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Storing Data in Files

In this and the next chapters of this book, we will focus on tools for
data contained in files: Your data resides in physical files on your hard
disk, from where it is opened with a software of your choice, processed
in various ways, and then stored again in a file. This is by far the most
common workflow used in social science projects. Why do we need files
at all? The answer is very simple: We use files for permanent data storage.
When you work with a dataset in R (or in some other software, such as
Excel or Stata), the table(s) – for example, the data frames in R – are tem-
porarily stored in your computer’s main memory. This is the part of your
computer where data and programs are kept for fast access during the
actual operation of your system. The problem is that this volatile memory
does not function anymore when you turn off your system, and the entire
content (and, thus, your data) disappears. Therefore, every computer has
another type of data storage that remains persistent even when the system
is shut down. This is usually your hard disk drive, but it can also be a
network drive or a cloud storage folder.
When we save tabular data contained in the computer’s main memory

to files,we need tomake sure that the tabular structure is preserved.Recall
our discussion of the importance of data structure in the initial chapters
of this book – a persistent storage of data in files would be useless if the
actual structure of the data were lost. Therefore, there are different ways
in which tabular data can be stored as files, such that the tabular structure
is preserved. For a given file, the file type typically indicates if it contains a
data table and how this table is stored in the file.You are probably familiar
with file types for text documents (e.g., the Word format indicated by the
.docx extension) or for graphics (e.g., the JPEG format using the .jpg
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40 4 Storing Data in Files

or .jpeg extension). Similarly, there are different file types to store data
tables. These file types are designed to keep the logical structure of our
data table as a set of columns of particular types, and a set of rows. These
file types constitute the main focus of this chapter.

4.1 text and binary files

Before we go through the list of the most commonly used file formats for
data in the social sciences, we need to make a basic distinction between
text and binary files. As the name suggests, text files contain information
stored as plain text, such as program code for R and other programming
languages. This is why you can open them with any text editor (such
as the one built into RStudio) and view the contents. In contrast, binary
files can be used and processed only by particular software tools – they
essentially contain only 0s and 1s that make little sense to humans (but
can be understood by the software tools designed for them). The term
“binary”applies to all files that are not text and is used for many different
file types, not just those that contain tabular data. For example, images,
video, and sound are typically stored in binary files. To illustrate the
difference, Figure 4.1 shows the contents of a binary file, viewed with
the Unix hexdump command.
As you can see, the information in a binary file is not human-readable –

the contents are completely cryptic and can only be processed by software
designed for this file type. In contrast, the content of a text file can be
understood by humans. You can create and open text files even with
RStudio: Just choose File New File Text File , and you get a new editor
pane, where you can start adding content to your text file and save it (see
Figure 4.2).
The screenshot shows that text files contain text and numbers, but

also various other invisible characters that are usually hidden in the text
editor. Under Tools Global Options , you can turn on/off the display of
these characters in the “Code” section in RStudio’s preferences menu, in
the “Display” pane. Just tick the box for “Show whitespace characters,”
and your text file will look similar to the one in Figure 4.2. There are

figure 4.1. Contents of a binary file.
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figure 4.2. Example of a text file viewed in RStudio.

different invisible characters in the text file above; for example, white
spaces (denoted as gray dots in the editor) are used to separate words,
and there is a linebreak character at the end of each line. The end of the
entire file is again marked with a specific character.
The set of characters you can use in a text file is defined by the file

encoding. A file encoding is a mapping of numbers (which the computer
stores internally, so nothing you need toworry about) to actual characters.
There are lots of different file encodings for computers, partly because
there was a need to encode different human languages and their special
characters. Luckily, however, most conversion issues can now be avoided
due to the Unicode standard, which accommodates most languages and
special characters worldwide. Still, you may encounter other encoding
standards, so watch out if you use (or if your data contains) special
characters. To demonstrate what can go wrong if you choose the wrong
file encoding, open the un-secretaries.txt file in the RStudio editor.
You should see a list of UN Secretaries General, ordered by the year
they served. Note that there are two special characters in this list: Dag
Hammarskjöld’s name contains an “ö” (an o-umlaut), and António
Guterres’s first name is spelled with an “ó” (an o-acute). This file is
encoded in Unicode, which is the default for macOS and other current
systems.
Before we start the conversion to a different encoding scheme, save

