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We perform direct numerical simulation to study the transport of gas and heat as
passive scalars in free-surface turbulence. Our analysis focuses on the surface age
of surface fluid particles, i.e. the time elapsed since the last surface renewal they
experienced. Using Lagrangian tracing of fluid particles combined with heat diffusion
analysis, we are able to directly quantify surface age to illustrate scalar characteristics
at different stages of interfacial transfer. Results show that at the early stage of surface
renewal, vertical advection associated with upwellings greatly enhances surface gas
flux; random surface renewal model does not apply at this stage when most of the
interfacial gas transfer occurs. After a fluid particle leaves the upwelling region, it may
enter a nearby downwelling region immediately, where the gas flux is sharply reduced
but the variation in surface temperature is small; alternatively, the fluid particle may
travel along the surface for some time before it is absorbed by a downwelling, where
the surface temperature has changed significantly due to long duration of diffusion
and the gas flux is also reduced. To gain further insight into the relationships between
surface velocity and scalar quantities, we perform a statistical analysis of upwellings
using clustering and nonlinear regression. With this analysis, we are able to provide
qualitative and quantitative descriptions of the skewed probability density functions
associated with the surface divergence, temperature and gas flux that support our
physics-based investigation of surface renewal and surface age.

Key words: channel flow, turbulent mixing

1. Introduction
Turbulent transport of gas and heat at an air–water interface is important to many

applications including industrial equipment involving multi-phase flows, ecosystems
of lakes and rivers, as well as air–sea heat and greenhouse gas transfer. To model
interfacial transfer accurately, it is critical to understand the hydrodynamics of turbu-
lent flows near the free surface. Many gases have low solubility in water and/or lower
molecular diffusivity in water than in air. As a result, the rate of interfacial gas transfer
is controlled by water-side fluid motion (as shown in the analyses in Liss & Slater
1974; Jähne & Haußecker 1998). Interfacial heat transfer rate, on the other hand, is
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mainly controlled by air-side processes, and water-side fluid motion plays an essential
role in the variation of temperature at the water surface associated with the cool skin.

In the past century, considerable research has been conducted to model the
hydrodynamic process of surface renewal in the transport of passive scalars. Many
conceptual models have been proposed (e.g. Higbie 1935; Danckwerts 1951; Harriott
1962). Effects of macro-scale eddies (Fortescue & Pearson 1967) and Kolmogorov-
scale eddies (Banerjee, Scott & Rhodes 1968; Lamont & Scott 1970) on surface
renewal have been modelled. To describe the dominant role played by upwelling (the
strength of which is quantified by surface divergence) on surface renewal, Chan &
Scriven (1970) used irrotational stagnation flow as the principle element of advection
action to obtain an analytical solution of the gas concentration. Using simulation
for the advection–diffusion of scalars in the surface-normal direction with randomly
varying advection velocity, Hanratty and co-workers (McCready & Hanratty 1984;
McCready, Vassiliadou & Hanratty 1986) showed that, unlike the solid wall case where
only low-frequency velocity fluctuations contribute to the scalar transfer (Campbell &
Hanratty 1982, 1983), in the free surface case velocity fluctuations of all frequencies
are important and the gas transfer rate is related to the root-mean-square (r.m.s.) of
surface divergence. Brumley & Jirka (1988) obtained the Lagrangian time spectrum
of surface divergence on the basis of the rapid distortion theory analysis of Hunt &
Graham (1978). The integration of the surface divergence spectrum was simplified by
Banerjee (1990) to yield a surface divergence model for interfacial gas transfer, which
was shown by Banerjee, Lakehal & Fulgosi (2004) to agree well with experimental
and direct numerical simulation (DNS) data.

Further improvement of the prediction capability for the interfacial scalar
transfer requires a better understanding of the turbulent mixing and molecular
diffusion processes. Recent developments in numerical simulation and experimental
measurement have made it possible to obtain high-resolution data of flow and scalar
fields. For example, DNS and large-eddy simulation (LES) of scalar transport in
turbulent free-surface flows have been performed by e.g. Komori et al. (1993), Handler
et al. (1999), Shen, Triantafyllou & Yue (2001), Lakehal et al. (2003), Nagaosa &
Handler (2003), Magnaudet & Calmet (2006), Hasegawa & Kasagi (2008, 2009)
and Khakpour, Shen & Yue (2011). From such numerical simulation techniques,
a detailed three-dimensional description of flow and scalar fields evolving in time
can be generated. Similarly, high-resolution measurements have been obtained by
Rashidi, Hetsroni & Banerjee (1991), Chu & Jirka (1992), Münsterer & Jähne (1998),
Tamburrino & Gulliver (2002), Atmane & George (2002), Garbe, Schimpf & Jähne
(2004), McKenna & McGillis (2004), Zappa et al. (2004), Tamburrino, Aravena &
Gulliver (2007) and Herlina & Jirka (2008), among many others. These studies have
provided rich information on the flow and scalar fields and new insights into the
process of scalar transport.

In this paper, we present a simulation-based study on the statistics of passive scalars
in surface renewal. We choose turbulent open channel flow as the canonical problem,
which has been widely used in DNS/LES and laboratory studies. We use DNS as
a research tool (Moin & Mahesh 1998) to focus on the fundamental characteristics
of the scalar and flow fields related to the surface renewal. The wave effect is not
a subject of the present study, and we intentionally keep the surface flat. Restricted
free-surface vertical motion is a reasonable approximation for typical open channel
flows with small Froude numbers in laboratory (see e.g. the analysis in Borue, Orszag
& Staroselsky 1995). The present paper focuses on the use of Lagrangian tracing
of surface fluid particles (Kermani & Shen 2009) to directly quantify surface age
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Figure 1. Computational geometry and definition sketch for transport of passive scalars (heat
and gas) in open channel turbulent flow. Boundary conditions for flow, heat and gas are shown.

associated with the surface renewal process for a comprehensive study of scalar
statistical properties. Different roles of turbulent advection and molecular diffusion
for heat and gas at different stages during and after surface renewal are elucidated,
based on which various approaches for surface age quantification are analysed. Using
tools of probability density (p.d.f.) analysis, a clustering procedure based on the
expectation–maximization algorithm, and nonlinear regression, we are able to gain
further insight into the characteristics of heat and gas transfer at the free surface.

This paper is organized as follows. In § 2, we introduce the problem definition and
the numerical method, and provide an overview of the flow and scalar fields. In § 3,
we investigate surface renewal and quantification of surface age. In § 4, we discuss the
statistics of scalar features at the surface. Finally, § 5 presents conclusions.

2. Problem definition and overview of flow and scalar fields
2.1. Problem introduction and mathematical formulations

We consider as a canonical problem a turbulent open channel flow shown in figure 1.
A body force in the streamwise direction drives the flow. The problem is periodic
horizontally. In the vertical direction, the two flow boundary conditions are, namely
no slip (u = v =w = 0) at the channel bottom and free slip (∂u/∂z = ∂v/∂z =w = 0)
at the channel top resembling a flat unsheared free surface. In this study, DNS is
performed to simulate fluid motion. Unless indicated otherwise, the mean free-surface
velocity uf is used to normalize velocities, and the depth of the channel h is used to
normalize lengths. The normalized Navier–Stokes equations and continuity equation
are written as

∂u
∂t

+ u · ∇u =
1

Re
∇2u − ∇p + fbody i, (2.1)

∇ · u = 0, (2.2)

where Re = uf h/ν, with ν being the kinematic viscosity; p is the dynamic pressure
normalized by ρu2

f , with ρ being the fluid density; fbody is the body force in the
streamwise direction.

The heat and gas are modelled as passive scalars in the present study, i.e. convection
due to the buoyancy effect is considered to be small compared with shear turbulence,
which is a legitimate assumption for many open channel flows (see e.g. Handler et al.
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1999). There is no coupling between heat and gas transfer. The advection–diffusion
equation for scalars is

∂f

∂t
+ u · ∇f = D∇2f. (2.3)

In the above equation, f can be the non-dimensional gas concentration c or
temperature T . In the case of gas, D is 1/(ReSc), where Sc stands for the Schmidt
number, defined as the ratio of kinematic viscosity to molecular diffusivity. In the
case of temperature, D is 1/(ReP r), where Pr stands for the Prandtl number, defined
as the ratio of kinematic viscosity to thermal diffusivity. The normalized forms of gas
concentration and temperature and their boundary conditions are discussed below.

For the transfer of gas and heat across the air–water interface, there exists resistance
on both the air-side and the water-side. A study on the partition of the transfer (Liss
& Slater 1974) shows that their relative importance is determined by the molecular
diffusivity of the scalar in air and water and the solubility of the scalar in water.
As shown in Jähne & Haußecker (1998), the flux rate of heat is controlled by
air-side processes, while for most gases the flux is water-side controlled (results
summarized in their figure 2). In numerical studies that simulate the water-side only,
an approximation of the free-surface boundary conditions for the scalars is necessary.
Handler et al. (1999) considered two cases, one with a Dirichlet condition for the
scalar at the surface, and the other with a Neumann condition. Although in both cases
the scalars were called ‘temperature’ for simplicity in their paper, they also pointed
out that the first case actually applies to gas transfer and they stated that ‘an excellent
approximation is that the gas concentration in the air and at the free surface remains
constant’. They also stated that the second case applies to heat transfer because ‘the
heat flux, which is controlled by the humidity and the wind, can be assumed to be
held fixed to a close approximation in most situations’. Furthermore, they showed
that the surface flux field of their first case is much more intermittent than the surface
concentration field of their second case, the effect of microscale is more significant in
the first case (which has been confirmed in our study; since our result is very similar
to theirs, it is not shown here), and they validated their results by comparison with
observations from measurement. Recently, Liu et al. (2009) simulated scalar transport
in coupled air–water boundary layers and confirmed the conclusions of above studies
regarding the applicability of the boundary conditions for the two types of scalars.

