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FIXED POINTS OF UPPER SEMICONTINUOUS MAPPINGS
IN LOCALLY G-CONVEX SPACES

GEORGE XIAN-ZHI YUAN

In this paper a new fixed point theorem for upper semicontinuous set-valued map-
pings with closed acyclic values is established in the setting of an abstract convex
structure - called a locally G-convex space, which generalises usual convexity such
as locally convex //-spaces, locally convex spaces (locally //-convex spaces), hy-
perconvex metric spaces and locally convex topological spaces. Our fixed point
theorem includes corresponding Fan-Glicksberg type fixed point theorems in lo-
cally convex //-spaces, locally convex spaces, hyperconvex metric space and locally
convex spaces in the existing literature as special cases.

1. INTRODUCTION

In nonlinear functional analysis, there are two basic types of topological fixed point
theorems. The first one is the so-called Browder-Fan fixed point theorem (for example,
see Browder [5] or its equivalent form in Fan [8]) which says that a set-valued self-
mapping defined in a compact convex subset of a Hausdorff topological vector spaces
has at least one fixed point if the set-valued mapping has open inverse values. The
second type is the so-called Fan-Glicksberg fixed point theorem (for example, see Fan
[7] or Glicksberg [9]) which says that an upper semicontinuous set-valued self-mapping
defined in a compact convex subset of a Hausdorff locally topological vector space
has at least one fixed point. The celebrated Fan-Glicksberg fixed point theorem is
so general since it includes many fixed point theorems such as the Kakutani fixed
point theorem for upper semicontinuous set-valued in Euclidean spaces, the Tychonoff,
Schauder, Bohnenlus-Karlin and Brouwder, and many other fixed point theorems for
continuous (single-valued) mappings in locally convex topological vector spaces, normed
spaces, Banach spaces and Euclidean spaces as special cases. Fixed point theory in
nonlinear analysis has been extensively studied and developed this century and its
importance in nonlinear analysis and the essential relationships with other problems in
nonlinear analysis can be found from Zeidler's books [31, Vol. I and Chapter 77 in Vol.
IV] (and see also Goebel and Kirk's book [10] from the viewpoint of metric spaces for
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the study of fixed point theory and related applications in nonlinear analysis). However,
we should mention that Schauder's conjecture raised in 1930's in fixed point theory is
still unsolved (see Granas [13] and Dugundji and Granas [6] for more details); this asks
if a (single-valued) continuous self-mapping defined in a compact and convex subset of
a Hausdorff topological vector space has any fixed point.

On the other hand, as many problems in nonlinear analysis (in particular, in the
study of economic models and game theory) can be formulated as equivalent to the
existence of fixed points for a (typically, upper semicontinuous) set-valued mapping
in the setting of spaces which, no longer, have linear structures such as locally convex
topological vector spaces enjoy, it is necessary build some new theory for Fan-Glicksberg
type fixed point theorems which can cover spaces which are not linear. In this direction,
there are a few papers (for example, see Horvath [14, 15], Khamsi [17], Kirk and Shin
[18], Park [20, 23], Park and Kim [23], Sine [24, 25], Tarafdar [28], Tarafdar and
Watson [29], Wu [30] and others) which try to extend the Fan-Glicksberg fixed point
theorem to the setting of general abstract convexity notions. However, all results so far
obtained in this direction need to assume either both the lower and upper continuity
of the set-valued mappings (see Tarafdar [28]) or that the underlying spaces are a
hyperconvex metric space [1], or be a locally convex if-space in [30], or a locally
convex space (called also, locally if-convex spaces by Tarafdar [28]) in Horvath [15].

The aim of this paper is to establish a Fan-Glicksberg type fixed point theorem
for upper semicontinuous set-valued mappings with non-empty closed and acyclic (for
example, contractible) values in the setting of the so-called locally G-convex spaces,
which contain all locally convex //-spaces, locally convex spaces, hyperconvex metric
space, and in particular, locally convex topological spaces as special cases. Thus our
fixed point theorem shows that the celebrated Fan-Glicksberg type fixed point theorem
holds in locally G-convex spaces, specially for locally convex if-spaces and locally H-
convex spaces, hyperconvex metric spaces, which shows that the Fan-Glicksberg type
fixed point theorem holds in hyperconvex metric spaces (see, for example, the corre-
sponding fixed point theorems given by Kirk and Shin [18, p. 180] under the assumption
of continuity for set-valued mappings).

Throughout this paper, we denote by F{X) and 2X the family of all non-empty
finite subsets of X and the family of all subsets of X and we denote by \A\ the cardinal
number of the set A. All topological spaces are assumed to be Hausdorff unless specified
otherwise, for the simplicity of our discussion.

