© Canadian Mathematical Society 2017

Additive Maps on Units of Rings

Tamer Koşan, Serap Sahinkaya, and Yiqiang Zhou

Abstract

Let R be a ring. A map $f: R \rightarrow R$ is additive if $f(a+b)=f(a)+f(b)$ for all elements a and b of R. Here, a map $f: R \rightarrow R$ is called unit-additive if $f(u+v)=f(u)+f(v)$ for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of $\mathbb{M}_{n}(F)$ is additive for all $n \geq 2$, this paper is about the question of when every unit-additive map of a ring is additive. It is proved that every unit-additive map of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to \mathbb{Z}_{2} or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R. Consequently, for any semilocal ring R, every unit-additive map of $\mathbb{M}_{n}(R)$ is additive for all $n \geq 2$. These results are further extended to rings R such that $R / J(R)$ is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if $f(u v)=f(u) f(v)$ for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.

1 Introduction

Let R be a ring. A map $f: R \rightarrow R$ is called additive if $f(a+b)=f(a)+f(b)$ for all elements a and b of R. In 2012, Franca [1] observed that an additive map of the matrix ring $\mathbb{M}_{n}(F)$ over a field F is completely determined by its action on certain subsets (e.g., the subset consisting of invertible matrices) of the ring $\mathbb{M}_{n}(F)$. In [11], Xu, Pei, and Yi proved that, for any field F and any $n>1$, every unit-additive map of $\mathbb{M}_{n}(F)$ is additive. Here, a map $f: R \rightarrow R$ is called unit-additive if $f(u+v)=f(u)+f(v)$ for all units u and v of R. This motivates us to consider the question of when every unit-additive map of a ring is additive. In this paper, we first determine the semilocal rings R such that every unit-additive map of R is additive by proving that every unit-additive map of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to \mathbb{Z}_{2} or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R. Consequently, for any semilocal ring R, every unit-additive map of $\mathbb{M}_{n}(R)$ is additive for all $n \geq 2$. This largely extends the main result in [11]. These results are further extended to rings R such that $R / J(R)$ is a direct product of exchange rings with primitive factors Artinian. We also consider a related notion: a map $f: R \rightarrow R$ is called unit-homomorphic if $f(u+v)=f(u)+f(v)$ and $f(u v)=f(u) f(v)$ for all units u and v of R. As an application, we address the question of when every unit-homomorphic map of a ring is an endomorphism.

Throughout, rings are associative with identity. The Jacobson radical and the set of units of a ring R are denoted by $J(R)$ and $U(R)$, respectively. The $n \times n$ matrix ring

[^0]over R is denoted by $\mathbb{M}_{n}(R)$. As usual, \mathbb{Z}_{n} denotes the ring of integers modulo n. A ring R is called semilocal if $R / J(R)$ is a semisimple Artinian ring.

2 Semilocal Rings

Definition 2.1 A map $f: R \rightarrow R$ is called a unit-additive map if f is additive on units of R, i.e., $f(u+v)=f(u)+f(v)$ for all $u, v \in U(R)$.

Notation 2.2 For $a, b \in R$, we write $a \rightsquigarrow b$ (or $a \stackrel{u}{\leadsto} b$, to emphasize the element u) if $a-u, b-u \in U(R)$ for some $u \in U(R)$.

Lemma 2.3 Let f be a unit-additive map of R. If $a \in R$ and $u \in U(R)$ with $-a \leftrightarrow u$, then $f(a+u)=f(a)+f(u)$.

Proof As $-a \leftrightarrow u$, there exists $v \in U(R)$ such that $a+v, u-v \in U(R)$. So

$$
\begin{aligned}
f(a+u) & =f((a+v)+(u-v))=f(a+v)+f(u-v) \\
& =f(a+v)+f(u)+f(-v)=[f(a+v)+f(-v)]+f(u) \\
& =f((a+v)-v)+f(u)=f(a)+f(u)
\end{aligned}
$$

The following observation is the key step in the proof of [11, Theorem 4.1].
Lemma 2.4 If $1 \rightsquigarrow x$ for all $x \in R$, then every unit-additive map of R is additive.
Proof First, we show that $f(a+v)=f(a)+f(v)$ for any $a \in R$ and $v \in U(R)$. In fact, by our assumption, $1 \stackrel{w}{\rightsquigarrow}-v^{-1} a$ for some $w \in U(R)$, so $-a^{v w} \rightsquigarrow v$. So $f(a+v)=f(a)+f(v)$ by Lemma 2.3

Now let $a, b \in R$. We can write $b=u+v$ with $u, v \in U(R)$. Then

$$
\begin{aligned}
f(a+b) & =f((a+u)+v)=f(a+u)+f(v) \\
& =f(a)+f(u)+f(v) \\
& =f(a)+f(u+v)=f(a)+f(b)
\end{aligned}
$$

Next, we determine the semilocal rings R such that $1 \rightsquigarrow x$ for all $x \in R$. A ring R is said to satisfy the Goodearl-Menal condition if for any $a, b \in R$, there exists $u \in U(R)$ such that $a-u, b-u^{-1} \in U(R)$. The equivalence (iii) \Leftrightarrow (iv) in the next lemma belongs to [6].