the file under a different name with File Save As... , so that we do not
overwrite the original version. Now, let’s save the file in a different encod-
ing. Go to File Save with Encoding , which brings up the dialogue box in
Figure 4.3.
The current coding of the file is UTF-8, which refers to the Unicode

standard.This is also the default for my current operating system (macOS)
and therefore labeled as such in the list. Now, select ASCII and click
OK. This will transform the file to the American Standard Code for
Information Interchange (ASCII) standard, which is an old encoding
standard developed in the USA to encode text in English (this is the file
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figure 4.3. Choosing the file encoding in RStudio.

figure 4.4. Viewing a file encoding in ASCII.

un-secretaries-ascii.txt included in the supplementary material for
this chapter). If you now close the file and open it again, Figure 4.4 shows
what you get.
This looks almost the same as the old file, but there are differences

in two places: The special characters are missing. It is not difficult to
understand why: Since the ASCII encoding does not include characters
such as “ö” and “ó”, they are simply replaced in the converted file (in our
case, with two question marks). This example illustrates that if you leave
the Unicode world and deal with text files in other encodings, you need
to be careful, since special characters and symbols can be transformed in
unexpected ways or simply disappear.
What if you encounter a file and are not sure about its encoding?

Unfortunately, it is not straightforward to recognize the encoding.
The readr package offers a function that guesses the encoding of a
given file together with a confidence estimate. The following example
demonstrates this:
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library(readr)
guess_encoding(file.path("ch04", "un-secretaries.txt"))$encoding

[1] "UTF-8"

guess_encoding(file.path("ch04", "un-secretaries-ascii.txt"))$encoding

[1] "ASCII"

The function detects the encoding of the original UN secretaries file
correctly, and also for the ASCII version we created. This may be helpful
if you encounter conversion errors during the import that could be due
to encoding (such as garbled characters) – in this case, you can try to set
the encoding manually (e.g., by using the fileEncoding parameter in R’s
read.csv() function) to fix these problems.

4.2 file formats for tabular data

There is a variety of file types designed for storing tabular data. The
discussion below takes you through the most important ones, many of
which you will already be familiar with. In the remainder of the book, we
will encounter several other file formats that can be used for tables, but
also for other types of data.
The format of a file is typically indicated by the file extension, which is

the dot and the letters at the end of a file name. For example,MS Excel files
use the extension .xlsx (or .xls for the legacy Excel format), while simple
text files are usually marked with .txt. It is important to note, however,
that the file extension is no guarantee that the file actually conforms to a
particular format. For example, you can easily rename an Excel document
such that it ends in .docx (the file extension for Word documents). If you
then double-click your file, your operating system calls Word to open
it, since it believes that this is a Word file because of the file extension.
Word, however, cannot open the file, since internally it uses the Excel
format.
On some operating systems such as macOS and Windows, file exten-

sions are hidden by default and you might be wondering what we are
talking about. To show the file extensions on all files on your computer,
follow these steps. On Windows:

• Open Windows Explorer

• Expand the Ribbon menu (Shortcut: Ctrl + F1 )

• Click on the “View” tab

• Check the box that says “File name extensions”
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figure 4.5. Check the first box to display all filename extensions on macOS.

On a Mac:

• Open the Finder app

• Click on Finder Preferences

• Click on Advanced

• Check “Show all filename extensions” as shown in Figure 4.5

Linux usually does not use file extensions to determine how to open
a file and just considers them part of the filename. You will not need to
change any settings if your computer runs Linux.
In the following sections of this chapter, I will briefly introduce the

most common file formats you are likely to encounter when working with
social science data. For each of these formats, we cover some general
features, as well as how to open and save it in R. The discussion starts
with several text file formats typically used for storing tables. As we have
seen above, the advantage of using text files is that you can manually
check the content of a file. Also, almost any software tool for data analysis
can read and write text-based files with tabular data. At the same time,
however, there is no real standardization: This means that the file import
can go wrong, and you need to check that the imported table actually
corresponds to what is in the file and what you expect.
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4.2.1 CSV Files

