}^{p} f\right)(\lambda)=f(a(\lambda), b(\lambda)) \quad(\lambda \in D)
$$

If $a(\lambda)=\alpha(\lambda)$ and $b(\lambda)=\beta \lambda$, then $\Phi_{a b}^{p}$ was called a slice map $\Phi_{\alpha \beta}^{p}$ in the previous sections. For an arbitrary pair a and b, we know only very trivial results. It is easy to see that $\Phi_{a b}^{\infty}$ maps $H^{\infty}\left(D^{2}\right)$ into $H^{\infty}(D)$. If $\|a\|_{\infty}<1$ and $\|b\|_{\infty}<1$, then $\Phi_{a b}^{p}$ maps $H^{p}\left(D^{2}\right)$ into $H^{\infty}(D)$. In general, $\operatorname{ker} \Phi_{a b}^{2}$ is still an invariant subspace of $H^{2}\left(D^{2}\right)$, and

$$
\mathcal{Z}\left(\operatorname{ker} \Phi_{a b}^{2}\right) \supseteq \mathcal{D}_{a b}=\left\{(a(\lambda), b(\lambda)) \in D^{2} ; \lambda \in D\right\}
$$

The function $b(z)-a(w)$ may not belong to $\operatorname{ker} \Phi_{a b}^{2}$. If $a(\lambda)=\alpha \lambda$ and $b(\lambda)=\beta \lambda$, then $(b \circ a)(\lambda)=(a \circ b)(\lambda)$ for $\lambda \in D$, and hence $b(z)-a(w)$ belongs to $\operatorname{ker} \Phi_{a b}^{2}$. If $a(\lambda)=\lambda$ and $b(\lambda)$ is an inner function, then $(b \circ a)(\lambda)=(a \circ b)(\lambda)$ for $\lambda \in D$, and hence $b(z)-a(w)=b(z)-w$ belongs to $\operatorname{ker} \Phi_{a b}^{2}$. In this case, $Z_{\partial}\left(\operatorname{ker} \Phi_{a b}^{2}\right)=0$. For any $p \in \mathcal{D}_{a b}$, $b(z)-w$ has a zero of order 1 at $p \in \mathcal{D}_{a b}$. If $\phi \in L^{\infty}\left(T^{2}\right)$ and $(b(z)-w) \phi(z, w) \in H^{\infty}\left(D^{2}\right)$, then $\phi \in H^{\infty}\left(D^{2}\right)$. This can be shown as in [4, Proposition 3 and Theorem 7]. This implies (4) of Proposition 3. The proof of the following theorem is almost parallel to that of Theorem 4.

THEOREM 6. Let $a(\lambda)=\lambda$ and $b(\lambda)$ be an inner function. If M is an invariant subspace of $H^{2}\left(D^{2}\right)$ which satisfies the following (1)-(3), then $\mathcal{M}(M)=H^{\infty}\left(D^{2}\right)$.
(1) For any $p \in Z(M) \cap \mathcal{D}_{\text {ab }}$, there exists a function f in M such that f has a zero of order 1 at $p \in \mathcal{Z}(M) \cap \mathcal{D}_{a b}$.
(2) The 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}_{a b}^{c}$ is zero.
(3) $Z_{\partial}(M)=0$.

If $a(\lambda)=\lambda$ and $b(\lambda)=c q(\lambda)$ where c is a constant with $|c|<1$ and q is an inner function, we can show a version of Theorem 5 as Theorem 6 which is that of Theorem 4.

Let D^{n} be the open unit polydisc in \mathbf{C}^{n} and T^{n} be its distinguished boundary. Fix $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \overline{D^{n}}$. For f in $H^{p}\left(D^{n}\right)$

$$
\left(\Phi_{\alpha}^{p} f\right)(\lambda)=f\left(\alpha_{1} \lambda, \ldots, \alpha_{n} \lambda\right) \quad(\lambda \in D)
$$