Lemma 2.5 Let R be a semilocal ring. The following are equivalent:
(i) $1 \leftrightarrow$ a for all $a \in R$;
(ii) $u \leftrightarrow$ a for all $a \in R$ and all $u \in U(R)$;
(iii) R satisfies the Goodearl-Menal condition;
(iv) R has no factor ring isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{3} or $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$.

Proof (i) \Rightarrow (iv). In $\mathbb{Z}_{2}, 1 «<1$. In $\mathbb{Z}_{3}, 1\left\langle\gg \underset{U}{2}\right.$. In $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right), I_{2}\left\langle\psi A\right.$, where $A=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$. To see this, assume on the contrary that $I_{2} \leadsto A$, where U is a unit of $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. Write
$U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. It follows that $U, I_{2}-U, A-U$ all have determinant 1 . That is,

$$
a d+b c=1, \quad(1+a)(1+d)+b c=1, \quad a d+(1+b) c=1
$$

It follows that $c=0, a d=1$, and $a+d=1$. This is certainly impossible. Hence, none of $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ satisfies (i). As condition (i) is inherited by factor rings, (i) implies (iv).
(iii) \Leftrightarrow (iv). This is [6, Theorem 2.2].
(iii) \Rightarrow (i). Let $a \in R$. By (iii), there exists $u \in U(R)$ such that $a-u, 1-u^{-1} \in U(R)$. It follows that $1 \stackrel{u}{\leftrightarrow} a$.
(ii) \Rightarrow (i). This is obvious.
(i) \Rightarrow (ii). Let $u \in U(R)$ and $a \in R$. By (i), $1 \stackrel{v}{\rightsquigarrow} u^{-1} a$ for some $v \in U(R)$, so $u \stackrel{u v}{\leftrightarrow} a$.

A ring R is said to satisfy the 2 -sum property if every element of R is a sum of two units. One can quickly show that a direct product of rings satisfies the 2 -sum property if and only if every direct summand satisfies the 2-sum property, and that a ring R satisfies the 2 -sum property if and only if so does $R / J(R)$ (see [2]). On the other hand, Wolfson [10] and Zelinsky [12], independently, showed that the ring of linear transformations of a vector space V over a division ring D satisfies the 2 -sum property, except for $\operatorname{dim}(V)=1$ and $D=\mathbb{Z}_{2}$. Thus, we have the following lemma.

Lemma 2.6 A semilocal ring satisfies the 2-sum property if and only if no image of R is isomorphic to \mathbb{Z}_{2}.

Lemma 2.7 Suppose that R satisfies the 2-sum property. If f is a unit-additive map of R, then $f(0)=0$ and $f(-a)=-f(a)$ for all $a \in R$.

Proof Write $1=u+v$ where u, v are units of R. Then

$$
\begin{aligned}
f(1) & =f(u+v)=f(u)+f(v)=f(1-v)+f(1-u) \\
& =f(1)+f(-v)+f(1)+f(-u)
\end{aligned}
$$

and so

$$
0=f(-v)+f(-u)+f(1)=f(-v-u)+f(1)=f(-1)+f(1)=f(0)
$$

For $w \in U(R)$, we have $0=f(w-w)=f(w)+f(-w)$, so $f(-w)=-f(w)$. Now let $a \in R$, and write $a=u+v$ where $u, v \in U(R)$. Then

$$
f(-a)=f(-u-v)=f(-u)+f(-v)=-f(u)-f(v)=-(f(u)+f(v))=-f(a)
$$

Theorem 2.8 Suppose that \mathbb{Z}_{2} is a homomorphic image of R. Then every unit-additive map of R is additive if and only if $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (\Leftarrow) Let f be a unit-additive map of R. For $x \in J(R), 1+x \in U(R)$, so $f(x)=$ $f(1+x)+f(1)$, i.e., $f(1+x)=f(1)+f(x)$. Now let $a, b \in R$. As $R=J(R) \cup(1+J(R))$, we verify that f is additive in three cases.

Case 1: $a, b \in J(R)$. Then

$$
\begin{aligned}
f(a+b) & =f((1+a)+(1+b))=f(1+a)+f(1+b) \\
& =f(1)+f(a)+f(1)+f(b)=f(a)+f(b) .
\end{aligned}
$$

Case 2: $a \in J(R)$ and $b \in 1+J(R)$. Write $b=1+y$ with $y \in J(R)$. So $f(a+y)=$ $f(a)+f(y)$ by case 1 . Thus,

$$
\begin{aligned}
f(a+b) & =f(1+(a+y))=f(1)+f(a+y) \\
& =f(1)+f(a)+f(y)=f(a)+[f(1)+f(y)] \\
& =f(a)+f(1+y)=f(a)+f(b) .
\end{aligned}
$$

Case 3: $a, b \in 1+J(R)$. Then $f(a+b)=f(a)+f(b)$ as f is unit-additive.
(\Rightarrow) By the hypothesis, $R / I \cong \mathbb{Z}_{2}$ for an ideal I of R. If $I=0$, then $R=\mathbb{Z}_{2}$. Hence, we can assume that $I \neq 0$.