In the last few years, many papers have been devoted to proving the existence
of fixed points for set-valued mappings in nonlinear analysis without traditional linear
structures. As a result, several generalisations of convexity notions such as hypercon-
vex metric spaces, if-spaces, G-convex spaces have been introduced and studied by
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Aronszajn and Panitchpakdi [1], Bardaro and Ceppitelli [3], Bielawaski [4], Horvath
[14, 15, 16], Park [20, 21], Park and Kim [23], Tarafadr [28], Tarafdar and Watson
[29], Wu [30] and others. Recently, in order to cover general economic models with-
out linear convex structures, Park and Kim [23] introduced another abstract convexity
notion-called a G-convex space, which includes many abstract convexity notions such
as H-convex spaces as special cases. Formally we recall the following definition which
was essentially given by Park and Kim [23].

DEFINITION 1.1: A generalised convex space, or say, a G-convex space (X,D;T)
consists of a topological space X, a non-empty subset D of X and a function
T : T(X) -¥ X \ {0} such that (1): for each A € T{X) with \A\ = n + 1, there
exists a continuous function <J>A : A n —> T(A) such that <J>A(&J) C F(J) for each
0 ^ J C { 0 , 1 , . . . , n } , where A = {xo,xi,...,xn}, and A j denotes the face of An

corresponding to the sub-index of J in {0 ,1 ,2 , . . . , n } ; and (2): A subset C of the
G-convex space (X, D; F) is said to be G-convex if for each A € F{D), TA C C for all
AcC.

For the convenience of our discussion, we also denote T(A) by TA or Fjv if there is
no confusion for A = {xo, x\,xz,..., xn} € F{X), where N is the set of all indices for
the set A, that is, N = {0 ,1 ,2 , . . . , n). A space X is said to have a G-convex structure
if and only of X is a G-convex space. By Theorem 1 of Horvath [15], it is clear that the
notion of G-convex spaces includes corresponding if-spaces (see its definition below)
as a special class, which, in turn, includes topological vector spaces as special cases.
In order to establish our fixed point theorem, we now introduce another notion called
locally G-convex which include locally if-convex spaces, hyperconvex metric spaces
(their definitions will be given shortly), and locally convex spaces as special cases.

DEFINITION 1.2: A G-convex X is said to be a locally G-convex space if X is a
uniform topological space with uniformity U which has an open base /? := {Vj : i € /}
of symmetric entourages such that for each V e /?, the set V(x) := {y 6 X : (y, x) e V}
is a G-convex set for each x e X.

2. FIXED POINT THEOREMS IN LOCALLY G-CONVEX SPACES

In this section, we shall establish fixed point theorem for upper semicontinuous set-
valued mappings with non-empty closed and acyclic values in locally G-convex spaces.

Recall that a non-empty space is said to be acyclic if all of its reduced Cech homol-
ogy groups over the rationals vanish. In particular, any contractible space is acyclic,
and thus any non-empty convex or star-shaped set is acyclic. Let X and Y be two
topological spaces. We recall that a set-valued mapping F : X -¥ 2Y is said to have
transfer open inversed values, if X = \J int(F~1(y)), where int(F~1(j/)) denotes the
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relative interior of the set F~1(y) := {x £ X : y £ F(x)} for each y £ Y in X; and
F is said to be upper semicontinuous if the set {x £ X : F(x) C U} is open for each
open set U in Y. When Y is a G-convex space, the mapping T : X —> 2Y is said to
have G-convex values if T(x) is a G-convex set for each x £ X.

We first have the following selection result for a set-valued mapping with transfer
open inversed values, which includes the corresponding result from Tarafdar [27, Lemma
2.2] as a special case.

LEMMA 2 . 1 . Let Y be a compact topological space and X be a G-convex space.
Suppose T : Y —> 2X \ {0} is an open inverse valued mapping with G-convex values-
Then there exist some positive integer n £ N and two single-valued continuous map-
pings </> : An -» X and ip : Y -* An such that the mapping f : Y —> X defined by
f(y) := 0(V(?/)) for each x £ Y is a continuous selection ofT, that is, f(y) £ T(y) for
all y £ Y, where An is the standard n-dimensional simplex with vertices eo, e\,..., en.

