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Abstract

Consider a continuous-time renewal risk model with a constant force of interest.
We assume that claim sizes and interarrival times correspondingly form a sequence
of independent and identically distributed random pairs and that each pair obeys a
dependence structure described via the conditional tail probability of a claim size given the
interarrival time before the claim. We focus on determining the impact of this dependence
structure on the asymptotic tail probability of discounted aggregate claims. Assuming
that the claim size distribution is subexponential, we derive an exact locally uniform
asymptotic formula, which quantitatively captures the impact of the dependence structure.
When the claim size distribution is extended regularly varying tailed, we show that this
asymptotic formula is globally uniform.
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1. Introduction

The renewal risk model has played a fundamental role in classical and modern risk theory
since it was introduced by Sparre Andersen in the middle of the last century as a natural
generalization of the compound Poisson risk model. In the standard framework of the renewal
risk model, both claim sizes Xk, k = 1, 2, . . . , and interarrival times θk, k = 1, 2, . . . , form a
sequence of independent and identically distributed (i.i.d.) random variables, the two sequences
are also mutually independent. Denote by X and θ the generic random variables of the claim
sizes and interarrival times, respectively. Being equipped with other modeling factors (such as
initial surplus and premium incomes) and incorporated with some economic factors (such as
interests, dividends, taxes, and returns on investments), this model provides a good mechanism
for describing nonlife insurance business.

It should be noted that these independence assumptions are not made for practical relevance
but mainly for mathematical tractability. Among these assumptions, the one in which complete
independence between the claim size X and the interarrival time θ is assumed is especially
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Subexponential tails of discounted aggregate claims 1127

unrealistic in almost all kinds of insurance. Consider the situation where the deductible retained
by insureds is raised, then the interarrival time will increase because small claims will be ruled
out, while the likelihood of a large claim will increase if X is new worse than used or decrease
if X is new better than used. However, it is usually challenging to obtain results without such
independence assumptions because most available methods will fail to work.

During the last few years things have started to change. In particular, in ruin theory, various
nonstandard extensions to the renewal risk model have been proposed to appropriately relax
these independence assumptions. Initiated in Albrecher and Teugels (2006), there have been
a series of papers devoted to ruin-related problems of an extended renewal risk model in
which (Xk, θk), k = 1, 2, . . . , are assumed to be i.i.d. copies of a generic pair (X, θ) with
dependent components X and θ . An advantage of this risk model is that independence between
the increments of the surplus process over claim arrival times is preserved. Albrecher and
Teugels (2006) considered the case in which (X, θ) follows an arbitrary dependence structure,
through a copula, and they derived explicit exponential estimates for finite-time and infinite-
time ruin probabilities in the case of light-tailed claim sizes. Boudreault et al. (2006) proposed
a dependence structure in which X conditional on θ has a density function equal to a mixture of
two arbitrary density functions, and they studied the Gerber–Shiu expected discounted penalty
function and measured the impact of the dependence structure on the ruin probability via the
comparison of Lundberg coefficients. Cossette et al. (2008) assumed a generalized Farlie–
Gumbel–Morgenstern copula to describe the dependence structure of (X, θ), and they derived
the Laplace transform of the Gerber–Shiu function. Badescu et al. (2009) assumed that (X, θ)

follows a bivariate phase-type distribution, and they employed the existing connection between
risk processes and fluid flows to the analysis of various ruin-related quantities. Recently, Asimit
and Badescu (2010) introduced a general dependence structure for (X, θ), via the conditional
tail probability of X given θ , and they studied the tail behavior of discounted aggregate claims in
the compound Poisson risk model in the presence of a constant force of interest and heavy-tailed
claim sizes.

Other nonstandard extensions to the renewal risk model, not within the abovementioned
framework, can also be found in Asmussen et al. (1999), Albrecher and Boxma (2004), (2005),
and Biard et al. (2008), among others.

In this paper we use the same dependence structure as proposed in Asimit and Badescu
(2010) for the generic random pair (X, θ). That is, we assume that the claim size X and the
interarrival time θ fulfill the relation

Pr(X > x | θ = t) ∼ Pr(X > x)h(t), t ≥ 0, (1.1)

for some measurable function h(·) : [0, ∞) �−→ (0, ∞), where ‘∼’ means that the quotient of
both sides tends to 1 as x → ∞. When t is not a possible value of θ , that is, Pr(θ ∈ �) = 0
for some open interval � containing t , the conditional probability in (1.1) is simply understood
as unconditional and, therefore, h(t) = 1. In fact, in our main results below, whenever h(t)

appears, it is multiplied by Pr(θ ∈ dt). Hence, the function h(t) at such a point t can be assigned
any positive value without affecting our final results. As discussed in Asimit and Badescu
(2010) (see also Section 3 below), relation (1.1) defines a general dependence structure which
is easily verifiable for some commonly used bivariate copulas, and allows both positive and
negative dependencies. It is also very convenient when dealing with the tail behavior of the
sum or product of two dependent random variables. For instance, consider the discounted value
Xe−rθ with r ≥ 0. If relation (1.1) holds uniformly for t ∈ [0, ∞), which is often the case in
concrete examples, then integrating both sides with respect to Pr(θ ∈ dt) leads to E h(θ) = 1.

https://doi.org/10.1239/aap/1293113154 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113154


1128 J. LI ET AL.

Hence, by conditioning on θ we obtain

Pr(Xe−rθ > x) ∼
∫ ∞

0−
Pr(X > xert )h(t) Pr(θ ∈ dt) = Pr(Xe−rθ∗

> x), (1.2)

where θ∗ is a random variable, independent of X, with a proper distribution given by

Pr(θ∗ ∈ dt) = h(t) Pr(θ ∈ dt).

The analysis in relation (1.2) shows that the dependence structure defined by (1.1) can be easily
dissolved and its impact on the tail behavior of quantities under consideration can be easily
captured.

Consider the renewal risk model in which (Xk, θk), k = 1, 2, . . . , are i.i.d. copies of
a generic pair (X, θ) fulfilling the dependence structure defined by (1.1). In this paper,
assuming a constant force of interest r ≥ 0 and heavy-tailed claim sizes, we study the tail
behavior of discounted aggregate claims and derive exact asymptotic formulae. We establish
local uniformity for the obtained asymptotic formulae for the subexponential case and global
uniformity for the extended regularly varying case. More importantly, in comparison with
the corresponding existing results of Tang (2007) and Hao and Tang (2008) in the case of
independent X and θ , our formulae successfully capture the impact of the dependence structure
of (X, θ).