We next show that $I=J(R)$. Assume on the contrary that $I \neq J(R)$. Then $1+I \neq$ $U(R)$. Note that $R=I \cup(1+I)$. Define $f: R \rightarrow R$ by $f(x)=2$ for $x \in I, f(1+x)=1$ for $x \in I$ with $1+x \in U(R)$, and $f(1+x)=2$ for $x \in I$ with $1+x \notin U(R)$. Then, for $u, v \in U(R), u=1+x$, and $v=1+y$, where $x, y \in I$, so

$$
f(u+v)=f(2+x+y)=2=1+1=f(1+x)+f(1+y)=f(u)+f(v) .
$$

That is, f is a unit-additive map of R. As $1+I \neq U(R)$, there exists $z \in I$ such that $1+z \notin U(R)$. Thus, $f(1+z)=2 \neq 1+2=f(1)+f(z)$, so f is not additive. This contradiction shows that $I=J(R)$. It remains to show that $2=0$ in R. Note that $R=J(R) \cup(1+J(R))$. Define $f: R \rightarrow R$ by $f(x)=2$ and $f(1+x)=1$ for $x \in J(R)$. Then for $u, v \in J(R), u=1+x$, and $v=1+y$, where $x, y \in J(R)$, so $f(u+v)=$ $f(2+x+y)=2=1+1=f(u)+f(v)$. Hence, f is a unit-additive map of R, so is additive. Thus, $1=f(1)=f(1+0)=f(1)+f(0)=1+2$, so $2=0$ follows.

The following definition is a key ingredient needed.
Definition 2.9 A ring R is said to satisfy condition (*) if, for any $a \in R$ and any $b \in U(R)$, there exist units u, v such that $a+b-u, a+v, b-u-v \in U(R)$.

Obviously, a ring with ($*$) satisfies the 2 -sum property.
Lemma 2.10 If a ring R satisfies (*), then every unit-additive map f of R is additive.
Proof We first show that $f(a+b)=f(a)+f(b)$ for any $a \in R$ and any $b \in U(R)$. By the hypothesis, there exist units u, v such that $a+b-u, a+v, b-u-v \in U(R)$. Then by Lemma 2.7 ,

$$
\begin{aligned}
f(a+b)-f(a)-f(b) & =f(a+b)+f(-a)+f(-b) \\
& =f((a+b-u)+u)+f((-a-v)+v)+f(-b) \\
& =f(a+b-u)+f(u)+f(-a-v)+f(v)+f(-b) \\
& =[f(a+b-u)+f(-a-v)]+f(u)+f(v)+f(-b) \\
& =f(b-u-v)+f(u)+f(v)+f(-b)
\end{aligned}
$$

$$
\begin{aligned}
& =[f(b-u-v)+f(-b)]+f(u)+f(v) \\
& =f(-u-v)+f(u)+f(v) \\
& =f(-u)+f(-v)+f(u)+f(v) \\
& =[f(-u)+f(u)]+[f(-v)+f(v)] \\
& =f(0)+f(0)=0+0=0 .
\end{aligned}
$$

So $f(a+b)=f(a)+f(b)$.
Now let $x, y \in R$, and write $y=u+v$ where u, v are units of R. Then

$$
f(x+y)=f(x+u+v)=f(x+u)+f(v)=f(x)+f(u)+f(v)=f(x)+f(y)
$$

So f is additive.
Lemma 2.11 (i) A ring R satisfies ($*$) if and only if $R / J(R)$ satisfies $(*)$.
(ii) A ring direct product ΠR_{i} satisfies ($*$) if and only if each R_{i} satisfies (*).

Proof (i) (\Rightarrow) Let $x \in R / J(R)$ and $y \in U(R / J(R))$. Write $x=\bar{a}$ and $y=\bar{b}$. Then $a \in R$ and $b \in U(R)$. By the hypothesis, there exist $u, v \in U(R)$ such that $a+b-u, a+$ $v, b-u-v \in U(R)$. Thus, $\bar{u}, \bar{v}, x+y-\bar{u}, x+\bar{v}, y-\bar{u}-\bar{v} \in U(R / J(R))$.
(\Leftarrow) Let $a \in R$ and $b \in U(R)$. Then $\bar{a} \in R / J(R)$ and $\bar{b} \in U(R / J(R))$. By the hypothesis, there exist $\bar{u}, \bar{b} \in U(R / J(R))$ such that $\bar{a}+\bar{b}-\bar{u}, \bar{a}+\bar{v}, \bar{b}-\bar{u}-\bar{v} \in U(R / J(R))$. Thus, $u, v, a+b-u, a+v, b-u-v \in U(R)$.
(ii) This is easily seen.