The format most often used for storing tabular data in files is theComma-
Separated Values (CSV) format. In a CSV file, each line in the text repre-
sents a row from the table, and the cells in that line are separated by a
special character such as a comma (hence the name). As in any proper
tabular structure, each line must have the same number of cells for the
table to be perfectly rectangular.When I use the term “CSV” in this book,
I mean any kind of text file that stores tables in the same way (possibly
using characters other than the comma as field separator). These files
sometimes use the .dat file extension, but also others. Let us take a look at
an example of a CSV dataset. Open the file csv-example.csv that is part
of the data repository for this chapter in RStudio’s text editor. The file
contains distances between all national capitals worldwide, compiled by
Gleditsch (2020). For simplicity, we use only a subset of it – the distances
between Washington, DC and other countries’ capitals. This is what you
should see in the first three lines:

numa,ida,numb,idb,kmdist,midist

2,USA,20,CAN,738.31,460.56

2,USA,31,BHM,1639.23,1022.12

2,USA,40,CUB,1831.13,1141.3

The first line is the header of the table and contains the names of the six
columns. Each distance is measured between the capital of one country,
which has an identifier and a name (numa and ida), and a second country,
also referenced with an identifier and a name (numb and idb). Finally,
the distances are provided in kilometers (kmdist) and miles (midist). The
data start in the second row. The cells are separated with a comma (the
field separator character), and each line ends with an (invisible) newline
character. Let us now import this file as an R data frame and take a look
at the first three lines:

csv <- read.csv(file.path("ch04", "csv-example.csv"))
csv[1:3, ]

numa ida numb idb kmdist midist
1 2 USA 20 CAN 738.31 460.56
2 2 USA 31 BHM 1639.23 1022.12
3 2 USA 40 CUB 1831.13 1141.30

There is no single standard for CSV files, which is why they come in
many different forms. One issue you may encounter is that a .csv file
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uses a separator other than a comma as the separator. Open csv-example-
semicolon.csv in RStudio’s text editor, which contains a slightly modified
version of the original data. This is what you should see:

numa;ida;numb;idb;kmdist;midist

2;USA; 20;CAN; 738,31; 460,56

2;USA; 31;BHM; 1639,23; 1022,12

2;USA; 40;CUB; 1831,13; 1141,30

In this file, the cells are separated by a semicolon instead of a comma,
and the comma is used as a decimal indicator (which is the standard in
many countries in Europe and elsewhere). This clearly illustrates the prob-
lems that can arise when using CSV and related file types in the absence
of a fixed definition of a file format: is the comma or the semicolon used
as field separator? We can clearly see this when eyeballing the file, but it
is not straightforward for the software we use. So when you try to import
csv-example-semicolon.csv in the way we showed you above, this does
not work:

csv_semicolon <- read.csv(file.path("ch04", "csv-example-semicolon.csv"))

Error in read.table(file = file, header = header, sep = sep, quote = quote, : more
columns than column names

The problem is that R’s read.csv() function by default assumes a
comma as the separator. This results in a mismatch between the header
of the file – which is treated as only one column name, since it does not
contain a comma – and the actual data, which, when split at the comma
characters, has three fields per row. To correctly import this dataset, you
have to specify the separator explicitly:

csv_semicolon <- read.csv(file.path("ch04", "csv-example-semicolon.csv"),
sep = ";")

csv_semicolon[1:3,]

numa ida numb idb kmdist midist

1 2 USA 20 CAN 738,31 460,56

2 2 USA 31 BHM 1639,23 1022,12

3 2 USA 40 CUB 1831,13 1141,30

A similar issue arises when dealing with strings that contain the field
separator. For example, we may want to add the name of the first
country’s capital, Washington, DC, to our capital distances data. This
can lead to confusion when importing the dataset, since R (or other
tools for that matter) will interpret the comma in the capital name as
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a field separator. For that reason, CSV files often enclose the affected
strings with double-quotation marks ("), which basically means: “Treat
the entire content between the quotes as a single string, regardless of what
it contains.” To see how this works, open the file csv-example-quotes.csv
in RStudio’s text editor, and take a look at the first line below the header:

2,USA,20,CAN,738.31,460.56,"Washington, DC"

The dataset now has a seventh column with the name of the capital
of the first state. Since this name contains a comma, the entire string is
enclosed in double quotes. But as you may have guessed, this again does
not fully solve the issue.What if your string variable contains " characters
that are not used for quotation? The standard way of dealing with this is
to replace them with "" (two double-quotation marks next to each other).
When you export files as CSV, the software usually takes care of string
quotation. However, when you import CSV files, it might still be the case
that quotes are not handled properly and errors occur, so you need to be
careful and double-check that the import works correctly. If it does not,
in many cases your only option is to open the file in a text editor, identify
the source of the error, and fix it manually.
Saving CSV files from R is simple. R provides the write.csv() function

for doing this, which is part of R’s basic set of functions. By default,
write.csv() uses comma as the field separator, and string quotation is
enabled by default. This is all fine, but by default, the function produces
a file that looks like this:

write.csv(csv, file.path("ch04", "output.csv"))

"","numa","ida","numb","idb","kmdist","midist"

"1",2,"USA",20,"CAN",738.31,460.56

"2",2,"USA",31,"BHM",1639.23,1022.12

"3",2,"USA",40,"CUB",1831.13,1141.3

First, note that the function by default quotes all strings, regardless
of whether this is necessary. In our case, none of the field names or the
data contain a comma, so we could actually omit the quotes in the header
and in the string variables in the data. Second, R adds a new (unnamed)
column to the data. This column contains the row numbers,which is what
R uses to preserve the order of the data in the file. In practice, however,
the ordering of rows in a data frame oftentimes does not (and should not)
matter, which is why we recommend that you disable this feature:
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write.csv(csv, file.path("ch04", "output.csv"), row.names = F)

There are a number of other useful parameters for the write.csv()
function, most importantly the sep parameter that lets you define a field
separator to be used for the file. The col.names parameter allows you
to disable the inclusion of a header should you wish to do so (although
this is generally not recommended). In addition, there is one important
feature of R read/write functions that is very useful when dealing with
large files: You can use it to compress files. File compression (“zipping”)
is a technique where text files are saved such that they reduce the space
they need on disk. For example, our (uncompressed) dataset of capital
distances needs about 6 kilobytes of disk space. However, if we use R file
compression, we can reduce the size considerably. This is done by using
R’s functionality to create “gzipped”files, a frequently used algorithm for
compressing files:

write.csv(csv, gzfile("csv-example.csv.gz"), row.names = F)

The compressed file now only uses around 3 kilobytes, which is
about 50% of the size of the original file. For larger files, the size
reduction is usually much higher. Compression works particularly well
if your data contain long sequences of repeated characters, which is
typically the case for tables with a lot of text. Of course, R can also
read the zipped CSV files again – there is no need for using additional
functions, and you can simply provide the name when importing it, as in
read.csv("csv-example.csv.gz").
In this section, we only covered the basic features of CSV files, and the

standard way to process them in R. There are various other packages and
functions for this, some of which we will introduce in the next chapters.
As regards the CSV format in general, it is important to emphasize again
that it is only a convention for using text files to store tabular data rather
than a fixed standard. While there actually exists a standard for CSV files
(Shafranovich, 2005), it is not widely known and most tools (including
Excel) do not conform to it, so you can safely ignore it. This means that
you need to be aware of the potential pitfalls when using CSV files. We
discussed the most common ones, which include the file encoding, the
definition of the field separator (a comma, a semicolon or the invisible
tab character \t are the typical choices), and the quotation of strings.
Also, unlike in our examples above, CSV files sometimes do not contain
the headers of the table in the first line, in which case you would have to
set them manually in your code.
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Still, the CSV format has a number of advantages that explain why
it is so widely used: It is an open format that is completely transparent,
since you can open a CSV file on just about any computer system and
inspect its contents. For that reason, the CSV format is compatible with
most data processing and data analysis tools, and belongs to the most
commonly used file types for data storage. One important downside is
the lack of meta-information (such as column types or documentation
information), so this must be provided in associated data such as code-
books or Readme files.