Therefore, for the simulation of gas transport in the present study, Dirichlet
boundary conditions are used at the free surface and at the bottom. (We note
that in some laboratory experiments using tanks, there is no gas flux at the tank
bottom; the case of zero flux at the bottom, i.e. the Neumann bottom condition, is
discussed in Appendix A.) Gas concentration is normalized as c = (c∗ − c∗

b)/(c
∗
t − c∗

b),
where the superscript ‘∗’ stands for the dimensional value, and the subscripts ‘t ’ and
‘b’ stand for values at the top free surface and the bottom wall, respectively. After
this normalization, the boundary conditions for gas are ct = 1 at the free surface
and cb = 0 at the bottom; the gas flux at the free surface is qg = D(∂c/∂z)|z = 0. For
temperature, a Neumann boundary condition at the free surface and a Dirichlet
boundary condition at the bottom are used in our simulation. The normalized
temperature is T = −(T ∗ − T ∗

b )k/(q∗
hh), where T ∗

b is the temperature at the bottom of
the channel, k is the thermal conductivity, and q∗

h is the heat flux at the free surface
that is set to be a constant in this study. This normalization simplifies the boundary
conditions as ∂T /∂z = −1 at the free surface and T = 0 at the bottom of the channel.
For simplicity, we set the non-dimensional surface heat flux to be qh = D(∂T /∂z)|z = 0.
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To summarize, the boundary conditions for gas concentration and temperature are

c = 0, T = 0, at z = −1,

c = 1,
∂T

∂z
= −1, at z = 0,

⎫⎬
⎭ (2.4)

which are based on the different air-side and water-side transport processes for gas
and heat. In previous numerical studies (e.g. Komori et al. 1993; Handler et al. 1999;
Liu et al. 2009), these boundary conditions have been shown to capture the salient
features of gas and temperature at the water surface.

2.2. Numerical method and computational parameters

To simulate (2.1)–(2.3), we use the fractional step method introduced by Kim & Moin
(1985). For time integration, we use a second-order explicit Adams–Bashforth scheme
for the convective terms and a second-order implicit Crank–Nicholson scheme for
the viscous terms. For spatial integration, we implement a sixth-order finite-difference
scheme in the horizontal directions and a second-order one in the vertical direction
with a vertically staggered grid. The details are provided in Kermani (2010).

In this study, the friction Reynolds number of the open channel turbulent flow,
Re∗ = u∗h/ν, is defined based on the wall friction velocity at the bottom u∗, channel
depth h and kinematic viscosity ν. We use the value Re∗ = 300 in our DNS, which
leads to the value of the Reynolds number based on the free-surface velocity
Re = uf h/ν = 5778. Prandtl and Schmidt numbers with the values of 0.71, 1, 2, 4
and 8 are used.

The computational domain size is Lx =2π in the streamwise direction, Ly = π in
the spanwise direction, and Lz = 1 in the vertical direction, all scaled by the channel
depth h. To ensure that the domain used in the simulation is sufficiently large, we
analysed the two-point correlation in the streamwise and spanwise directions for
flow and scalar properties, and confirmed that the correlation coefficients at the half
domain distance are sufficiently small. A uniform grid size is used in the horizontal
directions. An uneven grid is used in the vertical direction and is clustered close to
the boundaries. The grid number is 1283 or 2563, depending on the values of Pr and
Sc. Validation of our simulation result and comparison with experimental and other
numerical results are shown in § 2.3.

The simulation starts with prescribed mean velocity and scalar concentration
profiles seeded by noise. Turbulence is then developed dynamically in the simulation.
To obtain statistical steady turbulence, we apply a constant body force in the flow
to counter the friction at the channel bottom. This is equivalent to having a mean
pressure gradient in the streamwise direction. After the flow and scalar fields have
fully developed, as indicated by quasi-stationarity in the turbulence statistics, we
continue the simulation for 1000 uf /h (about 280 large-eddy turnover time) to obtain
data for time averaging.

We remark that the values of Re, Sc and Pr are limited in DNS by the requirement
of resolving all the turbulence scales without modelling. Like other DNS of free-
surface scalar transport in the literature as reviewed in the Introduction, our DNS
does not seek a direct solution of the problems in real-world applications. Instead,
the DNS is used as a research tool (Moin & Mahesh 1998) to reveal the fundamental
characteristics of gas and heat transport at a free surface, which can then be used as
a physical basis for the development of improved models and parameterizations in
future studies. The value of Re is consistent with the DNS studies in the literature
and is comparable to typical small-scale laboratory measurements of open channel
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Figure 2. Mean temperature and gas concentration profiles in (a,b) the global coordinate
and (c,d ) the local coordinate near the bottom wall. The present results are denoted by – – –,
Pr = 0.71; ——, Pr = Sc = 1; – · –, Pr = Sc =2; −· ·−, Pr = Sc = 4; −−− −−−, Pr = Sc = 8.
Plots (c) and (d ) show the comparison with the experimental results of Johnk & Hanratty
(1962) (�), Kader (1981) (�) and Zhu & Antonia (1993) (�) with Pr = 0.71; the numerical
results of Kim (1988) (—�—) and Kasagi, Tomita & Kuroda (1992) (—�—) for Pr = 0.71,
Nagaosa & Handler (2003) (—�—) for Sc =1, and Handler et al. (1999) (—�—) for Sc =2;
and the law of the wall (· · · · · · ·).

flows (Kermani 2010). The value of Pr for heat in nature can be accounted for by
DNS. For most gases in nature, on the other hand, the value of Sc is much larger
than what is permitted by DNS, and proper scaling is needed to estimate the gas
transfer rate (as explained in more detail in § 2.3). Nevertheless, the limitation in Sc

does not cause a concern for the main topic of this paper, surface renewal, which is
a hydrodynamic process. The scalars are assumed to be passive, and thus the flow
patterns are not affected by scalar concentration.

2.3. Results overview and validation

In this section, we present an overview of the scalar results and their validation.
Extensive comparison of our simulation results with those in the literature has been
performed in Kermani (2010) to validate our simulation. Because this type of open
channel flow has been successfully modelled in numerous other DNS studies and our
simulation approach is similar, the agreement in the flow field results is as expected
and we omit the comparison results of the velocity field for space consideration. The
comparison of the scalar field, on the other hand, is less reported in the literature and
we present it below.

Figure 2 shows the mean temperature and gas concentration profiles. Here and
hereafter, the mean value of a quantity f (x, y, z) is expressed as 〈f 〉(z), where 〈 · 〉
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denotes averaging over the (x, y)-plane because the present problem is statistically
homogeneous in the horizontal directions. Fluctuation of the quantity is expressed as
f ′(x, y, z, t) = f − 〈f 〉, and its r.m.s. value is denoted as frms(z) = 〈f ′2〉1/2. The results
are further averaged over 280 large-eddy turnover times to improve the accuracy of
the statistics. When a global view is needed, the results are presented in the global
coordinate z ∈ [−1, 0]. When detailed structures near the boundaries are examined,
we use the local coordinate in terms of the distances from the bottom wall db = (z+1)
and from the top free surface dt = −z.

Figure 2(a,b) shows the global view for Pr = 0.71 and Pr = Sc = 1, 2, 4 and 8. It is
noted that at the free surface, the gas concentration is fixed, while for the temperature
it is the gradient being specified (see (2.4)). As Pr or Sc increases, the scalar diffusive
sublayer becomes thinner. Between the top free surface and the bottom solid wall,
the diffusive sublayer is thinner at the former. This is due to the fact that according
to the Taylor series expansion, w ∝ dt near the free surface and w ∝ d2

b near the solid
wall. As a result, as the distance from the boundary increases, turbulent transport
increases more rapidly near the free surface and thus its diffusive sublayer is thinner.

Comparison of the present result with previous studies is shown in figure 2(c,d )
for the near-bottom region in the local coordinate d+

b (the near-surface region is
compared in figure 4). Here, the superscript ‘+’ denotes normalization by the friction
velocity u∗ and the viscous length scale ν/u∗. For scalars, the superscript ‘+’ indicates
that the temperature and gas concentration are normalized by the friction temperature
T∗ = |〈qh〉|/u∗ and the friction gas concentration c∗ = 〈qg〉/u∗, respectively. For the heat
transfer problem with Pr =0.71, extensive measurement (using air) and simulation
data exist in the literature. A few representative data results are included in figure 2(c)
to show that the present result agrees with the results obtained by other researchers.
For Sc = 1 and 2, only simulation results are available in the literature, which again
are closely matched by the present data (figure 2d ).

The results in figure 2(c,d ) show that at the channel bottom, the law of the wall
is satisfied with 〈c+〉 = Sc d+

b and 〈c+〉 = (1/kθ ) ln d+
b + Bθ . (Note that at the bottom

that is away from the surface, the behaviour of gas and temperature is indiscernible
if Pr = Sc, and we discuss only one of them.) The slope 1/kθ is 1/0.34, which is
determined by Re and is independent of Sc; Bθ varies from 1.15 to 4.15, 12.2, 24.2
and 43.2, for Pr = 0.71 and Sc = 1, 2, 4 and 8, respectively. The independence of 1/kθ

with respect to Sc and the variation of Bθ with Sc were observed by Na, Papavassiliou
& Hanratty (1999) and Schwertfirm & Manhart (2007). An estimate for the thickness
of the diffusive sublayer can be obtained using the intersection point of the linear
and the logarithmic curves (see e.g. Schwertfirm & Manhart 2007). Using the present
result, the thickness of the diffusive sublayer is fitted to 11.1 Sc−0.28ν/u∗ for the range
of Sc = 0.71–8, which is in agreement with the empirical equation of Schwertfirm
& Manhart (2007) of 11.5 Sc−0.29ν/u∗ that was obtained for the range of Sc =
1–49.