We point out a needed fact about the ring $R:=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$: for any non-unit a in R and any unit u in R, either $a \rightsquigarrow u$ or $a+u \in U(R)$. For example, let $a=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$. We have

$$
\begin{gathered}
U(R)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\}, \text { and } \\
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { with } u=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { with } u=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { with } u=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { with } u=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \in U(R), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \in U(R),
\end{gathered}
$$

The following observation is crucial to proving our main result.
Lemma 2.12 Let R be a semilocal ring. Then R satisfies (*) if and only if R satisfies the 2-sum property.

Proof We just need to show the sufficiency. Because of Lemmas 2.6 and 2.11 we can assume that R is a simple Artinian ring not isomorphic to \mathbb{Z}_{2}. We verify that, for any $a \in R$ and any $b \in U(R)$, there exist $u, v \in U(R)$ such that $a+b-u, a+v, b-u-v \in$ $U(R)$. We proceed with three cases.

Case 1: $R=\mathbb{Z}_{3}$. If $a=0$, take $u=2 b$ and $v=b$. If $a \neq 0$, take $u=b$ and $v=a$.
Case 2: $R=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. First assume that a is not a unit. Then either $a+b \in U(R)$ or $a \leftrightarrow b$. If $a+b \in U(R)$, write $a+b=x+y$ with units x and y, and take $u=x$ and $v=b$. If $a \rightsquigarrow b$, write $a=c+d$ and $b=c+d^{\prime}$ with units c, d, d^{\prime} and take $u=d$ and $v=d$.

If a is a unit, write $a=x+y$ with units x and y, and take $u=b$ and $v=x$.
Case 3: R is not isomorphic to \mathbb{Z}_{3} and $\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$. Then by Lemma 2.5 - $a \leftrightarrow b$. Write $-a=c-d$ and $b=c+d^{\prime}$ with units c, d, d^{\prime} and take $u=d$ and $v=-d$.

Now we are ready to present the main result in this section.
Theorem 2.13 Let R be a semilocal ring. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (i) \Rightarrow (ii) This follows from Theorem 2.8
(ii) \Rightarrow (i) In view of Theorem 2.8 we can assume that R has no image isomorphic to \mathbb{Z}_{2}. So, by Lemma $2.6 R$ satisfies the 2 -sum property. Hence, R satisfies (*) by Lemma 2.12, and so (i) holds by Lemma 2.10

Corollary 2.14 If R is a semilocal ring, then every unit-additive map of $\mathbb{M}_{n}(R)$ is additive for all $n \geq 2$.

Proof If R is semilocal and $n \geq 2$, then $\mathbb{M}_{n}(R)$ is a semilocal ring with no image isomorphic to \mathbb{Z}_{2}. So the Corollary follows from Theorem 2.13 .

3 Exchange Rings with Primitive Factors Artinian

In this section, we extend Theorem 2.13 and Corollary 2.14 to a larger class of rings. For an ideal $K \triangleleft R$ and $a \in R$, let $\bar{a}=a+K \in R / K$, and so the notation $\left(\overline{a_{i j}}\right) \in \mathbb{M}_{n}(R / K)$ means that $\left(\overline{a_{i j}}\right)=\left(a_{i j}+K\right)$.

Lemma 3.1 Let $\left\{K_{\lambda}\right\}$ be a chain of ideals of a ring R, and $K=\cup_{\lambda} K_{\lambda}$. If $\left(\overline{a_{i j}}\right) \in$ $\mathbb{M}_{n}(R / K)$ is a unit, then $\left(\overline{a_{i j}}\right) \in \mathbb{M}_{n}\left(R / K_{\lambda}\right)$ is a unit for some λ.

Proof Assume that $\left(\overline{a_{i j}}\right) \in \mathbb{M}_{n}(R / K)$ is a unit. Then there exists $\left(\overline{b_{i j}}\right) \in \mathbb{M}_{n}(R / K)$ such that

$$
\left(\overline{a_{i j}}\right)\left(\overline{b_{i j}}\right)=\left(\overline{b_{i j}}\right)\left(\overline{a_{i j}}\right)=\operatorname{diag}\{\overline{1}, \overline{1}, \ldots, \overline{1}\}
$$

Thus, $\left(a_{i j}\right)\left(b_{i j}\right)-I_{n}$ and $\left(b_{i j}\right)\left(a_{i j}\right)-I_{n}$ are in $\mathbb{M}_{n}(K)$. Because $\left\{K_{\lambda}\right\}$ is a chain, there exists some K_{λ} such that $\left(a_{i j}\right)\left(b_{i j}\right)-I_{n}$ and $\left(b_{i j}\right)\left(a_{i j}\right)-I_{n}$ are in $\mathbb{M}_{n}\left(K_{\lambda}\right)$. Hence,

$$
\left(\overline{a_{i j}}\right)\left(\overline{b_{i j}}\right)=\left(\overline{b_{i j}}\right)\left(\overline{a_{i j}}\right)=\operatorname{diag}\{\overline{1}, \overline{1}, \ldots, \overline{1}\}
$$

in $\mathbb{M}_{n}\left(R / K_{\lambda}\right)$. So, $\left(\overline{a_{i j}}\right) \in \mathbb{M}_{n}\left(R / K_{\lambda}\right)$ is a unit.
The notion of an exchange ring was introduced by Warfield [9] via the exchange property of modules. By Goodearl-Warfield [4] or Nicholson [8], a ring R is an exchange ring if and only if for each $a \in R$ there exists $e^{2}=e \in R$ such that $e \in a R$ and
$1-e \in(1-a) R$. Every semiprimitive exchange ring is an I-ring (i.e., every nonzero right ideal contains a nonzero idempotent), and the class of exchange rings is closed under homomorphic images.