4.2.2 Excel

In the previous section, I described how to use text files to store tabular
data. Now, we are turning to a number of binary data formats for the
same purpose.However, as we discussed above, binary files are oftentimes
designed to be used with a particular software and cannot be inspected
manually with a simple text editor. A well-known example of this kind is
the MS Excel file format, which, due to the popularity of the MS Excel
spreadsheet software, is still a widely used format also for social science
data. Excel files come in one of two formats: the legacy .xls format (which
is a truly binary format), and the current .xlsx format that is actually a
zipped collection of different text files, which together contain the data.
Different packages allow you to read and write Excel files in R. I rec-

ommend the readxl library for this, since it installs and runs without
any additional configuration and is nicely integrated into the tidyverse
environment that we cover in Chapter 7. As an example, let us use the
data in the file unsc-membership.xls, which contains information on UN
Security Council membership fromDreher et al. (2009). If you try to open
this file with a regular text editor, you will see that it is a binary file, the
contents of which are not human-readable. In R, we can open the file as
follows:

library(readxl)
xls <- read_excel(file.path("ch04", "unsc-membership.xls"),
sheet = 2,
na = ".")

The R function that does all the work is read_excel(), and you need
to specify the name of the input file (with a complete path if necessary),
as well as the number or the name of the sheet you are importing. In our
case, this is the second sheet, since the first one only contains metadata
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about the dataset. We also set the na option to ".", so that during the
import process, fields that contain this character are interpreted as missing
values. Writing data to an Excel file is equally simple with the openxslx
package:

library(openxlsx)
write.xlsx(xls, file.path("ch04", "output.xlsx"))

According to my experience, however, importing data directly from a
spreadsheet can be tricky. As we discuss in more detail in the next chapter,
the problem is that spreadsheets do not impose a strict tabular structure,
while almost all statistical software tools do. This means that, for exam-
ple, numeric columns can contain text, or data can even be placed in the
spreadsheet outside the area where the regular dataset is kept. This is why
you often encounter problems and errors during the import process. As
the next chapter will make clear, I generally recommend against using
MS Excel (or any other spreadsheet software) for data management, if
you can avoid it. However, since many datasets are still distributed in
spreadsheet formats such Excel or LibreOffice/OpenOffice, it is hard to
avoid them completely. This is why we spend an entire chapter on MS
Excel (see Chapter 5), where we cover the various issues that can arise
when managing research data with spreadsheet software.

4.2.3 Stata

Stata is one of the major tools for statistical analysis in economics and
political science. It uses its own binary .dta format for data storage.
Unlike Excel files, Stata’s data files only contain a single table. This
mirrors Stata’s workflow well. It allows users to keep only a single table
at a time in their working environment, which serves as input to all the
analyses and visualizations the user carries out – this is very different
from R, where you can have several data frames in your workspace. .dta
files contain variable names and data, but optionally also short labels for
the variables in the dataset.
Due to the fact that each Stata data file only contains a single, rect-

angular table, its import and use in R is typically much less problematic
compared to spreadsheet files. As an example, we use the data on the
targets of terrorism compiled by Polo (2020). The import function is
provided by the haven package, and is straightforward to use:

library(haven)
dta <- read_dta(file.path("ch04", "terrorism-targets.dta"))

https://doi.org/10.1017/9781108990424.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.007


4.2 File Formats for Tabular Data 51

When importing Stata files, the short variable labels are preserved and
shown when you click on the data frame in the Environment tab of RStu-
dio. Alternatively, you can display, set, or change the variable labels with
the labelled package, which can be very helpful when inspecting a data
frame for the first time:

library(labelled)
var_label(dta$attacksum)

[1] "Number of attacks"

Similar to reading Stata files, haven can also write R data frames in the
.dta file format:

write_dta(dta, file.path("ch04", "terrorism.dta"))

Stata has introduced several versions of its file format over time. haven
can read and write all versions that Stata has used so far, although you
may have to set the version parameter manually (the version refers to
the Stata version used to create the file). One important fact to keep in
mind, however, is that before version 14, Stata did not use a fixed string
encoding, which means that you can run into the encoding problems we
discussed above. Since Stata 14, text is saved in UTF-8 format and can
therefore contain characters in any language and a wide variety of other
symbols. Stata as well as SPSS (below) also differ from R in how they
handle labeled data and missing values. It is beyond the scope of this
book to discuss these differences in detail, especially because the haven
documentation is very detailed in explaining these issues.