Figure 3 shows the r.m.s. profile of scalar fluctuations. Figure 3(a,b) shows that, as
seen in the velocity fluctuations, T +

rms and c+
rms have local maxima near the bottom. At

the free surface, the fixed flux boundary condition makes the peak of T +
rms located at

the surface, while the Dirichlet boundary condition makes the peak of c+
rms located

at a short distance below the surface. As Sc increases, the near-surface peak of c+
rms

increases and moves towards the surface. Magnaudet & Calmet (2006) found that
the location of the near-surface maximum of c+

rms satisfies Sc0.5d+
t = 15, which is in

agreement with the present result Sc0.5d+
t = 15.5. Near the bottom, we compare the

scalar fluctuation intensity with the previous measurements and simulations in a way
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Figure 3. Profiles of r.m.s. of temperature and gas concentration fluctuations in (a,b) the
global coordinate and (c,d ) the local coordinate near the bottom wall. The present results are
denoted by – – –, Pr = 0.71; ——, Pr = Sc = 1; − · −, Pr = Sc = 2; −· ·−, Pr = Sc = 4; −−− −−−,
Pr = Sc = 8. Plots (c) and (d ) show the comparison with the experimental results (Pr = 0.71)
of Nakajima et al. (1980) (�) and Zhu & Antonia (1993) (�); and the numerical results of
Kasagi et al. (1992) (—�—) for Pr = 0.71, Lyons, Hanratty & Mclaughlin (1991) (—�—),
Na & Hanratty (2000) (—	—), Lakehal et al. (2003) (—
—), and Nagaosa & Handler (2003)
(—�—) for Sc = 1, and Handler et al. (1999) (—�—) for Sc = 2.

similar to the preceding discussion of the mean profiles. Figure 3(c,d ) shows the
agreement.

We next examine the near-surface region in more detail. It should be noted that
the measurement of scalars is more challenging near a free surface than near a solid
wall. As a result, it is difficult to find suitable experimental data in the vicinity
of the free surface to compare with the present simulation. Fortunately, there are
new experimental results that have been obtained using oscillating grid-stirred tanks.
While the data appear scattered due to the complexity of the problem, the results
provide important information, as explained in more detail below. Figure 4 shows the
comparison between these data and our DNS results.

We first discuss the mean gas concentration near the free surface shown in
figure 4(a). The comparison of our open channel flow simulation with the oscillating
grid-stirred tank measurements requires proper normalization. Following Magnaudet
& Calmet (2006), we normalize the gas concentration by the difference between the
concentration at the surface ct and that in the bulk flow cbulk (for which we choose the
channel centre), �c = ct−cbulk . The depth is normalized by the thickness of the diffusive
surface layer, δc,f s , which is quantified as �c/(∂〈c〉/∂z)|z=0 (Jähne & Haußecker 1998)
in the present study. The surface renewal model predicts 〈c−cbulk〉/�c = exp(−dt/δc,f s)
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Figure 4. Near-surface profiles of (a) mean gas concentration, (b) r.m.s. of gas concentration
fluctuations, and (c) turbulence gas flux. The present results are denoted by ————, Sc = 1;
– · –, Sc = 2; −· ·−, Sc =4; −−− −−−, Sc = 8. Shown are the comparison with the experimental
results of Herlina & Jirka (2008) with their cases of Re =260 (�), Re = 390 (	), Re =520 (
),
Re = 650 (�) and Re = 780 (�); the experimental result of Atmane & George (2002) (�) with
Re = 230; the numerical results of Handler et al. (1999) (—�—) and Magnaudet & Calmet
(2006) (—
—); and the predictions of the surface renewal (– – – –) and small eddy (· · · · · · ·)
models.

and the small-eddy model predicts 〈c − cbulk〉/�c = (2/π)arccotg((π/2) dt/δc,f s) (Jähne
& Haußecker 1998; Herlina & Jirka 2008). Therefore, in the results reported
by Herlina & Jirka (2008), δc,f s is defined as the location where the mean gas
concentration is reduced to 1/e of the surface value. Figure 4(a) shows that our
simulation agrees with the measurement of Herlina & Jirka (2008) for dt/δc,f s < 0.8.
Also plotted in the figure are the formulations based on the surface renewal model
and the small-eddy model. It should be noted that as the depth increases, the deviation
of our result from the results obtained by other researchers is not surprising because
the open channel flow in the present DNS introduces different features in the region
below.

Figure 4(b,c) shows the comparison of gas concentration fluctuation intensity and
turbulence flux of gas. It is unclear to us why in figure 4(b) the normalized gas
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concentration fluctuation from Herlina & Jirka (2008) is lower than the results of
other studies and the present one, although it is noted that the trends of variation
are consistent. The differences in the flow set-up may play a role. To have a clearer
comparison, it would be desirable to simulate a forced homogeneous turbulence flow
(instead of the present open channel flow) to match the flow condition of the stirred-
grid tank in Herlina & Jirka (2008), probably under various surfactant conditions
(Shen, Yue & Triantafyllou 2004), but this is beyond the scope of the present paper.
Figure 4(c) shows that the measured turbulence flux has large fluctuations. (As Herlina
& Jirka 2008 pointed out, the turbulence flux normalized by the total flux should be
between zero and one everywhere and should approach one as the depth increases.)
There is closer agreement of our results with other numerical and theoretical work.

Finally, we discuss the mean gas transfer coefficient K = (D/�c)∂〈c〉/∂z at the
free surface. For Sc = 1–8 in the present study, K/u∗ is fitted to 0.0611Sc−0.451. (For
heat with Pr = 0.71–8, it is found to be 0.0604 Pr−0.450.) This result is approximately
consistent with the Sc−1/2-scaling for a clean free surface (Jähne & Haußecker 1998)
(the deviation is probably caused by the low Sc that is used due to the DNS
limitations). In reality, if the surface is contaminated by surfactants, the scaling would
be changed to be close to Sc−2/3.

The mean gas transfer coefficient is often related to surface divergence β = ∂u/∂x +
∂v/∂y by KSc1/2 =Aβ1/2

rms . The coefficient A is found to be in the range of (0.41, 0.45)
for Sc = 1–8 in the present study. For shear-free free surfaces, the LES of Magnaudet
& Calmet (2006) and the hybrid DNS/LES of Hasegawa & Kasagi (2009) suggested
values of 0.6 and 0.44, respectively. We evaluate A in the laboratory measurements
of McKenna & McGillis (2004) (based on figure 6 in their paper) and Herlina &
Jirka (2008) (based on figure 9 in their paper) to be in the ranges of (0.37, 0.64)
and (0.26, 0.33), respectively. The A value is also estimated to be in the range of
(0.22, 0.42) for the experimental study of Tamburrino et al. (2007) (based on their
figure 5). Sugihara & Tsumori (2005) reported a value of 0.3 in their measurements.
Moreover, the study of Banerjee et al. (2004) found that the surface divergence model
can be applied to sheared free surfaces, which is supported by the simulations of
Lakehal et al. (2008a) and Lakehal, Fulgosi & Yadigaroglu (2008b). This observation
is also verified in the experimental work of Turney, Smith & Banerjee (2005) with A

being 0.45 and in the recent numerical simulation of Hasegawa & Kasagi (2009) with
A being 0.40 for Sc of 1 and 100.

3. Surface renewal and statistics of surface age
3.1. Structure of surface renewal

The hydrodynamic processes of upwelling and downwelling play an essential role
in scalar transport near the free surface. In open channel flows, upwelling events at
the free surface are associated with coherent vortical structures originating from the
near bottom region (see e.g. Komori, Murakami & Ueda 1989; Rashidi et al. 1991;
Nagaosa & Handler 2003). The upwelling increases interfacial transfer by replacing
fluid close to the surface with fresh fluid from the bulk flow (surface renewal).

Figure 5(a) shows three upwellings near the figure centre, which are characterized
by diverging flow with stretched surface. In the case of downwelling shown in the
upper right corner of figure 5(a), the surface flow converges. Therefore, positive
and negative values of surface divergence β can be used to detect upwellings and
downwellings, respectively. In practice, a threshold of β is used to identify large
upwelling and downwelling events (more discussion is provided in § 3.2.1).
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Figure 5. Free surface features of (a) strong upwellings; (b) a weak upwelling, marked by ‘A’
in the figure, near strong upwellings; and (c) an upwelling near a surface-connected vortex.
Vectors represent fluctuations of velocity (u′, v′) and contours represent surface divergence β .
All variables are normalized by their r.m.s. values. In the contour plots, the contour increment
is 0.5 and dashed contour lines represent negative values.

While figure 5(a) shows a clear picture of several strong upwellings with flow
radiating from the upwelling centres, there are other forms of upwelling that are
more complex. Figure 5(b) shows a weak upwelling near a strong upwelling. In this
case, surface flow is mainly induced by the strong upwelling. Some fluid particles are
pushed over the weak upwelling. As they pass the weak upwelling, a surface renewal
occurs. Figure 5(c) shows an upwelling near a strong surface-connected vortex (for
the dynamics of the vortex, see e.g. Handler et al. 1993; Pan & Banerjee 1995; Zhang,
Shen & Yue 1999). In this case, the advection induced by the surface-connected vortex
pushes some fluid particles over the upwelling as well. Therefore, the complex nature
of free-surface turbulence complicates the upwelling process and its quantification.
In § 3.2, we use Lagrangian tracing of surface fluid particles to quantify the surface
renewal, and the subsequent interfacial scalar transfer processes the fluid particles
experience.
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Figure 6. Vertical section of flow with contours of (a) temperature T and (b) gas concentration
c. Vectors represent velocity (v,w). (c) Surface profiles of: ——, surface divergence β;
– – , temperature fluctuation T ′; – · –, gas flux fluctuation q ′

g . In (a), T is subtracted by
mean surface temperature. In (c), all quantities are normalized by their r.m.s. values.

Figure 6(a,b) shows an instantaneous vertical section of upwelling and downwelling
with contours of temperature and gas concentration. The contours in the vertical
section look similar between the two scalars, suggesting that gas and temperature
respond to upwelling in a similar way. At the free surface, however, there exists
significant difference between the gas flux and the temperature. Note that the free-
surface boundary conditions for gas concentration and temperature (2.4) are Dirichlet
and Neumann, respectively; as a result, it is the gas flux and the temperature that
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vary at the surface. Profiles of instantaneous fluctuations of gas flux, temperature and
surface divergence along the free surface in the corresponding section are plotted in
figure 6(c). It shows that over the upwelling and downwelling regions, the gas flux has
large magnitude of variations together with the surface divergence. The variation in
the surface temperature, in contrast, is relatively small. We emphasize that in figure
6(c), all fluctuation values have been normalized by their r.m.s. values at the free
surface. Therefore, the difference between the surface temperature and the surface gas
flux is not a scaling issue.