Lemma 3.2 Let R be an exchange ring with primitive factors Artinian. The following are equivalent:
(i) R satisfies ($*$);
(ii) R satisfies the 2-sum property;
(iii) R has no homomorphic images isomorphic to \mathbb{Z}_{2}.

Proof $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow($ iii $)$ These are clear.
(iii) \Rightarrow (i) For convenience, for $a \in R$ and $b \in U(R)$ we say that a, b satisfy (*) if there exist units u, v such that $a+b-u, a+v, b-u-v \in U(R)$; otherwise, we say that a, b do not satisfy $(*)$.

Assume on the contrary that R does not satisfy $(*)$. Then there exist $x \in R$ and $y \in U(R)$ such that x, y do not satisfy $(*)$. Thus,

$$
\mathcal{F}=\{I \triangleleft R: \bar{x}, \bar{y} \in R / I \text { do not satisfy }(*)\}
$$

is not empty. For a chain $\left\{I_{\lambda}\right\}$ of elements of \mathcal{F}, let $I=\cup_{\lambda} I_{\lambda}$. Then I is an ideal of R. Assume that $\bar{x}, \bar{y} \in R / I$ satisfy $(*)$. Then there exist units \bar{u}, \bar{v} in R / I such that

$$
\bar{a}+\bar{b}-\bar{u}, \bar{a}+\bar{v}, \bar{b}-\bar{u}-\bar{v} \in U(R / I)
$$

Thus, by Lemma 3.1 \bar{u}, \bar{v} and $\bar{a}+\bar{b}-\bar{u}, \bar{a}+\bar{v}, \bar{b}-\bar{u}-\bar{v}$ all are units in R / I_{λ} for some λ. So $\bar{x}, \bar{y} \in R / I_{\alpha}$ satisfy $(*)$. This contradiction shows that $I \in \mathcal{F}$. So \mathcal{F} is an inductive set. By Zorn's Lemma, \mathcal{F} has a maximal element, say I. Because every unit of $(R / I) / J(R / I)$ is lifted to a unit of R / I, the maximality of I implies that $J(R / I)=0$.

We next show that R / I is an indecomposable ring. In fact, if R / I is a decomposable ring, then there exist ideals I_{1}, I_{2} of R such that $I \varsubsetneqq I_{i} \varsubsetneqq R(i=1,2)$ and

$$
R / I \cong R / I_{1} \oplus R / I_{2} \quad \text { via } \quad r+I \longmapsto\left(r+I_{1}, r+I_{2}\right) .
$$

By the maximality of $I, \bar{x}, \bar{y} \in R / I_{i}$ satisfy $(*)$ for $i=1,2$. So, there exist $u+I_{1}, v+I_{1} \in$ $U\left(R / I_{1}\right)$ and $u^{\prime}+I_{2}, v^{\prime}+I_{2} \in U\left(R / I_{2}\right)$ such that

$$
\begin{aligned}
& \left(x+I_{1}\right)+\left(y+I_{1}\right)-\left(u+I_{1}\right) \\
& \left(x+I_{1}\right)+\left(v+I_{1}\right) \\
& \left(y+I_{1}\right)-\left(u+I_{1}\right)-\left(v+I_{1}\right)
\end{aligned}
$$

are units of R / I_{1}, and

$$
\begin{aligned}
& \left(x+I_{2}\right)+\left(y+I_{2}\right)-\left(u^{\prime}+I_{2}\right) \\
& \left(x+I_{2}\right)+\left(v^{\prime}+I_{2}\right) \\
& \left(y+I_{2}\right)-\left(u^{\prime}+I_{2}\right)-\left(v^{\prime}+I_{2}\right)
\end{aligned}
$$

are units of R / I_{2}. Thus,

$$
\begin{aligned}
& \left(u+I_{1}, u^{\prime}+I_{2}\right) \\
& \left(v+I_{1}, v^{\prime}+I_{2}\right) \\
& \left(x+I_{1}, x+I_{2}\right)+\left(y+I_{1}, y+I_{2}\right)-\left(u+I_{1}, u^{\prime}+I_{2}\right), \\
& \left(x+I_{1}, x+I_{2}\right)+\left(v+I_{1}, v^{\prime}+I_{2}\right) \\
& \left(y+I_{1}, y+I_{2}\right)-\left(u+I_{1}, u^{\prime}+I_{2}\right)-\left(v+I_{1}, v^{\prime}+I_{2}\right)
\end{aligned}
$$

all are units of $R / I_{1} \oplus R / I_{2}$. This shows that $\left(x+I_{1}, x+I_{2}\right),\left(y+I_{1}, y+I_{2}\right) \in R / I_{1} \oplus R / I_{2}$ satisfy $(*)$. Hence, because of the ring isomorphism above, $\bar{x}, \bar{y} \in R / I$ satisfy $(*)$. This contradiction shows that R / I is indecomposable.