4.2.4 SPSS

SPSS (now called IBM SPSS Statistics) is another commercial software
package that is frequently used in the social sciences. Similar to Stata, SPSS
also comes with its own file format for data files, identified by the .sav
file extension. These files are also binary, which means that they cannot be
opened with a text editor and inspected manually. .sav files also contain
only one table or list, with variable names, the data and (optionally) labels
and documentation for the data. As an example for a dataset in SPSS
format,we use the 2012 – 2016 version of theWorlds of Journalism Study
(WJS, 2019), which assesses the state of journalism around the world.We
again import the data with the haven package and summarize the first
three columns:
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library(haven)
sav <- read_sav(file.path("ch04", "journalism.sav"))

The original WJS data are based on interviews with journalists in dif-
ferent countries and cover topics such as editorial independence or how
journalists see their role. The data we have here are national-level aggre-
gates over all respondents. The WJS SPSS file also allows variables to be
labeled,which we can use to find out what the variable names really mean:

library(labelled)
var_label(sav$C9)

[1] "Editorial autonomy: selecting stories (means)"

var_label(sav$C10)

[1] "Editorial autonomy: aspects emphasized (means)"

Similar to Stata files, the haven package can also write R data frames
to SPSS files:

write_sav(sav, file.path("ch04", "wjs.sav"))

There are various other conventions and potential pitfalls when work-
ing with Stata and SPSS files. If you need more information on this, the
documentation of the haven package is a good place to start.

4.2.5 R Data

R cannot only read and write files in other formats, but has its own file
formats for preserving data. There is an important difference between the
file formats I described above and R data files. While the above formats
were all designed to store tabular data, R’s data files can be used to store
any kind of R object. So, for example, if you have a single vector, a list, or
a data frame, they could all be permanently stored on disk using R’s own
file formats.
There are two types of R data formats: R data files, which have the

extension .RData or .rda, and “serialized” R data files with the extension
.rds. Both file types store the data in binary format (the default behavior).
The difference is that .rds files save only a single object, and without the
name the object was previously given. This means that when you load
the object again from the file, you need to assign a new name. This is
different for .rda files: A single file can contain several R objects, and will
save each of them with its name. So when you load your data again, each
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object (data frame, list, vector, etc.) will be available in your workspace
under the name it was given previously.
To demonstrate this, let us use the replication data for Barberá (2015),

which analyzes Twitter behavior of world leaders. In the replication data
you will find a file called leaders-twitter.RData. This file contains data
derived from Twitter accounts of political actors in six countries (US,
Spain, Netherlands, UK, Italy, and Germany). The data set also indicates
the party to which each actor belongs (if applicable). In our example, we
first clear all objects in our workspace with rm(), import the data with
load() and then show the objects in the workspace with ls():

rm(list = ls())
load(file.path("ch04", "leaders-twitter.Rdata"))
ls()

[1] "elites.data"

As you can see, you now have an object called elites.data in your
environment, even though we did not specify a name. Rather, elites.data
was created by the author of the dataset, and then saved to the file. What
type of object is this? A data frame? Let us check:

class(elites.data)

[1] "list"

summary(elites.data)

Length Class Mode
US 23 data.frame list
UK 4 data.frame list
spain 4 data.frame list
NL 4 data.frame list
germany 4 data.frame list
italy 4 data.frame list

elites.data is a list with six entries, each of which is a data frame. This
means that we have one table for each country, which can be accessed
using the country name (e.g., elites.data$germany). For a simple demon-
stration of how to save .RData files, let’s extract the data for Germany and
Italy as two separate objects, and save() them:

elites_germany <- elites.data$germany

elites_italy <- elites.data$italy

save(elites_germany, elites_italy, file = "elites-germany-italy.rda")