Upwelling increases interfacial transport by mixing the flow and pushing the mass
and thermal boundary layers towards the surface to make them thinner. As the mass
boundary layer becomes thinner, the gas flux qg =D�c/δc,f s increases immediately.
We found that the correlation between β and qg in upwelling areas is 0.70. For
the temperature, as the thermal surface layer thickness δT,f s becomes smaller, the
time scale of heat diffusion t = δ2

T ,f s/D is reduced. Therefore, the temperature at the
surface is also enhanced by upwelling. However, this process occurs over a molecular
diffusion time scale, which is slower than the kinematic time scale of gas flux response
(Handler et al. 1999).

3.2. Quantification of surface age

In the study of the effect of surface renewal on interfacial scalar transfer, it is essential
to obtain information on surface age. In the literature, simple theories for surface age
distribution have been proposed. They have been widely used in various applications,
but have not been validated rigorously because of the difficulty in measuring surface
age directly. The availability of extensive data set from DNS provides an opportunity
for the investigation of surface age.

3.2.1. Quantification of surface age using hybrid Lagrangian tracing
and temperature method

Because the surface age of a surface fluid particle is defined as the time elapsed since
it last experienced an upwelling (surface renewal), Kermani & Shen (2009) proposed
to use Lagrangian tracing of fluid particles to obtain surface age directly. Note that
only the fluid particles at the free surface need to be traced. Because of the kinematic
free-surface boundary condition, all surface particles stay at the surface, which in the
present case is flat. As a result, we can focus exclusively on the channel top, defined
by z = 0.

Let us(x, y; t) represent the surface velocity at location (x, y; z = 0) and time t; we
have

x1 = x0 +

∫ t1

t0

us(x, y; t) dt, y1 = y0 +

∫ t1

t0

vs(x, y; t) dt. (3.1)

Here, (x0, y0) and (x1, y1) are the locations of a surface particle at times t0 and t1,
respectively. Equation (3.1) can be used for forward tracing (t0 < t1) and backward
tracing (t0 > t1). In implementing (3.1) using DNS data, numerical accuracy should
be ensured. As shown in figure 5, large gradients of us occur when strong upwellings,
downwellings or vortical motions are present. As a result, small errors in the tracing
may be significantly amplified later if the numerical scheme is not accurate. In this
study, the surface data are stored frequently at a time interval of 0.35 % of large-
eddy turnover time. We use a fourth-order Runge–Kutta method to perform the
time integration in (3.1). To find us at a location between the grid points, we use a
sixth-order interpolation in space. Rigorous convergence tests have been performed
(Kermani 2010).
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Figure 7. Variation of average surface age with the threshold value of C used in the
criterion for determining the time when surface parcels enter upwellings: ——, τ = τL + τT ;
– · –, τL; – – , τT ; · · · ·, τ = τL + τqg

; −· ·−, τqg
.

Lagrangian tracing provides a means to directly measure the time a surface fluid
particle takes to travel with respect to the surface renewal process. In particular, for
a surface particle, the time elapsed since the last surface renewal it experienced is its
surface age. In determining the surface age of a particle, one would like to trace it
backwards in time until the ‘birth time’. In practice, however, one has to stop tracing
at some point within the originating upwelling region because the geometry of such
regions is complex (figure 5) with a highly irregular evolution in time. To overcome
this difficulty, Kermani & Shen (2009) developed a hybrid Lagrangian tracing and
temperature (HLTT) method in which the Lagrangian tracing is combined with a
local temperature-based Eulerian approach: a surface particle is traced backwards in
time for a duration of τL until it enters an upwelling region. Then the tracing stops
and the temperature of the surface particle is used to obtain its Eulerian surface age
τT at that location:

τT =

(
�T

2qh

)2

πD. (3.2)

In the above equation, �T is the difference between the temperature of the surface
particle and the bulk flow; heat diffusion is used to relate τT to �T . The derivation
of (3.2) is given in Appendix B. Finally, the surface age is obtained as τ = τL + τT .

In the above hybrid method, upwelling areas are defined according to β > Cβrms,
with C being a threshold and βrms the plane r.m.s. value of β . The choice of C is not
unique. Small C may lead to the inclusion of surface diverging events too weak to
be called upwellings (a special case is C =0), while large C may select very strong
upwellings only. We have tested various C values and found that the result of τ is
relatively insensitive to the choice of C. Figure 7 shows the variation of the average
values of τ , τL and τT with C. As C increases, the switch from Lagrangian tracing to
the use of (3.2) is delayed, and as a result τL increases while τT decreases. However,
their summation changes little over the range of C ∈ (0, 1.6), indicating the robustness
of this method. For large C (>1.6), τ increases to unrealistically large values because
some upwellings are passed by the Lagrangian tracing and the particles keep travelling
to earlier upwellings. In our study, we use C = 1 as the criterion because for a wide
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Figure 8. Correlation of surface age with (a) surface temperature (——) and (b) surface gas
flux (– –) during the simulation.

range in its neighbourhood the result of τ remains unchanged and because the
physical meaning is clear.

We note that in (3.2), the surface temperature is used to quantify the Eulerian
surface age τT . We have also tested the use of surface gas flux qg to obtain the
Eulerian surface age τqg

(for derivations see Appendix B),

τqg
= (�c)2

D

q2
gπ

, (3.3)

in which the surface age is accordingly defined as τ = τL + τqg
. We found that this

approach for defining the surface age gives results not as good as the one using τT

does. As shown in figure 7, τ changes as C varies. As pointed out by Handler et al.
(1999) and also as shown in § 3.1, the surface gas flux is strongly affected by advection
and hence it is more intermittent than the surface temperature field.

We also note that when the Eulerian surface age is quantified, vertical advection is
not considered in the formulation (Appendix B). The advection effect is discussed in
Appendix C. The solution depends on the history of β and is much more complex
than the diffusion-only solution. The gas case is studied by Chan & Scriven (1970)
by using an analytical similarity solution, which results in (3.11) and (3.12), which are
discussed in § 3.3. For the heat case, similar analytical solution cannot be obtained
and Appendix C presents numerical results only. Therefore, it is difficult to include
the advection effect in quantifying the Eulerian surface age. However, it is found that
if the surface temperature is used instead of the surface gas flux, the error caused by
omitting advection is much smaller (Appendix C). We also remark that heat diffusion
has been widely used in experiments to quantify surface age for gas transfer (see e.g.
Jähne & Haußecker 1998).

Figure 8 shows the correlation coefficient between surface age and surface
temperature (Cor 〈τ, T 〉) and that between surface age and surface gas flux
(Cor 〈τ, qg〉) during the non-dimensional simulation time t = 1000–2000 (about 280
large-eddy turnover times), after the turbulence statistics have reached quasi-steady
state. It is shown that Cor 〈τ, T 〉 is larger than Cor 〈τ, qg〉. As pointed out earlier,
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Figure 9. Probability density functions of surface age obtained from (a) – – – –, solving the
diffusion equation for temperature; −−− −−−, solving the diffusion equation for gas; −· ·−,
random surface renewal theory; (b) – · –, curve fitting with the lognormal distribution; –	–,
curve fitting with the gamma distribution; – � –, modified surface renewal method; – 	 –,
corrected flux method. In (a) and (b), the thick solid lines represent the HLTT method.

compared with gas flux, temperature is less affected by downwellings and upwellings
and thus serves as a more appropriate indicator of surface age.

3.2.2. Probability density distribution of surface age

Using the HLTT method, we obtain the surface age for each surface element. The
resultant p.d.f. of surface age τ is plotted in figure 9(a,b) by the thick solid lines. At
young surface age, as τ increases, the p.d.f. increases first, reaches a maximum around
τ = 5, and then decreases.

In his random surface renewal theory, Danckwerts (1951) made two assumptions.
The first is that all surface elements have an equal probability of being renewed
by fresh fluid from the bulk flow, regardless of their surface age. Since the p.d.f. of
surface age τ , p.d.f.(τ ), is governed by

1

p.d.f.(τ )

d(p.d.f.(τ ))

dτ
= −s, (3.4)
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where s is the rate of renewal, which was assumed to be a constant in Danckwerts
(1951), an exponential distribution of surface age can be derived:

p.d.f.(τ ) = s exp(−sτ ). (3.5)

The second assumption in Danckwerts’ theory is the pure diffusion of gas after
surface renewal, which was originally suggested by Higbie (1935) and which gives the
instantaneous gas flux as

qg(τ ) = (ct − cbulk)

√
D

πτ
. (3.6)

Using (3.5) and (3.6), Danckwerts (1951) obtained the average surface gas flux as

〈qg〉 = (ct − cbulk)
√

Ds. (3.7)

Therefore, based on the numerical value of 〈qg〉, one can estimate the value of s as

s =
1

D

(
〈qg〉

ct − cbulk

)2

. (3.8)

Figure 9(a) shows that the result of the HTLL method is substantially different
from the exponential distribution (3.5) predicted by Danckwerts (1951) (using the
s value given by (3.8)), which decreases monotonically as τ increases. The issue
of neglecting the advection effect in the gas transfer (the second assumption of
Danckwerts 1951) has been discussed in the proceeding sections. Here, we discuss
the rate of renewal s (the first assumption of Danckwerts 1951). According to the
kinematic boundary condition, the surface is material and no fluid particle can leave
or join the surface. A fluid parcel from the bulk flow may very closely approach
the surface, but it will not become a surface element, and the mechanism for the
scalar transfer process is through molecular diffusion in the vicinity of the surface.
A surface element cannot be replaced by surface renewal. It can only expand and
shrink due to positive and negative surface divergence. The rate of change of its area
A is dA/dτ = Adu/dx + Adv/dy, which can be written as

1

A

dA

dτ
= β. (3.9)

The area percentage is identical to the p.d.f., which is governed by (3.4). Comparing
(3.9) and (3.4), we can quantify s as (Kermani & Shen 2009)

s = −〈β〉. (3.10)

Figure 10 shows s = −〈β〉 from our DNS data for different surface age. Contrary to
Danckwerts’ assumption, s is not always a positive constant, but a function of surface
age. Although s approaches asymptotically to a constant positive value of around
0.07 at large τ , it has large variations at small τ . In particular, s is negative when
τ < 5, indicating that surface elements grow in area (positive surface divergence) at
young surface age.