PROOF: Since Y is compact and T has open inversed values, it follows that Y has
a finite open cover {Oi : i = 0,1,... ,n}, where Oi C int[F~1(xi)) for some X{ £ X.
Let A = {xo,x\,... ,xn}. Suppose {f/'t}"=o ' s a partition of unity corresponding to
the finite covering {Oi : i = 0 ,1 , . . . , n} , that is, ipi(y) > 0 and Ei^j(j/) = 1 and
if tpi{y) > 0, then y £ Oi. Set J{y) := {i £ I : tpi(y) > 0} for each y £ Y.
Then for each i £ J{y), it follows that y £ Oi C T~1(xi), so that xt £ T(y). This
means A n T(x) ^ 0 for all x € X. Secondly, the mapping tp : Y —> An defined

n

by ip(y) '•= 2^»(2/)et f°r e a c n ?/ € y is continuous. Since X is a G-convex space,
«=o

there exists a continuous mapping cf> : An —> FA such that cj>(Aj) c F j for each
non-empty finite subset J in {0 ,1 , . . . ,n} . Then the mapping / : Y -> X defined by

f(y) := 4>(ip(y)) for each y € y , is continuous. Since T{y) is G-convex, it follows that

}{y) : = 4>ty{y)) C 0(AJ ( y ) ) C r J ( y ) C T(y) for each y e Y (as r J ( y ) C T{y)), that

is, /(y) € T(y) for each y G Y, and this completes the proof. D

Before establishing our fixed point theorem, we also recall the following result
which is Lemma 2.1 of Park et al [22] from the Lefschetz-type fixed point theorem for
composites of acyclic maps due to Gorniewicz and Granas [11] and [12].

LEMMA 2 . 2 . Let An be a standard n-dimensional simplex with the Euclidean
topology and Y be a compact topological space. Let ip : Y -> An be a single-valued
continuous mapping and T : An —>• 2Y be a set-valued upper semicontinuous mapping
with non-empty compact acyclic (for example, contractible) values. Then there exists
x0 £ An such that xo £ ipoT(x0), where ipoT denotes the composition of the mapping
T with tp.

We now prove the following fixed point theorem in locally G-convex spaces. This is
a generalisation of the Fan-Glicksberg type fixed point theorems for upper semicontin-
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uous set-valued mappings with non-empty closed acyclic values given in several places
(for example, see Kirk and Shin [18], Park [20, 2 1 , 22, 23], Tarafdar [27, 28, 29], Wu
[30] and others in locally convex spaces).

THEOREM 2 . 1 . Let X be a compact locally G-convex space and F :. X -s- 2X

be an upper semicontinuous set-valued mappings with non-empty closed acyclic values.

Then F has a fixed point, that is, there exists x0 € X such that XQ € F(xo).

PROOF: Since (X, FA) is a locally Hausdorff G-convex space, X has a uniform
structure U and without loss of generality, suppose V := {Vi : i £E / } is a symmetric
and open base family for the uniform structure U. Then for each base Vi and x 6
X, the set Vj(x) -.- {y e X : (y,x) € Vi} = {y € X : (x,y) € V,} is an open
G-convex set, and f]Vi — A = {(x,x) : x e X}. For each Vi, we define a set-

valued mapping T{ : X -s- 2X by Ti{x) := {y € X : (y,x) € Vi} - Vi(x) for each
x € X. Then it is clear Ti is a set-valued mapping from X to X with non-empty
G-convex values and (J i n t ^ " 1 ^ ) ) C X by the fact that for each y € X, the set

T'^y) = {x € X : (x,y) € Vt} is open in X, so that int(Tr1^)) = T'^y). By
Lemma 2.1, there exist some positive integer n e N and two (single-valued) continuous
mappings <fc : An -> X and <j>i : X —> A n such that fi(x) := gi(4>i(x)) € Ti(x) for
each x € X, where A n is a standard n-dimensional simplex. Now we define another
set-valued mapping Pi : An —¥ 2X by Pi{x) :— F(gi(x)) for each x e A n . Then
Pi is an upper semicontinuous set-valued mapping with non-empty closed and acyclic
values. By Lemma 2.2, the mapping ^ o P j : A n —> 2 A " has a fixed point, that is,
there exists uV{ € An such that uVi € <j>i(Pi(uVi)j. Then there exists xV{ 6 Pi(uVi) —

Fygi(uVi)j C X and uVi = (j>i(xVi). Let yVi = gi(uVi) = gi(^>i{xVi)j = fi(xVi) €

Ti(xVi). Thus xVi € F(yVi), that is, (xVi,yv.) € GraphF and (ar^.j/uj € Vj, where