Loading this file (after wiping our environment with rm()) makes the
two objects available again:
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rm(list = ls())
load("elites-germany-italy.rda")
ls()

[1] "elites_germany" "elites_italy"

Finally, let us do a quick comparison with the .rds format. Remem-
ber that we can only save one object at a time; in our case, we use
elites_italy. We save this object using saveRDS(), and load it again with
readRDS() under a different name:

saveRDS(elites_italy, "elites-italy.rds")
italy <- readRDS("elites-italy.rds")

This example shows that the original (elites_italy) and the newly
loaded (italy) datasets can exist in the sameworkspace, but with different
names (since we can adjust this during the loading).A simple check reveals
that they contain identical data:

identical(elites_italy, italy)

[1] TRUE

Due to their ability to store any kind of R objects, R data files are
extremely flexible, as long as you do not want to exchange data with
other software tools. Both data formats can only be processed with R, and
users of other statistical packages will not be able to use your data. Using
our above example, you are now able to import .RData and .rds files from
other sources; however, you should think about whether distributing your
own data in one of these formats is a good idea. In particular when dealing
with tabular data, I rather recommend a text-based CSV format, which
most statistical packages and programming languages are able to read.

4.3 transparent and efficient use of files

Over the course of your research projects you are likely to accumulate
a large number of data files: data from different sources and data you
create yourself, using different naming schemes and file types. While you
are working on a project, it is often possible to keep track of what these
files contain, where they come from, and what you need them for. But
experience shows that once you take a break from a project, it can be
difficult to make sense of the different files in your project. I therefore
provide you with some simple guidance on how to effectively organize
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your research projects to minimize headaches and make your life easier.
Many of these suggestions come from Jennifer Bryan’s (2015) excellent
talk on the matter, combined with my own experience.

4.3.1 Directory Structure

Good file organization starts at the directory structure of your project,
that is, the folders in which your files are stored. In particular if your
project involves many data files, I recommend that you create three sub-
folders in your project folder:

1. /raw contains all the raw data you collected yourself or that comes
from other sources. You should consider this folder read only! This
is uncleaned data that your R scripts should never change, only
read.

2. /analysis This folder contains the output of all your data cleaning
and processing, ready for analysis and structured however is best
for your project. If you remember our recommended workflow
from Chapter 1, this folder contains the analysis datasets. Impor-
tantly, you should consider the contents of this folder as transitory,
and there should never be any data in this folder that cannot be
recreated by running your scripts again. You should be able to
delete everything in this folder and still arrive at the same data
(and analysis results) after re-running your scripts that process the
raw data.

3. /replication This folder should be populated at the end of your
project with all the data necessary to replicate your results. It should
contain only properly anonymized, cleaned data that is ready to be
shared with others.

Usually, your R scripts will be located in the main working directory.
To easily see what each R script does, consider using informative and
consistent file names.

4.3.2 File Names

Once your directory structure is set up, you should also consider sticking
to some conventions regarding the names of the files you use. While files
in the raw folder should not be changed after you download them, it is
up to you to give useful names to all the ones you create. Jennifer Bryan
(2015) gives three principles for naming files that you should stick to, a
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recommendation I fully support: file names should be machine readable,
human readable and play well with the default ordering of files on com-
puters. What does this mean in practice?

1. Machine-readable file names: The great benefit of machine readable
file names is that they make your life much easier when you process
files automatically. Also, you can computationally extract infor-
mation from the names that would be cumbersome to store and
retrieve otherwise. To make files machine readable, avoid spaces,
punctuation, and non-ASCII characters in your filenames andmake
sure you avoid case sensitivity (you should not have two differ-
ent files called myData.csv and mydata.csv). Sticking to these rules
makes using the default search function of your computer much
more powerful, but also to retrieve and process the files using your
script.

2. Human readable file names means that you should be able to tell
from the name of a file what is in it. Giving your files names such
as 01_clean-data.R is vastly superior to just calling the file 01.R or
data1.R. By using delimiters such as the underscore and the hyphen
consistently, you can also encode metadata about your file in the
filename. For example, you can encode the order in which to run
the files by starting with a numeral, and what the files do. Use
underscores to separate these elements of metadata in your files
and hyphens to separate words within the meta data.