Figure 9(a) shows that for large surface age values, Danckwerts’ theory agrees
with the p.d.f. obtained from the HLTT method. This is consistent with the finding
that s is approximately constant at large τ as shown in figure 10. At young surface
age, however, the exponential distribution is incorrect. In reality, surface elements in
upwelling areas have young surface age. They expand for a limited time, and then
start to shrink after they have left the upwelling areas. The assumption that s has a
constant positive value at all surface age is equivalent to assuming that all surface
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Average surface age

HLTT method 14.1
Pure diffusion method based on temperature 17.1
Pure diffusion method based on gas flux 25.0
Random surface renewal model 14.8
Corrected flux method 12.5
Modified surface renewal model 13.0

Table 1. Average surface age obtained from various methods.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100 101
–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

s λ

τ

Figure 10. Variations of surface renewal rate s (——) and the correction factor λ for surface
gas flux in (3.12) (– –) with respect to surface age τ .

elements shrink, which is not physically consistent. The stage of young surface age
is when most of the interfacial transfer occurs (as discussed in more detail in § 4.2).
Hence, it is crucial to accurately capture the surface age distribution for this stage.

3.3. Comparison of the HLTT method with other methods

In the HLTT method, the Lagrangian tracing part (τL) is defined according to the
original physical meaning of the surface age. As discussed in § 3.2.1, the Eulerian
part (τT ) uses pure diffusion of heat that is an acceptable approximation for surface
temperature. In addition, τT is much less than τL on average (figure 7). The probability
distribution of τT is further illustrated in figure 11(a). As shown, except for small τ in
which case surface particles enter upwelling regions relatively soon, the weight of τT

is small. (For comparison, figure 11(b) shows that the result changes appreciably if τT

is replaced by τqg
; as pointed out in § 3.2.1, τqg

is affected by vertical advection and
its diffusion-based solution should not be used to indicate surface age.) Therefore,
we use the HLTT result as a base to discuss other methods for the quantification of
surface age.

For comparison, we first consider methods based on the pure diffusion assumption,
i.e. the Lagrangian tracing is not performed and the surface age is given by τT or τqg

directly. The obtained surface age p.d.f.s are shown in figure 9(a). We note that the
p.d.f. obtained from heat pure diffusion is much closer to the HLTT result; on the
other hand, there exist large differences between the gas pure diffusion and HLTT
results. Table 1 lists the average values of surface age, of which the value from the
HLTT method is 14.1. The average surface age obtained by the heat pure diffusion
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Figure 11. Propability distribution of the weight of the Eulerian part of the surface age in
the total surface age obtained by the hybrid method: (a) τT /(τL + τT ) and (b) τqg

/(τL + τqg
).

model is slightly larger. When the pure diffusion model based on surface gas flux is
used, the deviation is large because gas flux is highly sensitive to vertical advection.
We find that at old surface age, the downwelling reduces the gas flux so much that the
resultant surface age is unrealistically high. A very significant portion of the surface
area (about 19 %) has surface age even beyond the range plotted in figure 9(a).
Therefore, the assumption of pure diffusion for gas is incorrect.

The average surface age from Danckwerts’ random surface renewal model is surpris-
ingly close to the HLTT result. As shown in § 3.2, the exponential distribution works
well for large values of surface age. At young surface age, however, the error in p.d.f. is
significant. Therefore, Danckwerts’ theory may provide a reasonably good estimate of
the overall time scale of surface renewal. However, when detailed information is needed
on the occurrence of the events for significant interfacial transfer, Danckwerts’ theory
should not be used. The main drawback of this theory is that it cannot distinguish
and quantify interfacial transfer at different phases with respect to surface renewal
(e.g. upwelling versus downwelling) and it does not consider the advection effect.
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Vertical advection (quantified by surface divergence) has been shown to play an
essential role in interfacial gas transfer. To elaborate on this, we next discuss two
auxiliary methods for surface age quantification. With the HLTT method, we obtain
average surface divergence 〈β〉 as a function of surface age. The variation of s = −〈β〉
with τ is shown in figure 10. With such information, the gas diffusion method can be
improved substantially if the advection effect is taken into account. In studying the
upwelling stagnation free-surface flow, Chan & Scriven (1970) modified the result of
Danckwerts (1951) by considering the advection effect and rewrote the instantaneous
gas transfer coefficient as

K(τ ) = λ(τ )

√
D

πτ
. (3.11)

Here
√

D/πτ = K0(τ ) is the instantaneous gas transfer coefficient for the pure diffusion
case, and the correction factor due to advection λ(t) is

λ(τ ) = 2
√

Dτ

exp

[ ∫ τ

0

β(t ′) dt ′
]

{
4D

∫ τ

0

exp

[
2

∫ t ′

0

β(t ′′) dt ′′
]

dt ′
}0.5

. (3.12)

With (3.12) and the value of 〈β〉(τ ) = −s(τ ) from the DNS results as shown in
figure 10, we calculate the correction factor λ(τ ) for gas flux, which is plotted in
figure 10. It has unit value at τ = 0 (as given by (3.12)) and reaches its maximum
value of 1.3 around τ =2.3. After τ = 2.3, it decreases and returns to 1 around τ =8,
indicating that upwelling and downwelling effects cancel each other at that time.
Afterwards, λ continues to decrease because the downwelling effect at old surface age
further reduces gas transfer.

On the basis of the λ value obtained above and the instantaneous gas transfer
coefficient K(τ ) for each surface element, we calculate surface age τ using (3.11). We
call this approach the corrected flux method. The distribution of surface age obtained
from this method is shown in figure 9(b). Comparing this result with the distribution
obtained from solving the pure diffusion equation for gas, we find that the new result
is closer to the HLTT result, as expected. Table 1 shows that the value of average
surface age is improved significantly.

We can also use the time variation of s = −〈β〉 obtained from DNS to calculate the
surface age p.d.f. by integrating (3.4). Using a Crank–Nicholson scheme, we obtain
numerically the surface age p.d.f. as shown in figure 9(b). We call this approach the
modified surface renewal method. The corresponding average surface age is listed in
table 1, which is close to that of the HLTT method. The advantage of this modified
surface renewal method over the traditional random surface renewal model is that the
surface stretching and shrinking at different stages of surface renewal are captured
by the variation of s with τ .

It is noted that both the corrected flux method and the modified surface renewal
method rely on information of 〈β〉(τ ), which is obtained from the HLTT method in
our DNS study. Therefore, these two methods cannot be used independently, and the
HLTT method still serves as the basis. The reason we discuss these two additional
approaches is mainly to illustrate the importance of surface divergence.

Finally, we examine curve fitting of the surface age distribution obtained from the
HLTT method, which is useful for parameterization in applications. Using likelihood
analysis (Kass & Raftery 1995) we compare the lognormal and gamma distributions
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Figure 12. Profiles of (a) flatness and (b) skewness of ——, vertical velocity w; – · –,
gas concentration c; – – , temperature T ; −· ·−, Gaussian distribution. The symbols denote
the results using the representative surface data obtained using the VISA windows.

shown in figure 9(b), and find that the former is slightly better. The curve fitting
using the lognormal distribution is in agreement with the measurement results in the
literature. The experiment by Rao, Narasimha & Narayanan (1971) indicates that
the time between bursts at a turbulent boundary layer has a lognormal distribution.
Previous studies of open channel flows have shown that surface renewals are originated
from bursts at the bottom boundary layer (see Komori et al. 1989; Rashidi et al.
1991). Therefore, the lognormal distribution can be used to describe surface renewal
intermittency in open channel flows. For flows with deep water, measurements by
Garbe et al. (2004) also show that the lognormal distribution provides a good
approximation for surface age distribution.

4. Scalar statistics
4.1. Statistical distribution of surface features

4.1.1. Probability density distribution

Next, we investigate the statistics of flow and scalar quantities near the free surface.
For the vertical velocity, temperature and gas concentration, figure 12(a,b) shows their
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Figure 13. Probability density functions of fluctuations of (a) vertical velocity w′, (b) gas
concentration c′ and (c) temperature T ′ at various depths: ——, d+

t =0.02; – – , d+
t = 12;

– · –, d+
t = 42. All variables are normalized by their r.m.s. values.

flatness and skewness profiles; figure 13(a–c) shows the p.d.f.s at three representative
depths, d+

t = 42, 12 and 0.02. For the vertical velocity, as the free surface is approached,
its flatness increases, with the tails of the p.d.f. becoming larger. Therefore, close to
the free surface, relatively strong vertical motion is more frequent than in the bulk of
the flow (Handler et al. 1999). The skewness of vertical velocity is positive and large
close to the free surface, indicating that strong upwellings are more frequent than
strong downwellings. This is related to the fact that fluid elements leaving upwelling
areas will lose their kinetic energy due to dissipation before entering downwelling
areas (Perot & Moin 1995).

Upwelling brings fluid elements with low gas concentration towards the free surface.
Therefore, negative c′ is associated with upwelling. Very close to the free surface, the
increase in flatness and the negative skewness (figures 12a,b and 13b) are caused by
the stronger effect of upwelling compared to that of downwelling on gas transport.
Figures 12(b) and 13(b) show that as the free surface is approached, the skewness
reverses sign, with the dominant tail of the p.d.f. switching from the right to the left.
This behaviour of the p.d.f. of c′ will be explained in § 4.1.3 in terms of the statistics
of upwelling patterns.
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Downwelling has a strong effect on heat transfer. Some strong downwellings are
located close to strong upwellings (see e.g. figure 5a). These downwellings absorb
surface elements that have recently been pushed away from nearby upwelling areas,
which have high temperature. However, downwellings that are not close to strong
upwellings absorb surface elements that have been on the surface for a long time.
In the latter case, the surface elements have been under outgoing flux of heat for a
long period and are cold. This explains why figures 12(b) and 13(c) show a negative
skewness with a large left tail in the p.d.f. of T ′. Figure 12(a) shows that near the free
surface, the flatness of T ′ is closer to the Gaussian distribution compared with that
of gas. The smaller flatness of temperature compared with that of gas concentration
indicates that the temperature has less extreme fluctuations. This is consistent with
the results shown in § 3.