Thus, R / I is a semiprimitive indecomposable ring that is an exchange ring with primitive factors Artinian. Now by Menal [7, Lemma 1], R / I is a simple Artinian ring. Because R has no homomorphic images isomorphic to $\mathbb{Z}_{2}, R / I \nsubseteq \mathbb{Z}_{2}$. Hence, by Zelinsky [12. Theorem], R / I satisfies the 2 -sum property. Hence, R / I satisfies ($*$) by Lemma 2.12, contradicting that $I \in \mathcal{F}$.

A ring is a clean ring if each of its elements is a sum of an idempotent and a unit. It is well known that every clean ring is an exchange ring.

Corollary 3.3 If R is a clean ring with primitive factors Artinian, and if $2 \in U(R)$, then every unit-additive map of R is additive.

Proof If $a \in R$ and $\frac{1}{2}(1+a)=e+u, e^{2}=e$, and $u \in U(R)$, then $a=(2 e-1)+2 u$ is a sum of two units (in fact $2 e-1$ is an involution). So, by Lemma3.2, every unit-additive map of R is additive.

Theorem 3.4 Let R be a ring such that $R / J(R)$ is a direct product of exchange rings with primitive factors Artinian. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (i) \Rightarrow (ii) This is by Theorem 2.8
(ii) \Rightarrow (i) First, by Theorem 2.8 we can assume that R has no homomorphic images isomorphic to \mathbb{Z}_{2}. Second, by Lemma 2.10 it suffices to show that R satisfies $(*)$. So, by Lemma $2.11(\mathrm{i})$, we can assume that $J(R)=0$, and hence R is a direct product of exchange rings with primitive factors Artinian. Thus, by Lemma 2.11(ii), we can further assume that R is an exchange ring with primitive factors Artinian. As R has no homomorphic images isomorphic to \mathbb{Z}_{2}, R satisfies ($*$) by Lemma 3.2 .

Corollary 3.5 Let R be an exchange ring with primitive factors Artinian. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Corollary 3.6 Let R be a ring such that $R / J(R)$ is a direct product of simple Artinian rings. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

A ring R is called right self-injective if every R-homomorphism from a right ideal of R into R can be extended to an R-homomorphism from R to R. A ring R is called strongly π-regular if, for each $a \in R, a^{n} \in R a^{n+1} \cap a^{n+1} R$ for some positive integer n. Every one-sided perfect ring (in particular, one-sided Artinian ring) is strongly π regular. A von Neumann regular ring in which every idempotent is central is called a strongly regular ring.

Corollary 3.7 Let R be a ring such that $R / J(R)$ is right self-injective strongly π regular. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (i) \Rightarrow (ii) This follows from Theorem 2.8
$($ ii $) \Rightarrow$ (i) By [5, Theorem], R is a finite direct product of matrix rings over strongly regular rings. So the equivalences follow from Theorem 3.4 .

We recall some notions from [3, pp. 111-115]. A ring R is called directly finite if $a b=1$ in R implies $b a=1$ for all $a, b \in R$. An idempotent e in a regular ring R is called an abelian idempotent if the ring $e R e$ is abelian. An idempotent e in a regular right self-injective ring is called a faithful idempotent if 0 is the only central idempotent orthogonal to e. A regular right self-injective ring is of Type I_{f} if it is directly finite and it contains a faithful abelian idempotent.

Corollary 3.8 Let R be a ring such that $R / J(R)$ is a regular right self-injective ring of Type I_{f}. The following are equivalent:
(i) every unit-additive map of R is additive;
(ii) R has no image isomorphic to \mathbb{Z}_{2}, or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof By [3. Theorem 10.24], R is a direct product of matrix rings over strongly regular rings. So the equivalences follow from Theorem 3.4 .

Corollary 3.8 motivates the following question, which we have been unable to answer.

Question 3.9 Does Corollary 3.8 still hold for a right self-injective ring R?

4 Applications

Here, we consider a notion related to a unit-additive map.
Definition 4.1 A map $f: R \rightarrow R$ is called unit-homomorphic if $f(u+v)=f(u)+f(v)$ and $f(u v)=f(u) f(v)$ for all $u, v \in U(R)$.

The question concerned is: for which rings R is every unit-homomorphic map of R an endomorphism?

Example 4.2 Let $R=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, e=(1,0)$ and $e^{\prime}=(0,1)$.
Define $f: R \rightarrow R$ by $f(1)=e$ and $f(a)=0$ for $1 \neq a \in R$. Then f is unithomomorphic. Moreover, f preserves multiplication. Because $f(1+e)=0 \neq e=$ $f(1)+f(e), f$ is not additive.