The asymptotic behavior of the finite-time and infinite-time ruin probabilities of the renewal
risk model of standard structure with a constant force of interest r > 0 has been extensively
investigated in the literature. The reader is referred to Asmussen (1998), Klüppelberg and
Stadtmüller (1998), Kalashnikov and Konstantinides (2000), Konstantinides et al. (2002), Tang
(2005), and Wang (2008). It is worthwhile noting that, if both the force of interest r > 0 and the
premium rate c ≥ 0 are constant and the claim size distribution is subexponential, then the tail
probability of the discounted aggregate claims up to a finite or infinite time is asymptotically
equivalent to the probability of ruin by the same time. This is because the amount of discounted
aggregate premiums is always bounded by a finite constant c/r and, thus, it does not affect
the asymptotic behavior of a subexponential tail. Owing to this reason, our results in this
paper can be straightforwardly translated into finite-time and infinite-time ruin probabilities. In
comparison with the corresponding results of the works cited above, our formulae also explicitly
show the impact of the dependence structure of (X, θ) on the ruin.

The rest of this paper consists of four sections. In Section 2 we show two main results after
briefly introducing necessary preliminaries about the renewal risk model and subexponential
distributions. In Section 3 we verify the local and global uniformity of relation (1.1) through
copulas. In Sections 4 and 5 we prove Theorems 2.1 and 2.2, respectively.

2. Main results

Throughout this paper, all limit relationships hold as x → ∞ unless stated otherwise. For
two positive functions a(·) and b(·) satisfying

l1 = lim inf
x→∞

a(x)

b(x)
≤ lim sup

x→∞
a(x)

b(x)
= l2,

we write a(x) � b(x) if l1 ≥ 1, a(x) � b(x) if l2 ≤ 1, a(x) ∼ b(x) if l1 = l2 = 1, and
a(x) 	 b(x) if 0 < l1 ≤ l2 < ∞. We frequently equip limit relationships with certain
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uniformity, which is crucial for our purpose. For instance, for two positive bivariate functions
a(·, ·) and b(·, ·), we say that a(x, t) � b(x, t) holds uniformly for t ∈ � 
= ∅ if

lim sup
x→∞

sup
t∈�

a(x, t)

b(x, t)
≤ 1.

Consider the renewal risk model in which (Xk, θk), k = 1, 2, . . . , are i.i.d. copies of a
generic pair (X, θ) with marginal distributions F and G on [0, ∞). To avoid triviality, both
F and G are assumed to be nondegenerate at 0. Denote by τk = ∑k

i=1 θi, k = 1, 2, . . . , the
claim arrival times, with τ0 = 0. Then the number of claims by time t is

Nt = #{τk ≤ t : k = 1, 2, . . .}, t ≥ 0,

which forms an ordinary renewal counting process with a finite mean function:

λt = E Nt =
∞∑

k=1

Pr(τk ≤ t), t ≥ 0.

In this way, the amount of aggregate claims is a random sum of the form X(t) = ∑Nt

k=1 Xk for
t ≥ 0, where, here and throughout, a summation over an empty index set produces a value 0.
Assuming a constant force of interest r ≥ 0, the amount of discounted aggregate claims by
time t is expressed as

Dr(t) =
∫ t

0−
e−rs dX(s) =

∞∑
k=1

Xke−rτk 1{τk≤t}, t ≥ 0, (2.1)

where the symbol 1E denotes the indicator function of an event E.
When studying the tail probability of Dr(t), it is natural to restrict the region of the variable

t to
� = {t : 0 < λt ≤ ∞}.

With t = inf{t : Pr(θ ≤ t) > 0}, it is clear that � = [t, ∞] if Pr(θ = t) > 0 while � = (t, ∞]
if Pr(θ = t) = 0. For notational convenience, we write �T = [0, T ] ∩ � for every fixed
T ∈ �.

We consider only the case of heavy-tailed claim size distributions. One of the most important
classes of heavy-tailed distributions is the class S of subexponential distributions. By definition,
a distribution F on [0, ∞) is said to be subexponential if F̄ (x) = 1 − F(x) > 0 for all x ≥ 0
and the relation

lim
x→∞

Fn∗(x)

F̄ (x)
= n

holds for all (or, equivalently, for some) n = 2, 3, . . . , where Fn∗ denotes the n-fold convolution
of F . The class S contains a lot of important distributions such as Pareto, lognormal, and
heavy-tailed Weibull distributions. See Embrechts et al. (1997) for a review of subexponential
distributions in the context of insurance and finance.

A useful subclass of S is the class of distributions with extended regularly varying (ERV)
tails, characterized by the relations F̄ (x) > 0 for all x ≥ 0 and

y−β ≤ lim inf
x→∞

F̄ (xy)

F̄ (x)
≤ lim sup

x→∞
F̄ (xy)

F̄ (x)
≤ y−α, y ≥ 1, (2.2)

for some 0 < α ≤ β < ∞. We signify the regularity property in (2.2) as F ∈ ERV(−α, −β),
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so that ERV is the union of all ERV(−α, −β) over the range 0 < α ≤ β < ∞. In particular,
when α = β, the class ERV(−α, −β) coincides with the famous class R−α of distributions
with regularly varying tails. Thus, if F ∈ R−α for some 0 < α < ∞ then

lim
x→∞

F̄ (xy)

F̄ (x)
= y−α, y > 0. (2.3)

Write R as the union of all R−α over the range 0 < α < ∞.
For a distribution F ∈ ERV(−α, −β) for some 0 < α ≤ β < ∞, by Proposition 2.2.3 of

Bingham et al. (1989) we know that, for every ε > 0 and b > 1, there is some x0 > 0 such
that the inequalities

1

b
(y−β−ε ∧ y−α+ε) ≤ F̄ (xy)

F̄ (x)
≤ b(y−β−ε ∨ y−α+ε) (2.4)

hold whenever x > x0 and xy > x0. In particular, when α = β, the inequalities in (2.4) reduce
to the well-known Potter’s bounds for the class R. That is, if F ∈ R−α for some 0 < α < ∞
then, for every ε > 0 and b > 1, there is some x0 > 0 such that the inequalities

1

b
(y−α−ε ∧ y−α+ε) ≤ F̄ (xy)

F̄ (x)
≤ b(y−α−ε ∨ y−α+ε) (2.5)

hold whenever x > x0 and xy > x0. In addition, by Theorem 1.5.2 of Bingham et al. (1989),
the convergence in relation (2.3) is uniform for y ∈ [ε, ∞) for every fixed ε > 0; that is,

lim
x→∞ sup

y∈[ε,∞)

∣∣∣∣ F̄ (xy)

F̄ (x)
− y−α

∣∣∣∣ = 0. (2.6)

As mentioned in Section 1, a standing assumption on the dependence structure of (X, θ) in
this paper is the following.

(A1) There is some measurable function h(·) : [0, ∞) �−→ (0, ∞) such that relation (1.1)
holds locally uniformly for t ∈ � (that is, it holds uniformly for t ∈ �T for every
T ∈ �).

To achieve global uniformity of the obtained asymptotic formula, we need to strengthen
assumption (A1) to the following.

