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A CHARACTERISATION RESULT FOR MATRIX RINGS
P.R. FucHs

For a ring R with identity we show that the existence of certain nilpotent elements
forces R to be a matrix ring of size > 2.

In structure theory it is often useful to know whether a given ring R with identity
is isomorphic to a matrix ring over some ring S with a more tractable structure. For
instance, it is nice to have that § is an integral domain.

A ring R is isomorphic to a matrix ring of size n if and only if there exists a set of
”

matrix units {e,-,- | 1<14,5< n} C R, that is, E ei; = 1 and e;jert = djke; where 6§
=1

is the Kronecker delta. In this case R = M,(S), where § = e;;Re;; forall 1 <i < n.

For this and other well-known facts concerning matrix rings see [2]. In this note we

prove the following criterion for R to be a matrix ring. Ann(s) shall denote the left

annihilator of an element s € R.

THEOREM 1. For a ring R with identity 1 the following are equivalent:
(1) R = M,(S) for some ring S and some positive integer n > 2.
(2) For some positive integer n > 2, there exist elements z, y € R such that
z" 1 #£0, 2" =y? =0, z +y is invertible and Ann (z“'l) N Ry = (0).
Moreover if (2) holds and r is the inverse of z + y, then {e;; | 1 < i, j < n}, where

ei; = r*(ry)z™ 7, is a set of matrix units for R. Thus, if e denotes the idempotent
TY = epn, then R = M,(S), where S = eRe.

Condition 2 in Theorem 1 can often be easily verified or rejected. Also, once the
inverse r of z + y is known, the matrix units for R are given explicitly. For the proof
of Theorem 1 we need two propositions in which we keep the notation of Theorem 1
and assume that condition 2 holds.

PROPOSITION 2. yr*y=0forall 2<k<n.

PROOF: Since rz +ry = 1, y = yrz + yry, hence yrz € Rz N Ry. But Rz C
Ann (z"71), so Rz N Ry = (0), that is yrz = 0. Since z"~! = ryz"~!, yrlyz"! =
yrz"~! = 0; thus yr?y € Ann (z"7?) N Ry = (0). Consequently yr = yr?z + yr’y =
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yr?z, and hence yr?z? = yrz = 0. Now let 2 < k < n and suppose we have shown that

yr'y =0, yr'zd =0 forall 2 <i < k and i < j. Then yr*yz"~! = yr*¥-1z7~1 = (;

k—1

hence yr*y = 0. Thus yr = yr*z + yr*y = yr*z. By our induction hypothesis

yr®* 1zl = 0 for all j > k —1; hence yr*z/ = 0 for all j > k. Our claim now

follows. 1]
PROPOSITION 3. ryziriry =6;ry forall 0<i,j<n—1.
PROOF: Let 0 < i < n—1. We show that ryz'r*ry = ry. In Proposition 2 we have

seen that yrz = 0; hence y = yry, that is, ry is idempotent. So our claim is true for

:111

1=0. Smce zr+yr=1, we have z = z'r +::"'1y1'1""1 for1<i<n-1,and

lpi=lpy — gt r ry + zi~1yritly. Since i + 1 < n, yr**ly = 0 by Proposition

hence z
2, thus z'~1ri~lry = 2'r'ry. Consequently z’riry =ry forall 0<i<n—1.

Now let i # j. If i > j, then z*riry = z*~Jziriry = 2~ Jry. But since z =
zrez + zry, zry € Rz N Ry = (0). Finally suppose that i < j. If i = 0, then
ryz*riry = ryritly =0, since j+1<n

Now let i > 0 and 0 < k < i. Then z'~Fri=kpi—ipy = gi—kHlpi—ktlpj—ip, |

i kyppi—kpi- ry But since k>0 and j<n—1, j—k+2< n; hence yri~*+2y =0

-k, i~k i—k+1 t—k+1,rJ i

a.nd therefore z'—kpi=kEpi=ipy = 2 ry. It now follows that z r’ry =

iriri Tiry = 17 7%ry, and thus ryz'riry = ryri 1y = 0. a
We are now ready to prove Theorem 1.
PROOF OF THEOREM 1: 2 = 1. For 1 < 4,5 < n let e;; = r*“i(ry)z™ 7. It
is then immediate from Proposition 3 that e;jer; = §jreir. It remains to show that

eii = 1. Since rz +ry = 1, r"“z"" = pntHlgn=itl 4 pn=i(p)zn i for all
Y
=1 n—1

1 < 1 <n-—1. But »*z™ = 0, thus E ™ i(ry)z™ ™ = Y ey = rz. Since ry = epn,
=1 =1
Z e; =1.

1 = 2. Let {e;; | 1 < 4,5 < n} be a set of matrix units for R. If z :=
€12+ ...+ €n—1n, ¥ := €n1, then "1 £0, z" = y? = 0 and z + y is invertible with
inverse r = €15, + €21 + ... + €yn—1. Moreover one checks that Ann (z“‘l) = Rz and
that Rz N Ry = (0).

The following special case of Theorem 1 has also been stated in [1] (Theorem I11.2).

COROLLARY 4. For aring R with identity the following are equivalent:

(1) R is aring of 2 x 2 matrices over some ring S.
(2) There exist elements z,y € R such that 22 = y> = 0 and z + y is
invertible.

Corollary 4 follows immediately from Theorem 1 for if 0 # sy € Ann(z) N Ry,
then sy € Ann(z + y) which is a contradiction to the fact that z + y is invertible.
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In a forthcoming paper we give some applications of Theorem 1 in structure theory.
For instance, if R is a prime Goldie ring we show how elements z, y satisfying condition
2 can be constructed in the quotient ring of R. In this manner we obtain another proof
for the fact that the quotient ring of R is isomorphic to a matrix ring over a division
ring.
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