Define $g: R \rightarrow R$ by $g(0)=0, g(1)=e, g(e)=1, g\left(e^{\prime}\right)=e^{\prime}$. Then g is unithomomorphic. Moreover, g preserves addition. Because $g\left(e e^{\prime}\right)=g(0)=0 \neq e^{\prime}=$ $g(e) g\left(e^{\prime}\right), g$ does not preserve multiplication.

Theorem 4.3 Suppose that \mathbb{Z}_{2} is a homomorphic image of R. Then every unit-homomorphic map of R is an endomorphism if and only if $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (\Leftarrow) Let $f: R \rightarrow R$ be a unit-homomorphic map. Then f is additive by Theorem 2.8 It remains to show that $f(a b)=f(a) f(b)$ for $a, b \in R$.

As $R / J(R) \cong \mathbb{Z}_{2}, R=J(R) \cup(1+J(R))$. If $a, b \in 1+J(R)$, then $f(a b)=f(a) f(b)$ as f is unit-homomorphic. If $a, b \in J(R)$, then

$$
\begin{aligned}
f(a b) & =f((1+(1+a))(1+(1+b)))=f(1+(1+a)+(1+b)+(1+a)(1+b)) \\
& =f(1)+f(1+a)+f(1+b)+f((1+a)(1+b)) \\
& =f(1) f(1)+f(1+a) f(1)+f(1) f(1+b)+f(1+a) f(1+b) \\
& =[f(1)+f(1+a)][f(1)+f(1+b)]=f(a) f(b) .
\end{aligned}
$$

If one of a, b is in $J(R)$ and the other is in $1+J(R)$, say $a \in J(R)$ and $b \in 1+J(R)$, then

$$
\begin{aligned}
f(a b) & =f((1+(1+a)) b)=f(b+(1+a) b) \\
& =f(b)+f((1+a) b)=f(1) f(b)+f(1+a) f(b) \\
& =[f(1)+f(1+a)] f(b)=f(a) f(b) .
\end{aligned}
$$

(\Rightarrow) Assume that $R / I \cong \mathbb{Z}_{2}$ for an ideal I of R. Then $J(R) \subseteq I$, and $U(R) \subseteq 1+I$ as $R=I \cup(1+I)$. If $I=0$, then $R=\mathbb{Z}_{2}$, so we are done. Hence, we can assume that $I \neq 0$.

Assume on the contrary that $J(R) \varsubsetneqq I$. Then $U(R) \varsubsetneqq 1+I$. Define $f: R \rightarrow R$ by $f(x)=2$ for $x \in I, f(1+x)=1$ for $x \in I$ with $1+x \in U(R)$, and $f(1+x)=2$ for $x \in I$ with $1+x \notin U(R)$. Then for $u, v \in U(R), u=1+x$ and $v=1+y$ where $x, y \in I$, so we have

$$
\begin{aligned}
f(u+v) & =f(2+x+y)=2=1+1=f(1+x)+f(1+y)=f(u)+f(v) \\
f(u v) & =f(1+x+y+x y)=1=f(1+x) f(1+y)=f(u) f(v) .
\end{aligned}
$$

That is, f is a unit-homomorphic map of R. As $U(R) \varsubsetneqq 1+I$, there exists $z \in I$ such that $1+z \notin U(R)$. Thus, $f(1+z)=2 \neq 1+2=f(1)+f(z)$, so f is not additive. This contradiction shows that $I=J(R)$. It remains to show that $2=0$ in R. Note $R=J(R) \cup(1+J(R))$. Define $f: R \rightarrow R$ by $f(x)=2$ and $f(1+x)=1$ for $x \in J(R)$.

Then for $u, v \in J(R), u=1+x$ and $v=1+y$ where $x, y \in J(R)$, so

$$
\begin{aligned}
f(u+v) & =f(2+x+y)=2=1+1=f(u)+f(v), \\
f(u v) & =f(1+x+y+x y)=1=f(u) f(v) .
\end{aligned}
$$

Hence, f is a unit-homomorphic map of R, so is an endomorphism. Thus,

$$
1=f(1)=f(1+0)=f(1)+f(0)=1+2
$$

so $2=0$ follows.
Theorem 4.4 Let R be a ring such that $R / J(R)$ is a direct product of exchange rings with primitive factors Artinian. Then every unit-homomorphic map of R is an endomorphism if and only if either R has no homomorphic images isomorphic to \mathbb{Z}_{2} or $R / J(R) \cong \mathbb{Z}_{2}$ with $2=0$ in R.

Proof (\Rightarrow) This follows from Theorem 4.3
(\Leftarrow) Let $f: R \rightarrow R$ be a unit-homomorphic map. Then f is additive by Theorem 3.4 It remains to show that $f(a b)=f(a) f(b)$ for $a, b \in R$.