3. File names that sort well: Starting your file names with a numeral
allows for proper ordering when shown on your computer. You
should always left-pad your numbers with a leading zero (oth-
erwise on many systems, 10_analysis.R will be sorted before
1_analysis.R). When you use dates in your filenames, they should
follow the ISO 8601 format YYYY-MM-DD and preferably be
put at the beginning. This results in proper chronological ordering
and prevents confusion from the different ordering of days and
months in Europe and North America. While it is tempting
to insert dates into filenames to denote different versions of a
file over time (such as 20190312_data.R and 20190313_data.R),
this oftentimes results in large, confusing numbers of files. If
you want to preserve earlier versions of your code, consider
using a version control system, which is particularly useful when
collaborating with others. In Chapter 14, we cover these systems
briefly.
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4.4 summary and outlook

Most social science research data is contained and distributed in files, and
there are many file formats that can be used for tabular data. In this chap-
ter, I provided a general introduction to the most common file formats you
are likely to encounter in your work. The most convenient and flexible
way is to use simple text files for tabular data, as for example the CSV for-
mat. Reading and writing is possible with almost any software package,
and we can check contents manually with a simple text editor. However,
there is no established standardization for these files; important features
such as the choice of the field separator or the inclusion of a header can
vary, all of which requires some caution when working with CSV files.
There also exist a number of binary file formats for tabular data,

most of which can be processed with R. Among the most frequently used
ones are spreadsheet files, most importantly Excel. Stata and SPSS also
have their proprietary data formats, designed to store individual research
datasets along with some documentation (e.g., labels of variables and
values). The haven package in R offers a lot of functionality to work with
these files. R objects (which includes data frames) can also be stored as
files in R’s own formats. However, exchanging data with other software
tools using these formats is impossible, which is why you should use these
file formats only when you really need them (e.g., if your data does not
follow a tabular format and therefore cannot be easily stored in a CSV).
There are lots of other file formats, many of which are also used for

social science data. As a general overview of file formats, the compre-
hensive file format guide by the US Library of Congress (2019) may be
helpful. In case you cannot open a file with the R libraries we used in this
chapter, I recommend you take a look at the rio package, which is able to
read a large number of file formats in the fastest and most efficient way
possible. In sum, here is a list of recommendations based on the discussion
in this chapter:

• Understand the basics of file-based storage: When working with data
stored in files, it is important to understand how files work, irrespec-
tive of whether they contain research data or not. We discussed the
important difference between text and binary files. For the former, you
need to be aware of the fact that there are different encoding schemes
for text, and choosing the wrong one can lead to strange characters
and errors in your data. Luckily, Unicode has emerged as the standard
on many operating systems, which means that conversion issues can
largely be avoided, at least when working with more recent files.
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• Familiarize yourself with different file formats: There are few estab-
lished conventions when it comes to storing tabular data in files. This
means that for quantitative social scientists, there is a need to be famil-
iar with different file formats as well as their strengths and weaknesses.
Datasets for social science projects are distributed in many different
formats, and it is likely that you will encounter a rarely used, legacy
format in your work. Using the concepts and tools introduced in this
chapter, you should be able to work even with the more difficult ones.

• Organize your directories and files consistently: To make the organiza-
tion of your data and code as transparent as possible, try to stick to a
consistent naming of files and folders. This is not only useful for others
as they replicate your work, but it also helps you when you return to
your project after some time. File and directory names should clearly
indicate their content, and they should be constructed in a consistent
way, such that they can be processed both by humans and computers.

• For your data, choose a simple, well-known file format: When you
think about how to store your own data, it is advisable to prefer
generic, software-independent file formats. For example, (correctly
formatted) CSV files can be imported by almost any type of statistical
software. Since they are text files, they also permit inspection by
humans. It is generally recommended to avoid proprietary file formats
such as Excel or SPSS. This also applies to R’s custom file formats
(.RData and .rds), which other software cannot process.
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