(A2) There is some measurable function h(·) : [0, ∞) �−→ (0, ∞) such that relation (1.1)
holds uniformly for t ∈ �.

In addition to assumption (A1) or (A2), we also need to assume the following.

(B) Either t > 0, or t = 0 and there is some t∗ ∈ � such that inf0≤t≤t∗ h(t) > 0.

Note that t∗ appearing in assumption (B) can be chosen to be 0 if Pr(θ = 0) > 0, and in this
case the restriction inf0≤t≤t∗ h(t) > 0 is redundant since h(0) > 0 by assumption (A1) or (A2).

We remark that these assumptions on the dependence structure of (X, θ) are close to
minimum for establishing a locally or globally uniform asymptotic formula.

The first main result of this paper is as follows.
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Theorem 2.1. Consider the discounted aggregate claims described in relation (2.1) with r ≥ 0.
If F ∈ S and assumptions (A1) and (B) hold, then the relation

Pr(Dr(t) > x) ∼
∫ t

0−
F̄ (xers) dλ̃s (2.7)

holds locally uniformly for t ∈ �, where

λ̃t =
∫ t

0−
(1 + λt−u)h(u)G(du). (2.8)

If, in addition to the other conditions of Theorem 2.1, F ∈ R−α for some 0 < α < ∞, then
applying the uniformity of relation (2.3) as explained in (2.6) to relation (2.7), we find that the
relation

Pr(Dr(t) > x) ∼ F̄ (x)

∫ t

0−
e−αrs dλ̃s (2.9)

holds locally uniformly for t ∈ �.
Consider the uniformity of relation (2.7) on �T for some T ∈ �. Under assumption

(A1), integrating both sides of (1.1) with respect to Pr(θ ∈ dt) over the range [0, T ] leads to
0 < E h(θ) 1{θ≤T } ≤ 1. Similarly as in (1.2), we introduce an independent random variable θ∗
with a proper distribution given by

Pr(θ∗ ∈ dt) = h(t)

E h(θ) 1{θ≤T }
G(dt), t ∈ [0, T ].

Construct a delayed renewal counting process {N∗
t , t ≥ 0} with interarrival times θ∗, θk, k =

2, 3 . . . , and a mean function λ∗
t . It is easy to see that

λ̃t = λ∗
t E h(θ) 1{θ≤T }, t ∈ �T ;

that is, λ̃t is proportional to the mean function of a delayed renewal counting process whose
first interarrival time is affected by the dependence structure of (X, θ).

Next we establish global uniformity for relation (2.7). For this purpose, we need to restrict
the claim size distribution to the class ERV. Note that if r = 0 then Dr(t) diverges to ∞
almost surely as t → ∞ and, hence, it is not possible to establish the global uniformity for
relation (2.7). For this reason, we assume r > 0 in the following second main result.

Theorem 2.2. Consider the discounted aggregate claims described in relation (2.1) with r > 0.
If F ∈ ERV and assumptions (A2) and (B) hold, then relation (2.7) holds uniformly for t ∈ �.

Similarly as above, if, in addition to the other conditions of Theorem 2.2, F ∈ R−α for some
0 < α < ∞, then, by (2.5) and (2.6), it is easy to verify that relation (2.9) holds uniformly
for t ∈ �. In particular, taking t = ∞ in relation (2.9) yields the more transparent asymptotic
formula

Pr(Dr(∞) > x) ∼ F̄ (x)
E h(θ)e−αrθ

1 − E e−αrθ
.

Moreover, under assumption (A2), which implies that E h(θ) = 1, λ̃t is equal to the mean
function of a delayed renewal counting process whose first interarrival time θ∗ follows

Pr(θ∗ ∈ dt) = h(t)G(dt).
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When X and θ are independent, h(t) ≡ 1 and λ̃t ≡ λt for all t ∈ �. Hence, Theorem 2.1 of
Hao and Tang (2008) corresponds to our Theorem 2.1 for the case of independent X and θ . The
expression of λ̃t given in (2.8) for the general case of dependent X and θ shows that our results
successfully capture the impact of the dependence structure of (X, θ) on the tail behavior of
the discounted aggregate claims.

Asimit and Badescu (2010) studied the same problem. Our work extends theirs in the
following three directions: (i) they considered the compound Poisson risk model while we
consider the renewal risk model; (ii) they derived results for F ∈ S when r = 0 and for F ∈ R
when r > 0, both of which are covered and unified by our Theorem 2.1; (iii) their formulae
hold for a fixed time t while ours are equipped with local or global uniformity in time t , which
greatly enhances the theoretical and applied interests of the results.

Restricted to the compound Poisson risk model with F ∈ R−α for some 0 < α < ∞,
assuming that the Poisson intensity λ > 0, (2.9) immediately gives

Pr(Dr(t) > x) ∼ Kr,t F̄ (x), t > 0, (2.10)

with

Kr,t =
∫ t

0

((
1 + λ

αr

)
e−αru − λ

αr
e−αrt

)
h(u)λe−λu du.

Theorem 3.2 of Asimit and Badescu (2010) also gives relation (2.10) but with a coefficient

K∗
r,t =

∞∑
n=1

e−λtλn

∫
· · ·

∫
	n,t

n∑
i=1

h(si) exp

(
−αr

i∑
j=1

sj

) n∏
i=1

dsi,

where 	n,t = {(s1, . . . , sn) ∈ [0, t]n : ∑n
i=1 si ≤ t}. It is not hard to verify that the two

coefficients are actually the same though they look quite different. Indeed, recall that, for
the Poisson process {Nt, t ≥ 0}, the interarrival times θ1, . . . , θn conditional on (Nt = n) have
a joint distribution on 	n,t given by Pr(θ1 ∈ ds1, . . . , θn ∈ dsn | Nt = n) = (n!/tn) ds1 · · · dsn.

With the help of this property, we have

K∗
r,t =

∞∑
n=1

(λt)n

n! e−λt

∫
· · ·

∫
	n,t

n∑
i=1

h(si) exp

(
−αr

i∑
j=1

sj

)
n!
tn

n∏
i=1

dsi

=
∞∑

n=1

Pr(Nt = n) E

( n∑
i=1

h(θi)e
−αrτi

∣∣∣∣ Nt = n

)

=
∞∑

n=1

n∑
i=1

E h(θi)e
−αrτi 1{Nt=n}

=
∞∑
i=1

E h(θi)e
−αrτi 1{τi≤t}

=
∫ t

0
h(u)e−αruG(du) +

∞∑
i=2

∫ t

0

∫ t−u

0
h(u)e−αr(u+v) Pr(τi−1 ∈ dv)G(du)

=
∫ t

0
h(u)e−αru(λe−λu du) +

∫ t

0

∫ t−u

0
h(u)e−αr(u+v)(λ dv)(λe−λu du).