Graph F denotes the graph of the mapping F. Since X x X is compact, we may

assume that {xVi, yVi}iei converges to (xo, yo) • Note that F is an upper semicontinuous

mapping with non-empty closed values, it follows that the graph Graph F of F is

closed and thus (xo,yo) 6 Graph F, that is, y0 E F(x0). In order to finish the proof,

it suffices to show that XQ — yo. Since {Vi : i 6 / } is an open symmetric base family

for the uniform structure U and limi g/ (xVi,yVi) — (zo,2/o)> without loss of generality,

there exists Vo e {Vi : i € / } such that (xVj,x0) € Vj and (yVj, J/o) € V, for all

Vj € {Vi : i € / } with V) C Vo. Now for any U £ {V{ : i € 1} with U C Vo, let

Vu e {Vi : i € / } with Vu C Vo be such that Vu o Vu o Vu C U. Since (xVu, yVu) € Vu,

it follows that (xo,j/«u) € Vu o Vu and thus (xO)yo) C Vu o Vu o Vu C U. Therefore

we have show that (xo,yo) € U for all U e {V, : i e 1} with U C Vo. Note that

: U e V, and £/ C Vo} = fl{Vi : t e / } = A. This implies that x0 = yo and thus
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Xo is a fixed point of F. This completes the proof. D

For a given set X, we recall that a pair (X, {TA}) is said to be an if-space (called

c-space by Horvath [15]) according to Bardaro and Ceppitelli [3] (motivated by earlier

work of Horvath [14]) if X is a topological space and {TA}Ae?(X) a given family of

non-empty contractible subsets TA of X, indexed by A € T{X), such that TA C FB

whenever A C B. Let (X, {TA}) be an if-space. A non-empty subset D of X is said

to be //-convex (called an F-set by Horvath [15]) if TA c D for each A e T(D)

We also recall that an if-space is said to be a locally H-convex space in Tarafdar

[28] (also called lower convex-spa.ce by Horvath [15]) if X is a uniform topological space

with uniformity U which has an open base 0 :— {Vi : i € / } of symmetric entourages

such that for each V € (3, the set V(S) := {x e X : (y,x) e V for some y e 5} is

an if-convex set for each H-convex set 5 of X. From the notion of if-convex sets, it

is clear that each H-convex set is also an G-convex set, but the converse is not true.

Recently, Wu [30] introduced another notion called locally convex if-spaces which are

a slight generalisation of Horvath's notion of locally convex-spaces and the concept of

locally if-convexity given by Tarafdar [28] as follows.

DEFINITION 2.1: An H-space X is said to be a locally convex H-space if X is a

uniform topological space with uniformity U which has an open base /? := {Vi : i £ /}

of symmetric entourages such that for each V € /?, the set V(x) :— {y € X : (y, x) £ V}

is an if-convex set for each x € X.

It is clear each locally convex if-space is a locally G-convex space. Note that if

X is a compact convex subset of a locally convex Hausdorff topological vector space

E and let TA •= co{A) for each A 6 T{X). Then {X,TA) is a locally convex if-

space. Thus Theorem 2.1 is really a generalisation of the celebrated Fan-Glicksberg

fixed point theorem for upper semicontinuous set-valued mappings with non-empty

closed and acyclic (for example, contractible) values in both locally convex H-spaces,

locally convex spaces (locally H-convex spaces) and locally convex topological vector

spaces. Theorem 2.1 shows that Theorem 2.1 of Tarafdar [28] is true when the mapping

F is only upper semicontinous. Theorem 2.1 also extends Theorem 3.2 of Tarafdar and

Watson [29] and the corresponding Fan-Glicksberg type fixed point theorems given by

Wu [30] to locally G-convex spaces which include locally ff-convex space and locally

convex if-spaces as special classes. For example, as special cases of Theorem 2.1 we

have the following generalisations of Fan-Glicksberg type fixed point theorems in both

locally convex H-spaces and locally convex Hausdorff topological vector spaces (for

example, see also Wu [30], Park [20, 21, 22, 23] and related references there, Fan [7]

and Glicksberg [9] and others).

COROLLARY 2 . 2 . Let X be a compact locally convex H-space and F : X -> 2X
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be an upper semicontinuous set-valued mapping with non-empty closed acyclic values.
Then F has a fixed point XQ € X.

COROLLARY 2 . 3 . Let X be a compact convex subset of a Hausdorff locally
convex topological vector space and F : X -» 2X be an upper semicontinuous set-
valued mapping with non-empty closed acyclic (for example, convex) values. Then F
has a fixed point XQ € X.

COROLLARY 2 . 4 . Let X be a compact convex subset of a Hausdorff locally
convex topological vector space and F : X —)• 2X be an upper semicontinuous set-valued
mapping with non-empty closed convex values. Then F has a fixed point XQ 6 X.