4.1.2. Patterns of surface features

The flatness, skewness and p.d.f.s shown in figures 12 and 13 are useful summaries
about the properties of the vertical velocity, gas concentration and temperature.
However, they are only point statistics, i.e. they are derived from these quantities
observed one point at a time, collected without regard to the underlying spatial
relation. Hence, these statistical quantities do not directly provide information about
the structure of the flow. Two-point statistics such as auto-correlation functions can
be used to obtain some limited information about this structure. However, in our
visual observations of the turbulent flow field, particularly at the surface, we have
noted well-defined spatial patterns that can be associated with significant upwelling
events. Hence, in our investigation, we have chosen to characterize the surface field
by analysing the upwelling patterns using spatial statistics, rather than two-point
statistics. It is shown below how this statistical analysis can be applied to provide
insights into the underlying processes in the flow field.

We begin with the variable-interval space averaging (VISA) method (see e.g. Kim
1983; Piomelli, Yu & Adrian 1996; Shen et al. 2004) to obtain a representative
data set from the surface flow field. In our VISA procedure, we detect upwelling
events by searching local peaks of surface divergence. The (x, y) coordinates are
then shifted so that the peaks are centred at the origin. Then the surface divergence
values β (x, y) in a 43 × 23 array of pixels (located on grid points) are collected along
with the corresponding VISA windows for the temperature fluctuation T ′ (x, y) and
gas flux fluctuation q ′

g (x, y). Here, the window size and thus the pixel number are
determined based on the turbulence velocity integral scale. A series of 1238 windows
capturing the significant upwelling events were selected in this manner. This data
set is representative in that the one-point statistics computed from this series of
windows are nearly identical with those for the entire surface field. This is indicated
in figure 12, where the flatness and skewness based on the data within these windows
(shown with symbols) are compared with the corresponding statistics for the entire
field. The reason why the windowed data set is representative is that the window
size is sufficiently large to contain the upwelling pattern as well as the surrounding
turbulent flow field. Another way to interpret this data collection procedure is to note
that a sampling of 43 × 23 pixel windows randomly placed in the flow field would
be an alternative method for obtaining a data set that is statistically representative
of the entire field. Each window would almost always contain upwelling events, and
the VISA method simply shifts these patterns to the centre. The centring procedure
in VISA is important because it allows further quantitative analysis of the spatial
patterns associated with the upwellings.
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Figure 14. Representative patterns of (a) surface divergence β and temperature fluctuation
T ′, (b) surface divergence β and gas flux fluctuation q ′

g , as obtained by statistical clustering.
Dashed contour lines represent negative values.

The surface fields are very irregular, but with proper statistical analysis it is possible
to identify the dominant patterns associated with the upwelling. Simple averaging is
inappropriate because multiple patterns are associated with each field. In this paper,
a clustering procedure based on the expectation–maximization algorithm (Hastie,
Tibshirani & Friedman 2001) is used. To capture the relationships between β and T ′

and between β and q ′
g , each VISA window of surface divergence data is appended

with the corresponding windows of temperature or gas flux data. The patterns
identified by clustering have a surprisingly smooth structure. Example patterns for
surface-field pairs are shown in figure 14(a,b). These patterns can be approximated
by two-dimensional Gaussian surfaces, with functional form

f (r; a, b, r0) = a exp

(
− r2

2r2
0

)
+ b, (4.1)

where r =
√

x2 + y2 is the radial coordinate. The parameter r0 is the length scale
associated with the width of the peak, which is a measure of the turbulence macro-
scale of the corresponding quantity (β , T ′, or q ′

g). For distances r significantly distant
from the centre (r/r0 > 2), the surface approaches the far-field value b. The amplitude
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β T ′ q ′
g

Mean of the amplitude, a 3.84 1.43 2.93
Mean of the length scale, r0 0.070 0.148 0.102
Mean of the far-field value, b −0.078 −0.064 −0.087
R.m.s of the random field, σe 0.91 0.81 0.85

Table 2. Amplitude and length-scale parameters of the two-dimensional Gaussian models for
the observed patterns of surface divergence β , surface temperature fluctuation T ′ and surface
gas flux fluctuation q ′

g . Here, β , T ′ and q ′
g are normalized by their surface r.m.s. values.

of the peak value is a. The actual fields of the surface divergence, temperature or gas
flux are not as smooth as the Gaussian surface in (4.1) and an additive random field
is needed to capture the spatial variability with length scales smaller than r0. If we
denote the surface divergence, temperature or gas flux by the generic field variable
ξ (x, y), then the statistical model for ξ would be given by

ξ (x, y) = a exp

(
−x2 + y2

2r2
0

)
+ b + e (x, y) , (4.2)

where e (x, y) is a zero-mean random field. Since the downwellings are considerably
weaker and less structured than the upwellings, they are included in e (x, y).

While clustering is used to identify the functional form for the surface field patterns,
nonlinear regression is needed to obtain the numerical estimates for the parameters.
The results for the mean values of a, b and r0 as well as the r.m.s. σe of the random
field e (x, y) are shown in table 2.

It is found that the far-field values for b can be modelled as constants for the
surface divergence and gas flux. For the temperature, however, it varies considerably
about the mean value of −0.064. It is also found that there is a linear relationship
between the amplitude and the corresponding far-field value such that the sum is
nearly constant, given by the sum of mean values, a + b ≈ 1.37. This is physically
consistent because a + b is the maximum temperature at the peak of the upwelling,
and this temperature is bounded by the temperature in the flow underneath.

If the length-scale parameters r0 for the three field quantities are compared, it can
be seen that the length scales for the temperature and gas flux are about 100 %
and 50 % larger than that for the surface divergence, respectively. This significant
difference in length scales can be observed in the single realization of the flow field
illustrated in figure 6, where the temperature and gas flux have peaks that are broader
than the divergence. The results in table 2, however, are based on a statistical analysis
of all of the observed upwelling events selected by the VISA method, and are more
conclusive than individual observations such as shown in figure 6.

4.1.3. Discussion

It was noted in the beginning of § 4.1.2 that the VISA-generated windowed data set is
representative of the surface flow field. Hence, we use the spatial description of the flow
and scalar patterns in the preceding subsection as a basis for a qualitative discussion
of the one-point statistics, particularly the marginal p.d.f.s shown in figure 15(a).

We begin with a short derivation of the p.d.f. associated with the Gaussian shape
of the upwelling, as given by (4.1). The cumulative distribution function (c.d.f.) of ξ

for the fundamental case where there is no additive random field (so that e (x, y) = 0
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Figure 15. (a) DNS results for the p.d.f.s of surface characteristics: ——, surface divergence
β; −· ·−, surface temperature fluctuation T ′; – · –, surface gas flux fluctuation q ′

g . (b) · · · ·,
schematics illustrating the model results for upwelling p.d.f. given by (4.6). (c) · · · ·, upwelling
p.d.f.s of T ′ given by (4.6) with different b values; ——, superposition of upwelling p.d.f.s for
T ′; – – , smoothed superposed p.d.f. of T ′; −· ·−, p.d.f. of T ′ obtained by DNS. All variables
are normalized by their r.m.s. values.

in (4.2)) is, by definition

c.d.f. (ξ ) = P

[
a exp

(
−x2 + y2

2r2
0

)
+ b � ξ

]
, (4.3)

where b < ξ0 � ξ � a+b in which the lower limit ξ0 is determined shortly and P stands
for probability. To derive an analytical expression for the probability, we use polar
coordinates to obtain

c.d.f. (ξ ) = P

[
a exp

(
− r2

2r2
0

)
� ξ − b

]
= P [r � r1] = 1 − P [r < r1] , (4.4)

where r1 = r0

√
2 log (a/ (ξ − b)). The c.d.f. can be written in terms of the area A of

the window:

c.d.f. (ξ ) = 1 − πr2
1

A
= 1 − 2πr2

0

A
log

a

ξ − b
. (4.5)
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From this we obtain the lower limit ξ0 for ξ by solving c.d.f. (ξ0) = 0 or
(2πr2

0/A) log(a/(ξ0 − b)) = 1 with solution ξ0 = b + a exp
(
−A/(2πr2

0 )
)
. The p.d.f. is

then obtained by differentiation

p.d.f. (ξ ; a, b, r0) =
d(c.d.f.(ξ ))

dξ
= −2πr2

0

A

d

dξ

(
log

a

ξ − b

)
=

2πr2
0

A

1

ξ − b
∝ 1

ξ − b
.

(4.6)
This p.d.f., illustrated in figure 15(b), has a peak at the left corresponding to the
far-field value b and a tail towards the right that ends at the peak amplitude a + b.

In the statistical model in (4.2), a zero-mean random field e (x, y) is added to the
surface upwelling patterns. This field has probability density p.d.f. (e) with standard
deviations listed in table 2. Based on an analysis of the DNS data, it was found
that the p.d.f. of this random field is nearly symmetric for the surface divergence and
temperature and is positively skewed for the gas flux. The p.d.f. for the sum of the
upwelling patterns and zero-mean random field is given by the convolution

p.d.f. (ξ ) =

∫
p.d.f. (ξ − e) p.d.f. (e) de. (4.7)

This convolution is essentially a filtering operation which would smooth and broaden
the original p.d.f.