Thus, K∗
r,t = Kr,t .
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3. Verification of the assumptions on dependence

This section concerns verification of our assumptions on the dependence structure of (X, θ).
We carry on this discussion through copulas. The reader is referred to Joe (1997) or Nelsen
(2006) for a comprehensive treatment of copulas.

For simplicity, assume that H , the joint distribution of (X, θ), has continuous marginal
distributions F and G. Then, by Sklar’s theorem, there is a unique copula C(u, v) : [0, 1]2 �→
[0, 1], which is the joint distribution of the uniform variates F(X) and G(θ), such that

H(x, t) = C(F(x), G(t)).

The corresponding survival copula is defined to be

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v), (u, v) ∈ [0, 1]2,

which is such that
H̄ (x, t) = Pr(X > x, θ > t) = Ĉ(F̄ (x), Ḡ(t)).

Assume that the copula C(u, v) is absolutely continuous; hence, so is the survival copula
Ĉ(u, v). Denote by ĉ(u, v) the density of the survival copula. Then the function h(·) defined
in (1.1), if it exists, is equal to

h(t) = lim
u→0+

∂Ĉ(u, v)/∂v

u

∣∣∣∣
v=Ḡ(t)

= ĉ(0+, Ḡ(t)), t > 0. (3.1)

In the rest of this section, the variables t and v are always connected through the identity
v = Ḡ(t), as indicated in (3.1). In terms of the survival copula Ĉ(u, v), the local uniformity of
relation (1.1), as required by assumption (A1), can be restated as

lim
u→0+ sup

v∈[δ,1]

∣∣∣∣∂Ĉ(u, v)/∂v

uh(t)
− 1

∣∣∣∣ = lim
u→0+ sup

v∈[δ,1]

∣∣∣∣ (1/u)
∫ u

0 ĉ(s, v) ds

ĉ(0+, v)
− 1

∣∣∣∣ = 0 (3.2)

for δ ∈ (0, 1), and the global uniformity of relation (1.1), as required by assumption (A2), can
be restated as

lim
u→0+ sup

v∈(0,1]

∣∣∣∣∂Ĉ(u, v)/∂v

uh(t)
− 1

∣∣∣∣ = lim
u→0+ sup

v∈(0,1]

∣∣∣∣ (1/u)
∫ u

0 ĉ(s, v) ds

ĉ(0+, v)
− 1

∣∣∣∣ = 0. (3.3)

So far, the function h(·) and the local/global uniformity of relation (1.1) have been expressed
through the survival copula and its density.

Recall that an Archimedean copula is of the form

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (u, v) ∈ [0, 1]2,

where ϕ(·) : [0, 1] �−→ [0, ∞], called the generator of C(u, v), is a strictly decreasing and
convex function with 0 < ϕ(0) ≤ ∞ and ϕ(1) = 0, while ϕ[−1](·) is the pseudo-inverse of
ϕ(·), equal to ϕ−1(t) when 0 ≤ t ≤ ϕ(0) and equal to 0 otherwise. This copula has a simple
structure, as its definition shows, and it possesses a lot of nice properties. If the generator ϕ(·)
is twice differentiable then the copula density has a transparent form; see relation (4.3.6) of
Nelsen (2006). In this case, recalling (3.1), it follows that

h(t) = ĉ(0+, v) = −ϕ′(1−)ϕ′′(1 − v)

(ϕ′(1 − v))2 .
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Moreover, it should not be hard to construct some general conditions on the generator ϕ(·) to
guarantee relations (3.2) and (3.3).

Next, we reexamine the three examples given in Asimit and Badescu (2010).

Example 3.1. The Ali–Mikhail–Haq copula is of the form

C(u, v) = uv

1 − γ (1 − u)(1 − v)
, γ ∈ [−1, 1).

Direct calculation shows that

∂Ĉ(u, v)

∂v
= u + γ u(1 − 2v) − γ u2(1 − γ v2)

(1 − γ uv)2 .

Then, by relation (3.1), h(t) = 1 + γ (1 − 2v). It follows that
∣∣∣∣∂Ĉ(u, v)/∂v

uh(t)
− 1

∣∣∣∣ = |v(2 − γ uv)(1 + γ (1 − 2v)) − 1 + γ v2|
(1 − γ uv)2(1 + γ (1 − 2v))

|γ |u.

Hence, relation (3.2) holds when γ ∈ [−1, 1) and relation (3.3) holds when γ ∈ (−1, 1).

Example 3.2. The Farlie–Gumbel–Morgenstern copula is of the form

C(u, v) = uv + γ uv(1 − u)(1 − v), γ ∈ [−1, 1].
Following the same lines as in Example 3.1, we have, respectively,

∂Ĉ(u, v)

∂v
= u + γ u(1 − u)(1 − 2v), h(t) = 1 + γ (1 − 2v),

and ∣∣∣∣∂Ĉ(u, v)/∂v

uh(t)
− 1

∣∣∣∣ = |1 − 2v|
1 + γ (1 − 2v)

|γ |u.

Hence, relation (3.2) holds when γ ∈ [−1, 1) and relation (3.3) holds when γ ∈ (−1, 1).

Example 3.3. The Frank copula is of the form

C(u, v) = − 1

γ
ln

(
1 + (e−γ u − 1)(e−γ v − 1)

e−γ − 1

)
, γ 
= 0.

A direct but rather tedious calculation gives

∂Ĉ(u, v)

∂v
= eγ (1 − eγ u)

eγ (1 − eγ ) + (eγ u − eγ )(eγ v − eγ )
.

It follows that

h(t) = γ eγ (1−v)

eγ − 1
and ∣∣∣∣∂Ĉ(u, v)/∂v

uh(t)
− 1

∣∣∣∣ = |γ u(eγ (1−v)(eγ u − 1) + (eγ − eγ u)) − (eγ u − 1)(eγ − 1)|
γ u(eγ (1−v)(eγ u − 1) + (eγ − eγ u))

.

Hence, relations (3.2) and (3.3) hold for all γ 
= 0.
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4. Proof of Theorem 2.1

4.1. Lemmas

It is well known that every subexponential distribution F is long tailed, denoted as F ∈ L,
in the sense that the relation

lim
x→∞

F̄ (x − y)

F̄ (x)
= 1

holds for all (or, equivalently, for some) y 
= 0; see Lemma 2 of Chistyakov (1964) or
Lemma 1.3.5(a) of Embrechts et al. (1997).

We first show an elementary result regarding long-tailed distributions.

Lemma 4.1. We have F ∈ L if and only if there is a function l(·) : (0, ∞) �→ (0, ∞)

satisfying

(i) l(x) < x/2 for all x > 0,

(ii) l(x) → ∞,

(iii) l(·) is slowly varying at ∞,

such that, for every K > 0, F̄ (x − Kl(x)) ∼ F̄ (x).

