DENSE MOLECULAR GAS IN NEARBY GALAXIES

Y. GAO
Dept. of Astronomy, Univ. of Illinois and Astronomy Program, SUNY at Stony Brook

AND

P.M. SOLOMON
Astronomy Program, SUNY at Stony Brook

1. Introduction

HCN, one of the most abundant high dipole-moment molecules (traces molecular gas at densities $n_{H_2} \gtrsim 3 \times 10^4 \text{ cm}^{-3}$ whereas CO traces at $\sim 500 \text{ cm}^{-3}$), has only been detected in ~ 25 galaxies, primarily towards the galactic nuclei (Solomon et al. 1992; Nguyen-Q-Rieu et al. 1992; Helfer & Blitz 1993; Aalto et al. 1995). Dense molecular gas properties in “normal” galactic disks, as compared to the centers of “normal” spirals, starbursts, and luminous IR galaxies are not clear. As part of a large HCN survey in 60 galaxies (Gao 1996; Gao & Solomon 1997), we present here HCN observations in central regions of a few nearby galaxies. HCN was mapped at least along the major axes in the inner disks to determine the total HCN luminosity, the distribution with radius of HCN emission, and of the surface brightness ratio of $\text{SBR} \equiv I_{\text{HCN}}/I_{\text{CO}}$.

2. Extent and Distribution of Dense Molecular Gas

There are almost no HCN observations beyond the nuclear $\sim 1 \text{ kpc}$ regions in galaxies. We have mapped HCN along the major axis in ~ 10 nearby galaxies. An example is shown in Fig. 1 for M82. Apparently, the dense molecular gas is not confined to the inner $\sim 1 \text{ kpc}$ nuclear region, although the highest concentrations of dense molecular gas are in the center. A significant fraction of dense molecular gas is distributed in the inner disks of galaxies outside the nuclear or inner ring starburst regions, and
can be detected to radii as large as a few kpc (e.g., in NGC 891), perhaps
to diameters of $\sim D_{25}/4$.

The radial distribution of HCN emission and the SBR in NGC 253
obtained from both the IRAM 30m and NRAO 12m are presented in Fig. 2.
The HCN distribution in the innermost part of disks of galaxies seems to
follow approximately an exponentially decreasing law. However, it seems to
be more difficult to describe the SBR as a function of radius.

3. Starburst Indicator $SBR \equiv I_{HCN}/I_{CO}$

The SBR in NGC 253 reveals a nuclear starburst core of highest SBR
~ 0.1 with a linear scale $\lesssim 0.5$ kpc. At larger radius, $R \gtrsim 0.3$ kpc, the
fraction of dense molecular gas becomes smaller and the SBR drops to the
global value for normal spirals like NGC 891 (~ 0.025), which shows slowly
declining but almost constant SBR across the inner disk (on a linear scale
of ~ 5 kpc). In galaxies like M82 and NGC 6946, a rather constant SBR
$\sim 0.04 - 0.05$ (moderate starburst) across the innermost a few kpc region
is observed, whereas normal galaxies and even the outer part of the inner
disks of the starburst galaxies (e.g., NGC 253) have SBR about $0.02 - 0.03$
(non-starburst, normal).

Ultraluminous IR galaxies have the highest HCN-to-CO luminosity ra-
tio, $L_{HCN}/L_{CO} \sim 0.1 - 0.3$ (Solomon et al. 1992; Gao & Solomon 1997),
similar to the SBR in the starburst cores, whereas “normal” spirals have a
ratio $L_{HCN}/L_{CO} \sim 0.01 - 0.05$, same as the SBR in non-starburst galaxies
or the disks outside the starburst regions.

Therefore, the SBR seems to be an indicator of the starburst and the
radial distribution of SBR as a function of galactic radius may suggest the
starburst size scales in galaxies.

4. References

Figure 1. HCN spectra (bottom) mapped along the major axis in M82 as compared with the CO(2-1) spectra (top) obtained simultaneously from the IRAM 30m telescope. The vertical scale is the antenna brightness temperature $T_A^*(K)$.

Figure 2. HCN emission (the integrated line intensity) and the surface brightness ratio $SBR = I_{HCN}/I_{CO}$ as a function of the galactic radius in NGC 253 (filled squares are the IRAM 30m data and the open squares are the NRAO 12m observations). The line is an exponential fit.