In order to discuss the Fan-Glicksberg fixed point theorem in hyperconvex metric
spaces for upper semicontinuous set-valued mappings, we recall the following definition
of a hyperconvex metric space due to Aronszajn and Panitchpakdi [1].

DEFINITION 2.2: A metric space (X, d) is said to be a hyperconvex space if for any
collection of points {xa} of X and any collection {ra} of non-negative real numbers
with d(xa,xp) < ra +r@, we have f)B(xa,ra) ^ 0, where B(x,r) denotes the closed

a
ball centred at x € X with the radius r.

The relationship between hyperconvex metric spaces and nonexpansive mappings
is an important one as shown independently by the work of Sine [25] and Soardi [26].
Hyperconvex metric spaces have been used widely and many interesting results for non-
expansive mappings have been established in the framework of hyperconvex structures,
for example, see Baillon [2], Goebel and Kirk [10], Khamsi [17], Since [24, 25] and
others. Since a hyperconvex space is a nonexpansive retract of any metric space in
which it is embedded (for example, see [1], Lacey [19] or Khamsi [17]) and since any
metric space can be embedded in a Banach space, it follows that any hperconvex metric
space is contractible. Note that if {5(j/j,rj)}i 7 is any collection of closed balls in
a hyperconvex space, then |~) B(yi,ri) itself is a hyperconvex space. Therefore for a

.6/
hyperconvex space (Y, d), the set (~) B(yi,n) is contractible, or empty. For any non-

i€l

empty finite subset A € T{Y), the admissible set of A (called the ball hull of A by
Sine in [25]) defined by TA := f]{B(y,r) : A C B{y,r)} defines an if-structure in Y

and thus each hyperconvex metric space (Y, d) is an i?-space with the if-structure TA

given by the ball hull.
If a locally H-convex space is a metric space, an equivalent definition has been

given by Horvath [15] (where it is called a locally convex metric space) as follows.

DEFINITION 2.3: Let the metric space (Y, TA) be an H-sp&ce with the metric d,
where TA is defined as above for each A £ F{Y). Then Y is said to be a locally
i/-convex space if for each r > 0, the set [y € Y : d{y,E) < r} is H-convex for each
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H-convex set E in Y, and also all open balls are H-convex.

Each hyperconvex metric space is a complete local H-convex space as shown by
the following result, which was first given by Horvath [16]; and for the convenience of
readers, we include his proof here.

LEMMA 2 . 3 . Each hyperconvex metric space (Y, d) is a complete locally metri-
cally convex H-space (and thus (Y, d) is a locally G-convex space).

PROOF: By following Horvath [16], for each y £Y, F{y) — {y} which, of course,
is an H-convex set. We have to show that for any 77-convex set E and any r > 0,
the set {y € Y : d(y,e) < r } is an H-con\ex set. Let yo,---,Vn € Y such that
d(yi,E) < r and j/o G ^{yi,--,yn} > *na*' ^s> Vo belongs to any closed ball containing
{j/i,-•-i J/n}- We want to show that d(yo,E) < r. Take any points y\,...,yn € E
such that d(yi,yi) < r for i = l , . . . , n . Since F,~ ^ , c E, it suffices to show

that d(yo,T& ~n }) < r . By the definition of T ^ ^ , T{~ ? n } = R ^ K , ^ ) ,

where (u{,ri) e Y x R+. Choose r' 6 (0, r) such that d(yi,yi) < r' for i = 1 , . . . ,n .
As {£i, . . . , j?n} C Bi{ui,ri) for i G / , it follows that {j / i , . . . ,yn} C B(ui,ri + r)
for i e / and yo € H 5(u i , r j + r ' ) . By Sine's Lemma in [25, p.864], there exists

a retraction R : f) B(ui,ri + r') —> f] B(ui,ri) such that d(y,R(y)) < r' for any

y £ C\B{ui,n + r'). Then R(y0) e T - - . and d(yo,R{yo)) < r' < r. This

completes the proof. U

By Lemma 2.3 and Theorem 2.1, we have the following fixed point result in hyper-
convex metric spaces.

COROLLARY 2 . 5 . Let X be a compact admissible set in a hyperconvex metric
space M and F : X -» 2X be an upper semicontinuous set-valued mapping with
non-empty closed acyclic values. Then F has a fixed point XQ S X.

In their paper [18, p.180], Kirk and Shin prove a fixed point theorem for continuous
set-valued mappings and they ask whether their result remains true under the assump-
tion that the mapping is upper semicontinuous rather than continuous. Corollary 2.5
shows that their result holds for upper semicontinuous set-valued mappings.
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