Proof. The ‘if’ assertion is trivial, so we prove only the ‘only if’ assertion. Let F ∈ L. It
is easy to see that there is a positive function l1(·) satisfying l1(x) → ∞, l1(x) < x2/4 for
all x > 0, and F̄ (x − l1(x)) ∼ F̄ (x). Furthermore, by Lemma 3.2 of Tang (2008), there is a
slowly varying function l(·) : (0, ∞) �→ (0, ∞) satisfying l(x) → ∞ and l(x) ≤ l1(x)1/2 for
all x > 0. This function l(·) fulfills all the requirements in Lemma 4.1.

Lemma 4.2 below forms the main ingredient of the proof of Theorem 2.1. It deals with the
tail probability of the sum of n random variables equipped with a certain dependence structure.
A similar problem was considered in Proposition 2.1 of Foss and Richards (2010). However, a
close look reveals that their Proposition 2.1 and our Lemma 4.2 below are essentially different.

Let X1, . . . , Xn be i.i.d. random variables with common distribution F ∈ S. Recall
Proposition 5.1 of Tang and Tsitsiashvili (2003), which shows that, for arbitrarily fixed 0 <

a ≤ b < ∞, the relation

Pr

( n∑
k=1

wkXk > x

)
∼

n∑
k=1

Pr(wkXk > x) (4.1)

holds uniformly for (w1, . . . , wn) ∈ [a, b]n. Hence, for the case of independent X and θ ,
Lemma 4.2 below immediately follows by conditioning on (θ1, . . . , θn). However, for the
general case of dependent X and θ , this lemma is a nontrivial consequence of Proposition 5.1
of Tang and Tsitsiashvili (2003).

Hereafter, for notational convenience, for every t ∈ � and n = 1, 2, . . . , we write tn =∑n
i=1 si and 	n,t = {(s1, . . . , sn) ∈ [0, t]n : tn ≤ t}.

Lemma 4.2. Recall the renewal risk model introduced in Section 2 with r ≥ 0. If F ∈ S and
assumption (A1) holds, then, for every n = 1, 2, . . . , it holds locally uniformly for t ∈ � that

Pr

( n∑
k=1

Xke−rτk > x, Nt = n

)
= (1 + o(1))

n∑
k=1

Pr(Xke−rτk > x, Nt = n). (4.2)
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Proof. Note that the event (Nt = n) in relation (4.2) could have a probability of 0. In the
proof below, we still use the notation a(x, t) ∼ b(x, t) even though the two functions a(x, t)

and b(x, t) could be simultaneously equal to 0. No confusion should occur since the precise
meaning of the notation is a(x, t) = (1 + o(1))b(x, t).

We need to prove that relation (4.2) holds uniformly for t ∈ �T for arbitrarily fixed T ∈ �.
We proceed by induction. Trivially, the assertion holds for n = 1. Now we assume by induction
that the assertion holds for some positive integer n = m − 1, and we prove it for n = m; that
is, we aim at the relation

Pr

( m∑
k=1

Xke−rτk > x, Nt = m

)
∼

m∑
k=1

Pr(Xke−rτk > x, Nt = m) (4.3)

with the required uniformity for t ∈ �T .
Recall the function l(·)given in Lemma 4.1. According to the value of the sum

∑m−1
k=1 Xke−rτk

belonging to (0, l(x)], (x − l(x), ∞), and (l(x), x − l(x)], we split the probability on the left-
hand side of (4.3) into three parts as

Pr

( m∑
k=1

Xke−rτk > x, Nt = m

)
= I1(x, m, t) + I2(x, m, t) + I3(x, m, t).

For I1(x, m, t), it holds uniformly for t ∈ �T that

I1(x, m, t) ≤ Pr(Xme−rτm > x − l(x), Nt = m)

=
∫

· · ·
∫

	m,t

Pr(Xm e−rtm > x − l(x) | θm = sm)Ḡ(t − tm)

m∏
i=1

G(dsi)

∼
∫

· · ·
∫

	m,t

Pr(Xme−rtm > x)h(sm)Ḡ(t − tm)

m∏
i=1

G(dsi)

∼
∫

· · ·
∫

	m,t

Pr(Xm e−rtm > x | θm = sm)Ḡ(t − tm)

m∏
i=1

G(dsi)

= Pr(Xme−rτm > x, Nt = m), (4.4)

where at the third and fourth steps we used assumption (A1) and Lemma 4.1. As can be seen
from the second step to the last step, the derivation of (4.4) mainly involves eliminating the
slowly varying function l(x). For I2(x, m, t), by the induction assumption and the same idea
used to derive (4.4), we have, uniformly for t ∈ �T ,

I2(x, m, t) ≤ Pr

(m−1∑
k=1

Xke−rτk > x − l(x), Nt = m

)

=
∫ t

0−
Pr

(m−1∑
k=1

Xke−rτk > x − l(x), Nt−sm = m − 1

)
G(dsm)

∼
m−1∑
k=1

∫ t

0−
Pr(Xke−rτk > x − l(x), Nt−sm = m − 1)G(dsm)

https://doi.org/10.1239/aap/1293113154 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113154


Subexponential tails of discounted aggregate claims 1137

∼
m−1∑
k=1

∫ t

0−
Pr(Xke−rτk > x, Nt−sm = m − 1)G(dsm)

=
m−1∑
k=1

Pr(Xke−rτk > x, Nt = m). (4.5)

Now we focus on I3(x, m, t). It holds uniformly for t ∈ �T that

I3(x, m, t) ≤ Pr

(m−1∑
k=1

Xke−rτk + Xme−rθm > x,

m−1∑
k=1

Xk e−rτk > l(x),

Xme−rθm > l(x), Nt = m

)

=
∫ t

0−

∫ ∞

l(x)

Pr

(m−1∑
k=1

Xke−rτk > (x − y) ∨ l(x), Nt−sm = m − 1

)

× Pr(Xme−rsm ∈ dy | θm = sm)G(dsm)

∼
m−1∑
k=1

∫ t

0−

∫ ∞

l(x)

Pr(Xke−rτk > (x − y) ∨ l(x), Nt−sm = m − 1)

× Pr(Xme−rsm ∈ dy | θm = sm)G(dsm)

∼
m−1∑
k=1

∫
· · ·

∫
	m,t

Pr(Xke−rtk + Xme−rsm > x, Xke−rtk > l(x), Xme−rsm > l(x))

× Ḡ(t − tm)h(sk)h(sm)

m∏
i=1

G(dsi),

where at the third step we used the induction assumption and at the last step we applied
assumption (A1) twice. For every k = 1, . . . , m−1, we note that, uniformly for (s1, . . . , sm) ∈
	m,t ,

Pr(Xke−rtk + Xme−rsm > x, Xke−rtk > l(x), Xme−rsm > l(x))

≤ Pr(Xke−rtk + Xme−rsm > x) − Pr(Xke−rtk > x, Xme−rsm ≤ l(x))