By Theorem 4.3 we can assume that R has no image isomorphic to \mathbb{Z}_{2}. Let $R / J(R)$ be the direct product of rings $\left\{R_{\alpha}\right\}$, where each R_{α} is an exchange ring with primitive factors Artinian. Then each R_{α} has no homomorphic images isomorphic to \mathbb{Z}_{2}, and hence it satisfies the 2 -sum property by Lemma 3.2 It follows that $R / J(R)$, and hence R satisfies the 2-sum property. Write $a=u+v$ and $b=w+t$ where $u, v, w, t \in U(R)$. Then

$$
\begin{aligned}
f(a b) & =f(u w+u t+v w+v t)=f(u w)+f(u t)+f(v w)+f(v t) \\
& =f(u) f(w)+f(u) f(t)+f(v) f(w)+f(v) f(t) \\
& =f(u)[f(w)+f(t)]+f(v)[f(w)+f(t)] \\
& =[f(u)+f(v)][f(w)+f(t)]=f(a) f(b) .
\end{aligned}
$$

Corollary 4.5 If R is a ring such that $R / J(R)$ is a direct product of exchange rings with primitive factors Artinian, then every unit-homomorphic map of $\mathbb{M}_{n}(R)$ is an endomorphism for all $n \geq 2$.

Proof Write $R / J(R)=\prod R_{\alpha}$, where each R_{α} is an exchange ring with primitive factors Artinian, and let $S=\mathbb{M}_{n}(R)$. Then $S / J(S) \cong \mathbb{M}_{n}(R / J(R)) \cong \Pi \mathbb{M}_{n}\left(R_{\alpha}\right)$, where each $\mathbb{M}_{n}\left(R_{\alpha}\right)$ is an exchange ring with primitive factors Artinian. As S has no homomorphic images isomorphic to \mathbb{Z}_{2}, every unit-homomorphic map of S is an endomorphism by Theorem 4.4

Corollary 4.6 If R is an exchange ring with primitive factors Artinian or a semilocal ring, then every unit-homomorphic map of $\mathbb{M}_{n}(R)$ is an endomorphism for all $n \geq 2$.

Acknowledgments The authors thank the referee for valuable comments and suggestions. S. Sahinkaya acknowledges TUBITAK for granting her a Post-doc fellowship for visiting Memorial University of Newfoundland. Y. Zhou thanks TUBITAK for supporting his visit to the Gebze Technical University.

References

[1] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition. Linear Algebra Appl. 437(2012), no. 1, 388-391. http://dx.doi.org/10.1016/j.laa.2012.02.018
[2] B. Goldsmith, S. Pabst, and A. Scot, Unit sum numbers of rings and modules. Quart. J. Math. Oxford Ser. (2) 49(1998), no. 195, 331-344. http://dx.doi.org/10.1093/qmathj/49.3.331
[3] K. R. Goodearl, Von Neumann regular rings. Second ed., Krieger Publishing Company, Malabar, FL, 1991.
[4] K. R. Goodearl and R. B. Warfield, Jr., Algebras over zero-dimensional rings. Math. Ann. 223(1976), no. 2, 157-168. http://dx.doi.org/10.1007/BF01360879
[5] H. Hirano and J. K. Park, On self-injective strongly π-regular rings. Comm. Algebra 21(1993), no. 1, 85-91. http://dx.doi.org/10.1080/00927879208824552
[6] C. Li, L. Wang, and Y. Zhou, On rings with the Goodearl-Menal condition. Comm. Algebra 40(2012), no. 12, 4679-4692. http://dx.doi.org/10.1080/00927872.2011.618856
[7] P. Menal, On π-regular rings whose primitive factor rings are Artinian. J. Pure Appl. Algebra 20(1981), no. 1, 71-78. http://dx.doi.org/10.1016/0022-4049(81)90049-9
[8] W. K. Nicholson, Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229(1977), 269-278. http://dx.doi.org/10.1090/S0002-9947-1977-0439876-2
[9] R. B. Warfield, Jr., Exchange rings and decompositions of modules. Math. Ann. 199(1972), 31-36. http://dx.doi.org/10.1007/BF01419573
[10] K. G. Wolfson, An ideal-theoretic characterization of the ring of all linear transformations. Amer. J. Math. 75(1953), 358-386. http://dx.doi.org/10.2307/2372458
[11] X. Xu, Y. Pei, and X. Yi, Additive maps on invertible matrices. Linear Multilinear Algebra 64(2016), 1283-1294. http://dx.doi.org/10.1080/03081087.2015.1082962
[12] D. Zelinsky, Every linear transformation is sum of nonsingular ones. Proc. Amer. Math. Soc. 5(1954), 627-630. http://dx.doi.org/10.1090/S0002-9939-1954-0062728-7

Department of Mathematics, Gebze Technical University, Gebze/Kocaeli, Turkey
e-mail: mtkosan@gtu.edu.tr ssahinkaya@gtu.edu.tr
Department of Mathematics and Statistics, Memorial University of Newfoundland, St.John's, NL A1C 5S7 e-mail: zhou@mun.ca

[^0]: Received by the editors December 19, 2016; revised March 20, 2017.
 Published electronically May 16, 2017.
 The research of author Y. Z. was supported by a Discovery Grant from NSERC of Canada.
 AMS subject classification: 15A99, 16U60, 16L30.
 Keywords: additive map, unit, 2-sum property, semilocal ring, exchange ring with primitive factors Artinian.