The parameters a, b and r0 describing the upwelling pattern shapes are also random
variables. The effect of the randomness of these parameters on the p.d.f. of ξ can be
represented by a second convolution

p.d.f. (ξ ) =

∫ ∫ ∫
p.d.f. (ξ ; a, b, r0) p.d.f. (a, b, r0) da db dr0, (4.8)

which, in general, must be evaluated numerically. The expression in (4.6)–(4.8) along
with the information in table 2 comprises the statistical model for the surface fields.
In the following, it is shown how this model can be used to interpret the marginal
and joint p.d.f.s of the surface fields. We begin with the marginal p.d.f.s, shown in
figure 15(a), and in the next subsection we discuss the joint p.d.f.s.

For the divergence and gas flux, the net effect of the two successive convolutions in
(4.7) and (4.8) is to smooth the fundamental p.d.f. of the surface upwelling in (4.6).
This can be observed by comparing the relatively smooth p.d.f.s for the divergence
and gas flux in figure 15(a) with the underlying p.d.f. of the surface upwelling shown
in figure 15(b). Since the random field e(x, y) associated with the gas flux is positively
skewed, as noted above, the p.d.f. of the gas flux has a higher positive skew than the
p.d.f. of the divergence. The p.d.f. for the temperature field has a triangular shape
with a negative rather than a positive skew. In the following, we use the convolution
in (4.8) to explain how this unusual shape would arise given that the underlying p.d.f.
of the upwelling is positively skewed as shown in figure 15(b).

To visualize this convolution, we approximate the multiple integral in (4.8) as a
weighted sum and display the result as a superposition of p.d.f.s. This is shown by the
dotted lines in figure 15(c), where each of the p.d.f.s corresponds to a p.d.f. (ξ ; a, b, r0)
in (4.6) with a different set of parameters. The most significant variability is in the
parameter b, which varies approximately from −1.80 to 0.87; as noted earlier the
sum a + b is approximately 1.37. Hence, as shown in figure 15(c), the superposition
of upwelling p.d.f.s has a constant upper bound, a + b, and a varying lower bound, b.
This causes an accumulation of probability density at the upper bound and a nearly
linear slope towards the left.
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Figure 16. Average surface gas flux (– · –) and p.d.f. of surface gas flux (——) as functions
of surface age. The surface age is obtained by the HLTT method.

The p.d.f. of the zero-mean fluctuations e (x, y) is nearly symmetric and has only
a minor smoothing effect on the final p.d.f. for the temperature field. The final
approximate representation of the statistical model in (4.6)–(4.8), given by a smoothing
of superposed p.d.f.s, is shown by the dashed curve in figure 15(c), which closely
follows the negatively skewed p.d.f. of the surface temperature obtained by DNS
shown by the dash–double dotted line.

Finally, we note that the positive and negative skewness in the p.d.f.s for the gas
concentration c at d+

t =12 and 0.02 in figure 13(b) can be explained in a similar
manner to that for the positive and negative skewness in the gas flux and temperature
p.d.f.s. For most of the fluid, the skewness would be positive, in the same direction
as the fundamental upwelling p.d.f. in figure 15(b). Very close to the free surface
at d+

t =0.02, however, the concentration c is bounded above, as was the case for
temperature. Hence, the superposition and convolution of upwelling p.d.f.s for c are
similar to the curves shown in figure 15(c), leading to the negative skewness shown
in figure 13(b).

4.2. Scalar statistics with respect to surface age

The availability of surface age information makes it possible to investigate the
statistics of scalar transport with respect to different stages of surface renewal, from
which a better understanding of interfacial scalar transfer can be obtained. In this
section, we first illustrate the dependence of scalar statistics on surface age. We then
present the joint p.d.f.s of surface divergence with surface temperature and gas flux.

Figure 16 shows the variation of the average normalized surface gas flux 〈qg/qg,rms〉
with the surface age τ . In calculating the statistics, qg is obtained directly from DNS
at each surface element. The surface age τ of each surface element is quantified using
the HTLL method as discussed earlier. The results for qg/qg,rms are then averaged,
conditioned upon each τ , to yield the curve of 〈qg/qg,rms〉 (τ ) shown in figure 16. Also
plotted is the product of p.d.f.(τ ) and 〈qg/qg,rms〉 (τ ), which denotes the contribution
to the interfacial gas transfer per unit surface age. It can be seen that surface elements
with young surface age have large gas flux. This is due to two reasons: the small
thickness of the gas surface layer that increases molecular diffusion and the upward
advection associated with upwelling. Despite the high flux, surface elements with
very young surface age do not have the maximum contribution to interfacial gas
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Figure 17. Three-dimensional joint p.d.f. of surface age τ , surface divergence β and surface
gas flux fluctuation q ′

g . Here β and q ′
g are normalized by their r.m.s. values.

transfer because they cover only a small fraction of the surface area, as reflected
by the relatively small value of p.d.f.(τ ) (see figure 9). As the surface age increases,
p.d.f.(τ ) increases while the average gas flux decreases. The combined effects result
in a maximum contribution around τ = 3. As the surface age further increases, the
average gas flux continues to decrease, because the gas surface layer becomes thicker
and because the advection turns downwards due to downwelling; the p.d.f.(τ ) also
begins to decrease with τ (figure 9). As a result, surface elements of relatively old
surface age have less contribution to interfacial gas transfer, as shown in figure 16.

Figure 17 provides a comprehensive picture on the relations between surface age,
surface divergence and surface gas flux. In the figure, the contour surface represents
the joint p.d.f. of surface age and divergence and the colour is the mean surface
gas flux. As pointed out earlier, upwellings have young surface age, and strong
downwellings may also have small values of surface age because they are often
located close to strong upwellings. Therefore, a wide joint p.d.f. at small τ is shown
in figure 17. Figure 17 also shows that high q ′

g occurs in the high β–small τ region,
while low q ′

g occurs in regions of large negative β or large τ , consistent with the
results discussed earlier.

Figure 18(a,b) shows the joint p.d.f.s of surface divergence with surface temperature
and surface gas flux. It can be seen that the upper portion of these p.d.f.s exhibits a very
distinct rightward shift of the probability density. In the following, this is explained
qualitatively in terms of the physical behaviour of the flow. Then a quantitative
analysis is presented in terms of the statistical model of upwellings in § 4.1.

Qualitatively, upwelling brings up warm fluid elements from the bulk flow, so
that large positive T ′ is associated with large positive surface divergence β . As
mentioned earlier, some strong downwellings are near strong upwellings, and absorb
warm surface elements from them. Therefore, large negative β is also associated
with positive T ′. Cold surface regions (negative T ′) are usually associated with fluid
elements that have left upwelling for a long time. Most of them have not arrived
at the downwelling regions yet, and thus have small β (but at the end they are
absorbed by downwellings). Their temperature is quite low due to the long duration
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Figure 18. Joint probability density functions of (a) surface divergence β and surface
temperature fluctuation T ′, and (b) surface divergence β and surface gas flux fluctuation
q ′

g . All variables are normalized by their r.m.s. values. The thick lines are peaks of the p.d.f.s

of T ′ and q ′
g conditioned on β as predicted by the model of (4.9).

of outgoing heat flux. Figure 18(a,b) indicates that surface divergence has a more
sharply defined statistical relationship with gas flux than with temperature. As shown
earlier, unlike surface temperature, surface gas flux is affected immediately by surface
divergence. This result is in agreement with the study of Lakehal et al. (2008a) and
Lakehal et al. (2008b), who showed that the quadrant II (u′ < 0 and w′ > 0) has the
largest contribution to the Reynolds stress and interfacial transfer among different
quadrants.

To gain further insight into the characteristics of the joint p.d.f.s, we first briefly
describe the shape of these p.d.f.s that would result if the surface fields were assumed
to be independent. The resulting joint p.d.f. would be given by the product of the
empirical marginal p.d.f.s of the zero-mean error fields. For instance, the hypothetical
joint p.d.f. for the surface divergence and temperature under the independence
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assumption would be p.d.f. (β, T ′) = p.d.f. (β) p.d.f. (T ′). These hypothetical p.d.f.s
would look very similar to the actual joint p.d.f.s in figure 18 at the lower portions
of these plots. The upper portions, however, would be considerably different. The
actual joint p.d.f.s have a distinct rightward shift at higher values of T ′ and q ′

g . This
implies that the fields are dependent, which is expected from the discussion of the
relationships between upwellings and the surface temperature and gas flux in §§ 3.1
and 4.1.

We can study the dependence relationships more closely by examining the
conditional mode, which is the peak of the joint p.d.f. for a fixed value of one
of the random variables. For instance, in figure 18(a), the conditional mode of the
surface divergence β can be found by finding the peak value of the joint p.d.f. along a
horizontal line corresponding to a fixed value of the temperature T ′. The conditional
modes can be visualized by the ridge of the joint p.d.f. For T ′ < 0, the conditional
mode is nearly constant at approximately β = −0.4, but veers sharply to higher value
as T ′ increases above 0. Similarly, on examining figure 17(b), it can be seen that the
conditional mode of β is at approximately −0.4 for gas flux q ′

g < −1 and veers to
higher values as q ′

g increases above −1. In other words, the conditional modes show
that high values for the temperature and gas flux are associated with positive surface
divergence.

We conclude this section by showing the relationships between the statistical model
of upwellings in § 4.1 and the behaviour of the joint p.d.f.s in figure 17(a,b). Specifically,
we presented expressions in § 4.2 to derive a predictive analytical model for the
conditional mode that closely matches the observational results shown in these figures.
We begin with the pair β and T ′ and the corresponding surfaces defined by (4.2).
Then we simply eliminate the spatial variable r . We perform a similar derivation
to obtain the relation between β and q ′

g . The results for the conditional modes
are

T ′ = bT + aT

(
β − b̆β

aβ

)c

, q ′
g = b̆qg

+ aqg

(
β − b̆β

aβ

)d

, (4.9)

where c = r2
0,β/r2

0,T , d = r2
0,β/r2

0,qg
and where b̆β = −0.27, b̆qg

= −0.8 are the modes of

the surface divergence and gas flux, obtained by finding the maximum of the marginal
p.d.f.s in figure 15.