− Pr(Xme−rsm > x, Xke−rtk ≤ l(x))

= o(1)(Pr(Xke−rtk > x) + Pr(Xme−rsm > x)),

where at the last step we applied Proposition 5.1 of Tang and Tsitsiashvili (2003) as summarized
in (4.1) above. Substituting these estimates into I3(x, m, t), we have, uniformly for t ∈ �T ,

I3(x, m, t) = o(1)

m−1∑
k=1

∫
· · ·

∫
	m,t

Pr(Xke−rtk > x)Ḡ(t − tm)h(sk)h(sm)

m∏
i=1

G(dsi)

+ o(1)

m−1∑
k=1

∫
· · ·

∫
	m,t

Pr(Xm e−rsm > x)Ḡ(t − tm)h(sk)h(sm)

m∏
i=1

G(dsi).
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Since the distribution F has an ultimate tail, for an arbitrary function a(x) = o(1), we can
always find some positive function l∗(x), which diverges to ∞ but slowly enough, such that

a(x) = o(1)F̄ (l∗(x)).

Using this idea and assumption (A1), we have, uniformly for t ∈ �T ,

I3(x, m, t) = o(1)

m−1∑
k=1

∫
· · ·

∫
	m,t

Pr(Xke−rtk > x, Xm > l∗(x))Ḡ(t − tm)

× h(sk)h(sm)

m∏
i=1

G(dsi)

+ o(1)

m−1∑
k=1

∫
· · ·

∫
	m,t

Pr(Xme−rsm > x, Xk > l∗(x))Ḡ(t − tm)

× h(sk)h(sm)

m∏
i=1

G(dsi)

= o(1)

m−1∑
k=1

Pr(Xke−rτk > x, Xm > l∗(x), Nt = m)

+ o(1)

m−1∑
k=1

Pr(Xme−rθm > x, Xk > l∗(x), Nt = m)

= o(1)

m∑
k=1

Pr(Xke−rτk > x, Nt = m). (4.6)

A combination of (4.4), (4.5), and (4.6) gives the upper-bound version of (4.3).
The corresponding lower-bound version of (4.3) can be easily established. In fact,

Pr

( m∑
k=1

Xke−rτk > x, Nt = m

)

≥ Pr

((m−1∑
k=1

Xke−rτk > x

)
∪ (Xme−rτm > x), Nt = m

)

= Pr

(m−1∑
k=1

Xke−rτk > x, Nt = m

)
+ Pr(Xme−rτm > x, Nt = m)

− Pr

(m−1∑
k=1

Xke−rτk > x, Xme−rτm > x, Nt = m

)

= J1(x, m, t) + Pr(Xme−rτm > x, Nt = m) − J2(x, m, t). (4.7)

As in dealing with I2(x, m, t), by the induction assumption we have, uniformly for t ∈ �T ,

J1(x, m, t) ∼
m−1∑
k=1

Pr(Xke−rτk > x, Nt = m). (4.8)
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Furthermore, as in dealing with I3(x, m, t), it holds uniformly for t ∈ �T that

J2(x, m, t) ≤ Pr

(m−1∑
k=1

Xke−rτk + Xme−rθm > x,

m−1∑
k=1

Xke−rτk > l(x),

Xme−rθm > l(x), Nt = m

)

= o(1)

m∑
k=1

Pr(Xke−rτk > x, Nt = m). (4.9)

Substituting (4.8) and (4.9) into (4.7) gives the lower-bound version of (4.3). This completes
the proof of Lemma 4.2.

Following the same lines of the proof of Lemma 4.2 with some obvious modifications, we
can obtain the following result.

Lemma 4.3. Under the same conditions of Lemma 4.2, for every n = 1, 2, . . . , it holds locally
uniformly for t ∈ � that

Pr

( n∑
k=1

Xke−rθk > x, τn ≤ t

)
= (1 + o(1))n Pr(X1e−rθ1 > x, τn ≤ t). (4.10)

For a distribution F ∈ S, the well-known Kesten’s inequality states that, for every ε > 0,
there is some constant K = Kε > 0 such that the inequality

Fn∗(x) ≤ K(1 + ε)nF̄ (x)

holds for all n = 1, 2, . . . and x ≥ 0. For its proof, see Athreya and Ney (1972, p. 149) or
Lemma 1.3.5(c) of Embrechts et al. (1997). In the following lemma, we establish an inequality
of Kesten’s type for the probability on the left-hand side of (4.10).

Lemma 4.4. Recall the renewal risk model introduced in Section 2 with r ≥ 0. If F ∈ S,
t = 0, and assumptions (A1) and (B) hold, then, for every ε > 0 and T ∈ �, there is some
constant K = Kr,ε,T > 0 such that the inequality

Pr

( n∑
k=1

Xke−rθk > x, τn ≤ t

)
≤ K(1 + ε)n Pr(X1e−rθ1 > x, τn ≤ t)

holds for all n = 1, 2, . . . , x ≥ 0, and t ∈ �T .

Proof. For every ε > 0, by Lemma 4.3, there is some constant x0 > 0 such that, for all
x > x0 and t ∈ �T ,

Pr(X1e−rθ1 + X2e−rθ2 > x, X2e−rθ2 ≤ x, τ2 ≤ t)

= Pr(X1e−rθ1 + X2e−rθ2 > x, τ2 ≤ t) − Pr(X2e−rθ2 > x, τ2 ≤ t)

≤ (1 + ε) Pr(X1e−rθ1 > x, τ2 ≤ t). (4.11)

By assumption (A1), the constant x0 above can be chosen so large that, for all t ∈ �T ,

Pr(X1e−rθ1 > x0 | θ1 = t) ≥ 1
2 F̄ (x0erT )h(t). (4.12)
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Write

an = sup
x≥0, t∈�T

Pr(
∑n

k=1 Xke−rθk > x, τn ≤ t)

Pr(X1e−rθ1 > x, τn ≤ t)
.

We start by evaluating an+1. It is clear that

Pr

(n+1∑
k=1

Xke−rθk > x, τn+1 ≤ t

)
= Pr

(n+1∑
k=1

Xke−rθk > x, Xn+1e−rθn+1 ≤ x, τn+1 ≤ t

)

+ Pr(Xn+1e−rθn+1 > x, τn+1 ≤ t).

Conditioning on (Xn+1, θn+1) and noting the definition of an, we have

Pr

(n+1∑
k=1

Xke−rθk > x, Xn+1e−rθn+1 ≤ x, τn+1 ≤ t

)

≤ an Pr(X1e−rθ1 + Xn+1e−rθn+1 > x, Xn+1e−rθn+1 ≤ x, τn+1 ≤ t).