(1), (2) and (3) of Proposition 1 can be proved for arbitrary n. If $\alpha_{j} \in T$ for some j with $1 \leq j \leq n$ and $\alpha_{i} \in D$ for all i with $1 \leq i \leq n$ and $i \neq j$, we can show that Φ_{α}^{2} is an onto map from $H^{2}\left(D^{n}\right)$ to $H^{2}(D)$ with $\left\|\Phi_{\alpha}^{2}\right\| \leq \Pi_{i \neq j}\left(1-\left|\alpha_{j}\right|^{2}\right)^{-1}$. This is a generalization of (4) of Proposition 1. Similarly we can generalize Proposition 2. If $\phi \in L^{\infty}\left(T^{n}\right)$ and $\left(\alpha_{i} z_{j}-\alpha_{j} z_{i}\right) \phi\left(z_{1}, \ldots, z_{n}\right) \in H^{\infty}\left(D^{n}\right)$ where $1 \leq i \neq j \leq n$ and $\alpha=\left(\alpha_{i}, \ldots, \alpha_{n}\right) \in T^{n}$, then $\phi \in H^{\infty}\left(D^{n}\right)$. This also can be shown as in [4, Proposition 3 and Theorem 7]. $\operatorname{ker} \Phi_{\alpha}^{2}$ is an invariant subspace and a generalization of (1) and (2) of Proposition 3 is true. Suppose $n>2$. If M is an invariant subspace of $H^{2}\left(D^{n}\right), Z(M)=\mathcal{D}_{\alpha}=\left\{\left(\alpha_{1} \lambda, \ldots, \alpha_{n} \lambda\right)\right.$; $\lambda \in D\}$ for $\alpha \in T^{n}$ and $Z_{\hat{\rho}}(M)=0$, then $\mathcal{M}(M)=H^{\infty}\left(D^{n}\right)$. For it is a result of R. G. Douglas and K. Yan [2, Theorem 1] because the real $2 n-2$ dimensional Hausdorff measure of $Z(M)$ is zero.

Remark. (i): As in Theorem 1 of [2], Theorem 4 can be stated as the following: If M is an invariant subspace of $H^{2}\left(D^{2}\right)$ which satisfies (1) and (2), then $\phi \in \mathcal{M}(M)$ if and only if $\phi \in N\left(D^{2}\right) \cap L^{\infty}\left(T^{2}\right)$ and $d \sigma_{\phi} \leq Z_{\partial}(M)$. (ii): By Lemma 7 in [2] and Theorem 4, if M and N are quasi-similar invariant subspaces of $H^{2}\left(D^{2}\right)$ and M satisfies (1)-(3) in Theorem 4, then $M \subseteq N$. This is a generalization of Theorem 2 in [2]. Similarly we can generalize Corollaries 9 and 12. (iii): Let M, N be invariant subspaces of $H^{2}\left(D^{2}\right)$ satisfying (a) the 2-dimensional Hausdorff measures of $Z(M) \cap \mathcal{D}_{\Lambda}^{c}$ and $Z(N) \cap \mathcal{D}_{\Lambda}^{c}$ are zero. (b) $Z_{\partial}(M)=Z_{\partial}(N)$. (c) M and N satisfy the condition (1) in Theorem 4 about $Z(M) \cap \mathcal{D}_{\Lambda}$ and $Z(N) \cap \mathcal{D}_{\Lambda}$. If M and N are quasi-similar, then $M=N$.

References

[^1]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education. Received by the editors February 27, 1995; revised November 14, 1995.
 AMS subject classification: 47A15, 32A35.
 Key words and phrases: Hardy space, several variables, invariant subspace, slice map.
 (c) Canadian Mathematical Society 1996.

[^1]: 1. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239-255.
 2. R. G. Douglas and K. Yan, On the rigidity of Hardy submodules, Integral Eq Op. Th. 13(1990), 350-363.
 3. C. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J. 41(1974).
 4. T. Nakazi, Multipliers of invariant subspaces in the bidisc, Proc. Edinburgh Math. Soc. 37(1994), 193-199.
 5. M. Range, A small boundary for H^{∞} on the polydisc, Proc. Amer. Math. Soc. 32(1972), 253-255.
 6. W. Rudin, Function Theory in Polydisks, Benjamin, New York (1969).