We substitute the parameter values from table 2 into (4.9) and plot the resulting
curves over the joint p.d.f.s to obtain our model predictions for the conditional modes.
The figure shows a close match between the predictions from the statistical model
and the actual shape of the joint p.d.f.s obtained directly from the DNS-generated
data. Further insight can be obtained by taking the derivatives of (4.9) with respect
to β to get the slopes of the conditional modes. It can be seen that these slopes are
proportional to the exponents c and d , which are inversely proportional to r2

0,T and

r2
0,qg

, respectively. From table 2, it can be seen that r2
0,T is over twice as large as r2

0,qg
,

so that the slope of the conditional mode for T ′ should be less than half of the slope
of the conditional mode for q ′

g . This is confirmed by the shapes of the joint p.d.f.s in
figure 18(a,b). This shows how the statistical model of the upwelling shapes in § 4.1
can be used to quantify the relationships between surface divergence, temperature
and gas flux.
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5. Conclusions

In this study, we have investigated transport of passive scalars near a free surface
with a focus on surface renewal statistics. When an upwelling occurs, fresh fluid from
the bulk flow is brought towards the surface. As a result, the vertical gradient of
gas concentration is increased and interfacial gas transfer is enhanced. In the case of
surface cooling, the surface temperature is increased after the upwelling brings warm
fluid from below.

The DNS performed in this study provides detailed information on the complex
structure of upwellings. Upwellings can occur individually or in interacting groups.
Upwellings can also be affected by other surface events such as surface-connected
vortices in the neighbourhood. Around an upwelling, downwellings often exist. After
a fluid particle emanates from an upwelling, it may enter a nearby downwelling
immediately, or it may travel on the surface for some time before it is absorbed by
a downwelling. Results show that gas flux is strongly dependent on and responds
rapidly to the upwellings and downwellings. The surface temperature, on the other
hand, responds only gradually to the vertical advection.

To quantify surface age for the description of the different stages of surface renewal,
we implement an HLTT method, based on which flow and scalar statistics at different
stages of surface renewal are investigated. The results show that the rate of surface
renewal s cannot be assumed to be constant, so that modifications are needed in
the random surface renewal model (Danckwerts 1951). At young surface age, surface
elements are located at upwelling regions and the areas of the elements increase due
to surface stretching; only afterwards does the surface divergence, i.e. −s, become
negative and asymptotically approach a constant value. The crucial stage of young
surface age, when most of interfacial gas transfer occurs, is not accounted for in
the model of Danckwerts (1951). The current study addresses this by using time
integration based on the s(t) value. Knowledge of s(t) also leads to a corrected flux
model that considers both advection and diffusion in gas transfer. Our study also
shows that in some studies, if pure diffusion has to be assumed due to the lack of
advection information, heat diffusion provides acceptable results at young surface
age.

To obtain a statistical description of the upwelling, we performed a clustering
analysis using a method based on the expectation–maximization algorithm. While
the surface fields are very irregular, it is found that the dominant two-dimensional
surface patterns associated with the upwellings have a Gaussian shape. Using this
Gaussian functional form for the upwelling patterns, nonlinear regression is used to
obtain the numerical estimates for the parameters for the surface divergence, gas flux
and temperature. It is then shown how this statistical description of the upwelling
can be used to explain the skewness in the p.d.f.s, including the reason for the
opposite directions of skewness in the temperature and gas flux fields. The influence
of the upwelling on these surface quantities is also analysed through a quantitative
description of the asymmetry in the surface divergence–temperature and surface
divergence–gas flux joint p.d.f.s. The results demonstrate how the slower diffusion
time associated with temperature as compared with gas transfer affects the surface
distribution p.d.f.s.

Finally, we remark that this study serves as a first step in our investigation of
gas and heat transfer at the water surface; we intentionally kept the problem set-up
simple to allow a detailed mechanistic study of some of the fundamental physics.
The assumption that temperature and gas have, respectively, Neumann and Dirichlet
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free-surface boundary conditions is based on the ratio of air-side and water-side
resistances of interfacial transfer; this approach has been used successfully in other
DNS studies in the literature. For a further understanding of the problem, it would be
desirable to consider air and water as a coupled system in the simulation (cf. Lin et al.
2008; Lakehal et al. 2008a; Liu et al. 2009; Komori et al. 2010). It would be helpful
to evaluate the surface age in the air and water coupled shear flow. In future studies,
it would also be desirable to consider other aspects of the problem such as the effects
of surfactants, waves and wind–wave interactions on the statistics of surface renewal.

We would like to thank the referees for their valuable comments that provided us
significant help to improve the previous version of this paper.

Appendix A. Discussion on the case with zero gas flux at the bottom
In our simulation, the gas concentration at the bottom boundary is assumed to be

constant. However, in many laboratory experiments (e.g. those using tanks), there is
no gas flux at the bottom; the time variation of the concentration of the dissolved gas
is often used to quantify the gas flux at the surface. In this appendix, we show that
the different bottom boundary conditions for the scalar do not affect the essentials of
the near-surface scalar transport, which is the focus of the present study.

We have performed a separate simulation with zero gas flux at the bottom boundary.
Meanwhile, the gas concentration is fixed at the free surface and gas flux exists there.
As time increases, the dissolved gas field becomes more uniform to approach the
surface value. It is noted that the governing advection–diffusion equation for the
passive scalar (2.3) is linear with respect to c. After the turbulence scalar field has
fully developed, we normalize c by the difference in the concentrations at the bottom
and top boundaries. It is found that the normalized scalar statistics vary little at
different times (not shown here due to space limitation).

We next normalize c by the friction gas concentration (defined in § 2.3) at the
free surface, and compare its statistics with those discussed in § 2.3. Figure 19 shows
the results of the mean- and fluctuation-intensity profiles. The difference in the
near-bottom region is as expected, because the Neumann and Dirichlet boundary
conditions are used respectively at the bottom. However, for the near-surface region
that the present study focuses on, these two cases are indiscernible, indicating that the
physics of the near-surface scalar transport is the same, even with different bottom
conditions.

Appendix B. Quantification of surface age based on pure diffusion
of gas or heat

We summarize in this appendix the methods for the quantification of surface age
based on the pure diffusion assumption, which were widely used in the literature.
Considering diffusion in the predominant vertical direction only, the governing
equation for the scalar concentration f is

∂f

∂τ
= D

∂2f

∂z2
. (B 1)

In the gas case, f = c, and its solution subject to the Dirichlet boundary condition
(c = ct at z = 0 and c = cbulk at z = −∞) and uniform initial condition (c = cbulk at
τ = 0 for z < 0; i.e. the scalar field below the surface is assumed to be perfectly mixed
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Figure 19. Normalized profiles of (a) gas concentration 〈ct − c〉/c∗ and (b) r.m.s. of gas
concentration fluctuations crms/c∗ near the free surface: ——, gas with the Neumann bottom
boundary condition; – – , gas with the Dirichlet bottom boundary condition. Note that the
mean gas concentration is shifted to have zero value at the free surface.

after the surface renewal; see Higbie 1935) is

c − cbulk

ct − cbulk

= erfc(−ξ ). (B 2)

Here ξ = z/2
√

(Dτ ) is the normalized distance from the surface and erfc is the
complementary error function. The derivative of (B 2) with respect to z results in

D
∂c

∂z
= (ct − cbulk)

√
D

πτ
exp(−ξ 2). (B 3)

For a fluid particle residing at the surface (ξ = 0), its surface age is found accordingly,

τ = (ct − cbulk)
2 D

q2
gπ

. (B 4)

Since the instantaneous surface gas flux qg is known for all surface elements in our
DNS, we can quantify the surface age for each element using (B 4).

In the heat case, we define f = Tbulk −T (z, τ ) in (B 1). Neumann boundary condition
applies to f at the free surface, D∂f /∂z = −D∂T /∂z = −qh, where qh is the heat flux
at the surface. With the aforementioned uniform initial condition, the solution is
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Figure 20. Relative differences between the solutions of the advection–diffusion equation and
the pure diffusion equation for: ——, surface flux in the gas case; – – , surface temperature in
the heat case.

(Soloviev & Schlussel 1996)

Tbulk − T (z, τ ) = −2qh

(√
τ

D

(
exp(−ξ 2)√

π
+ ξerfc(−ξ )

))
. (B 5)

In DNS, since the temperature of all surface elements Tt is known, (B 5) with ξ =0
can be used to find the surface age,

τ =

(
Tbulk − Tt

2qh

)2

πD. (B 6)

Appendix C. Effect of vertical advection on scalar transfer
To add the advection effect to the cases discussed in Appendix B, we consider the

advection–diffusion equation

∂f

∂τ
− βz

∂f

∂z
= D

∂2f

∂z2
, (C 1)

which has an analytical solution for the gas case (Chan & Scriven 1970) but not the
heat case. To examine the characteristics for both gas and heat, we use a second-order
Crank–Nicholson scheme to solve (C 1) numerically. The value of β(τ ) is described
by a fourth-order polynomial fit of the average surface divergence of our DNS result
(figure 10):

β(τ ) = 0.003τ 4 − 0.041τ 3 + 0.2182τ 2 − 0.6101τ + 0.8372, τ � 5. (C 2)

Details of the solution are provided in Kermani (2010). Here we discuss only the
difference in the final results between (B 1) and (C 1). We normalize the difference
by the solution of (B 1) and plot the relative difference in figure 20. Compared with
the pure diffusion result, in the case of heat, the surface temperature is increased
by upwelling because fluid elements with high temperature are brought from the
bulk flow towards the free surface. In the case of gas, upwelling results in larger gas
concentration gradient near the free surface and thus larger gas flux. When β has the
variation described by (C 2), as τ increases, the relative error first increases and then
decreases as the strength of the upwelling decreases. The relative difference in surface
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temperature is smaller than that of gas flux. (Using a perturbation solution, Kermani
& Shen 2009 argued that the leading-order errors are three times different.) Therefore,
if the pure-diffusion equation is used instead of the advection–diffusion equation in
the quantification of surface age, the temperature-based result has a smaller error
compared with the gas flux-based result. Hence, in our hybrid method for surface age
quantification, we choose the surface temperature to be combined with Lagrangian
tracing as discussed in § 3.2.
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