Using (4.11), we know that, for all x > x0 and t ∈ �T ,

Pr(X1e−rθ1 + Xn+1e−rθn+1 > x, Xn+1e−rθn+1 ≤ x, τn+1 ≤ t)

=
∫

· · ·
∫

	n−1,t

Pr(X1e−rθ1 + X2e−rθ2 > x, X2e−rθ2 ≤ x, τ2 ≤ t − tn−1)

n−1∏
i=1

G(dsi)

≤ (1 + ε) Pr(X1e−rθ1 > x, τn+1 ≤ t).

Hence,

sup
x>x0, t∈�T

Pr(
∑n+1

k=1 Xke−rθk > x, τn+1 ≤ t)

Pr(X1e−rθ1 > x, τn+1 ≤ t)
≤ (1 + ε)an + 1. (4.13)

When x ≤ x0, by inequality (4.12), it holds for all t ∈ �T that

Pr(
∑n+1

k=1 Xke−rθk > x, τn+1 ≤ t)

Pr(X1e−rθ1 > x, τn+1 ≤ t)
≤ Pr(τn+1 ≤ t)

Pr(X1e−rθ1 > x0, τn+1 ≤ t)

≤ ( 1
2 F̄ (x0erT )

)−1

∫ t

0− Gn∗(t − s)G(ds)∫ t

0− Gn∗(t − s)h(s)G(ds)
.

By assumption (B), there is some constant 0 ≤ t∗ ∈ � such that h(s) is away from 0 for
s ∈ [0, t∗]. We have

∫ t

0− Gn∗(t − s)G(ds)∫ t

0− Gn∗(t − s)h(s)G(ds)
≤

∫ t∧t∗
0− Gn∗(t − s)G(ds) + ∫ t

t∧t∗ Gn∗(t − s)G(ds) 1{t>t∗}∫ t∧t∗
0− Gn∗(t − s)h(s)G(ds)

≤
(

inf
s∈[0,t∗] h(s)

)−1 + Ḡ(t∗)∫ t∗
0− h(s)G(ds)

.

Therefore, there is some 0 < L < ∞ such that

sup
x≤x0, t∈�T

Pr(
∑n+1

k=1 Xke−rθk > x, τn+1 ≤ t)

Pr(X1e−rθ1 > x, τn+1 ≤ t)
≤ L. (4.14)
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It follows from (4.13) and (4.14) that

an+1 ≤ (1 + ε)an + 1 + L.

This recursive inequality with initial value a1 = 1 completes the proof of Lemma 4.4.

4.2. Proof of Theorem 2.1

We follow the proof of Theorem 2.1 of Hao and Tang (2008), but we need to overcome some
technical difficulties due to the dependence structure of (X, θ).

Let us prove that relation (2.7) holds uniformly for t ∈ �T for arbitrarily fixed T ∈ �.
Choose some large positive integer N and write

Pr(Dr(t) > x) =
( ∞∑

n=N+1

+
N∑

n=1

)
Pr

( n∑
k=1

Xke−rτk > x, Nt = n

)

= I1(x, t) + I2(x, t). (4.15)

First, we look at I1(x, t). Note that if t > 0 then I1(x, t) vanishes for some large N . Thus, we
can assume that t = 0. Applying Lemma 4.4, for every ε > 0, there is some constant K > 0
such that, for all t ∈ �T ,

I1(x, t) ≤
∞∑

n=N+1

Pr

( n∑
k=1

Xke−rθk > x, τn ≤ t

)

≤ K

∞∑
n=N+1

(1 + ε)n Pr(X1e−rθ1 > x, τn ≤ t).

By assumption (A1), it follows that, uniformly for t ∈ �T ,

I1(x, t) � K

∞∑
n=N+1

(1 + ε)n
∫ t

0−
F̄ (xers1)h(s1) Pr(Nt−s1 ≥ n − 1)G(ds1)

≤ K

∫ t

0−
F̄ (xers)h(s)G(ds)

∞∑
n=N+1

(1 + ε)n Pr(NT ≥ n − 1).

It is well known that the moment generating function of NT is analytic in a neighborhood of 0;
see, e.g. Stein (1946). Thus, we may choose some ε > 0 sufficiently small such that the series
in the last step above converges. Therefore, for every 0 < δ < 1, we can find some large
positive integer N such that, uniformly for t ∈ �T ,

I1(x, t) � δ

∫ t

0−
F̄ (xers) dλ̃s . (4.16)

Next, we turn to I2(x, t). By Lemma 4.2, it holds uniformly for t ∈ �T that

I2(x, t) ∼
( ∞∑

n=1

−
∞∑

n=N+1

) n∑
k=1

Pr(Xke−rτk > x, Nt = n) = I21(x, t) − I22(x, t). (4.17)
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For I21(x, t), by interchanging the order of the sums and then conditioning on τk−1 and θk , we
obtain, uniformly for t ∈ �T ,

I21(x, t) =
∞∑

k=1

Pr(Xke−rτk > x, τk ≤ t)

∼
∞∑

k=1

∫ t

0−

∫ t−u

0−
F̄ (xer(u+v)) Pr(τk−1 ∈ dv)h(u)G(du)

=
∫ t

0−

(
F̄ (xeru) +

∫ t−u

0−
F̄ (xer(u+v)) dλv

)
h(u)G(du)

=
∫ t

0−
F̄ (xers)h(s)G(ds) +

∫ t

0−
F̄ (xers) d

(∫ s

0−
λs−uh(u)G(du)

)

=
∫ t

0−
F̄ (xers) dλ̃s , (4.18)

where for the fourth step we used integration by parts with possible jumps; see, e.g. Equa-
tion (1.20) of Klebaner (2005). For I22(x, t), it holds uniformly for t ∈ �T that

I22(x, t) =
∞∑

n=N+1

n∑
k=1

Pr(Xke−rτk > x, Nt = n)

�
∞∑

n=N+1

n∑
k=1

∫ t

0−
F̄ (xersk ) Pr(Nt−sk = n − 1)h(sk)G(dsk)

=
∞∑

n=N+1

n

∫ t

0−
F̄ (xers) Pr(Nt−s = n − 1)h(s)G(ds)

≤ E(1 + NT ) 1{NT ≥N}
∫ t

0−
F̄ (xers)h(s)G(ds).

Hence, we can find some large positive integer N such that, uniformly for t ∈ �T ,

I22(x, t) � δ

∫ t

0−
F̄ (xers) dλ̃s . (4.19)

Substituting (4.18) and (4.19) into (4.17) yields, uniformly for t ∈ �T ,

(1 − δ)

∫ t

0−
F̄ (xers) dλ̃s � I2(x, t) �

∫ t

0−
F̄ (xers) dλ̃s . (4.20)

Substituting (4.16) and (4.20) into (4.15) and noting the arbitrariness of δ, we complete the
proof of Theorem 2.1.

5. Proof of Theorem 2.2

5.1. Lemmas

The following lemma describes the closure of the class ERV under the product of two
dependent random variables.
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Lemma 5.1. Recall the renewal risk model introduced in Section 2 with r ≥ 0. If F ∈
ERV(−α, −β) for some 0 < α ≤ β < ∞ and assumption (A2) holds, then for every k =
1, 2, . . . , the distribution of Xke−rτk still belongs to ERV(−α, −β) and

Pr(Xke−rτk > x) 	 F̄ (x). (5.1)

Proof. For every k = 1, 2, . . . , conditioning on τk−1 and θk , and recalling assumption (A2),
we have

Pr(Xke−rτk > x) ∼
∫ ∞

0−

∫ ∞

0−
F̄ (xer(u+v))h(u)G(du) Pr(τk−1 ∈ dv). (5.2)

It follows from (5.2) and (2.2) that, for every y ≥ 1,

lim sup
x→∞

Pr(Xke−rτk > xy)

Pr(Xke−rτk > x)
≤ lim sup

x→∞
sup
s≥0

F̄ (xyers)

F̄ (xers)
≤ y−α

and

lim inf
x→∞

Pr(Xke−rτk > xy)

Pr(Xke−rτk > x)
≥ lim inf

x→∞ inf
s≥0

F̄ (xyers)

F̄ (xers)
≥ y−β.

Therefore, the distribution of Xke−rτk belongs to ERV(−α, −β). Moreover, applying (2.4)
to (5.2), we obtain relation (5.1).

The following lemma is interesting in its own right and it will be the main ingredient of the
proof of Theorem 2.2.

Lemma 5.2. Recall the renewal risk model introduced in Section 2 with r > 0. If F ∈
ERV(−α, −β) for some 0 < α ≤ β < ∞ and assumption (A2) holds, then it holds uniformly
for n = 1, 2, . . . that

Pr

( n∑
k=1

Xke−rτk > x

)
∼

n∑
k=1

Pr(Xke−rτk > x). (5.3)

Proof. By Lemma 5.1, the distributions of Xke−rτk , k = 1, 2, . . . , belong to ERV(−α, −β)

and, for 1 ≤ i 
= j ≤ n,

Pr(Xie
−rτi > x, Xj e−rτj > x) ≤ (F̄ (x))2 = o(Pr(Xie

−rτi > x) + Pr(Xj e−rτj > x)).

Hence, it follows from Theorem 3.1 of Chen andYuen (2009) that relation (5.3) holds for every
fixed n = 1, 2, . . . .

Now we turn to the required uniformity of relation (5.3). Trivially, it holds for every k =
n + 1, n + 2, . . . that Xke−rτk ≤ Xke−rτk−1 , where Xk and e−rτk−1 on the right-hand side
are independent. Hence, following the same lines of the proof of Theorem 3.1 of Tang and
Tsitsiashvili (2004) with some obvious modifications (see also Section 4 of Chen and Ng
(2007)), we obtain

lim
n→∞ lim sup

x→∞
1

F̄ (x)
Pr

( ∞∑
k=n+1

Xke−rτk > x

)
= lim

n→∞ lim sup
x→∞

∞∑
k=n+1

Pr(Xke−rτk > x)

F̄ (x)
= 0.
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This means that, for every δ > 0, there is some large positive integer n0 such that

Pr

( ∞∑
k=n0+1

Xke−rτk > x

)
+

∞∑
k=n0+1

Pr(Xke−rτk > x) � δF̄ (x). (5.4)

By relation (5.3) with n = n0, the first assertion of Lemma 5.1, and relation (5.4), it holds, for
arbitrarily fixed 0 < ε < 1 and uniformly for n > n0, that

Pr

( n∑
k=1

Xke−rτk > x

)
≤ Pr

( n0∑
k=1

Xke−rτk > (1 − ε)x

)
+ Pr

( ∞∑
k=n0+1

Xke−rτk > εx

)

� (1 − ε)−β

n0∑
k=1

Pr(Xke−rτk > x) + δε−βF̄ (x)

≤ (1 − ε)−β
n∑

k=1

Pr(Xke−rτk > x) + δε−βF̄ (x). (5.5)

Symmetrically, it holds uniformly for n > n0 that

Pr

( n∑
k=1

Xke−rτk > x

)
≥ Pr

( n0∑
k=1

Xke−rτk > x

)

∼
( n∑

k=1

−
n∑

k=n0+1

)
Pr(Xke−rτk > x)

�
n∑

k=1

Pr(Xke−rτk > x) − δF̄ (x). (5.6)

By relation (5.1) and the arbitrariness of ε and δ, we conclude from (5.5) and (5.6) that
relation (5.3) holds uniformly for n > n0. The uniformity of relation (5.3) for 1 ≤ n ≤ n0 is
obvious since it holds for every fixed n = 1, 2, . . . . This completes the proof of Lemma 5.2.

5.2. Proof of Theorem 2.2

Following the proof of Lemma 4.2 of Hao and Tang (2008), we have

lim
t→∞ lim sup

x→∞

∫ ∞
t

F̄ (xers) dλ̃s∫ t

0− F̄ (xers) dλ̃s

= 0.

Thus, for every δ > 0, there is some T0 ∈ � such that∫ ∞

T0

F̄ (xers) dλ̃s � δ

∫ T0

0−
F̄ (xers) dλ̃s . (5.7)

On the one hand, by Theorem 2.1 and relation (5.7), it holds uniformly for t ∈ (T0, ∞] that

Pr(Dr(t) > x) ≥ Pr(Dr(T0) > x)

∼
(∫ t

0−
−

∫ t

T0

)
F̄ (xers) dλ̃s

� (1 − δ)

∫ t

0−
F̄ (xers) dλ̃s . (5.8)
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On the other hand, by Lemma 5.2 and assumption (A2),

Pr(Dr(∞) > x) ∼
∞∑

k=1

Pr(Xke−rτk > x)

= Pr(X1e−rθ1 > x) +
∫ ∞

0−
Pr(Xke−rθk > xerv) dλv

∼
∫ ∞

0−
F̄ (xers)h(s)G(ds) +

∫ ∞

0−

∫ ∞

0−
F̄ (xer(u+v))h(u)G(du) dλv

=
∫ ∞

0−
F̄ (xers) dλ̃s . (5.9)

Hence, by (5.9) and (5.7), it holds uniformly for t ∈ (T0, ∞] that

Pr(Dr(t) > x) ≤ Pr(Dr(∞) > x)

∼
(∫ t

0−
+

∫ ∞

t

)
F̄ (xers) dλ̃s

� (1 + δ)

∫ t

0−
F̄ (xers) dλ̃s . (5.10)

By the arbitrariness of δ in (5.8) and (5.10), we prove the uniformity of (2.7) for t ∈ (T0, ∞].
Recall that Theorem 2.1 already shows the local uniformity of (2.7). This completes the proof
of Theorem 2.2.
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