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AREA AND LENGTH MAXIMA FOR UNIVALENT FUNCTIONS

SHINJI YAMASHITA

Let S be the family of functions f(z) — z + ajz* + ... which are analytic and
univalent in \z\ < 1. We find the value

max// \(z/f(z))'\3dxdy

as a function of r , 0 < r < 1. The known lower estimate of

/ " ? / _ l/<(z)l|dz|

is improved. Relations with the growth theorem are considered and the radius of
univalence of f(z)/z is discussed.

For g analytic in D — {\z\ < 1}, we set

\g'{z)\ dxdy, 0 < r < 1, z = x -f iy.

We call g Dirichlet-finite if A(l,g) < cx>. Let S be the family of functions

(1) f{z) = z +
n=2

which are analytic and univalent in D and set

As a consequence of the celebrated de Branges theorem: \an\ < n (n > 2) for / £ 5,
(see [1]) we have immediately

n=l n=l

where K(z) = «/(l — z) is the Koebe function. Therefore

max A(r, Ff) = 2nr2 (r2 + 2) (l - r2) ~*
f€S

for 0 < r < 1. For each r, 0 < r < 1, the maximum is attained only by the rotations
of the Koebe function: Ke{z) — e~ieK{eiez) , where 0 is real. We first prove:
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436 Shinji Yamashita [2]

THEOREM 1. We have

max A(r, 1/Ff) = 2*r2 (r2 + 2) for 0 < r ^ 1.

For each r, 0 < r ^ 1, the maximum is attained only by Kg 's.

PROOF: Given / E S , we can apply the area theorem [3, p.29] to

n=l

to obtain

(2)
n = l

Since 1/-F/G0 = 1 ~ atz + z2 6»*"+ 1 ' z e D>
n=l

it follows from (2), together with |a2| ^ 2 , that

7T-1 A(r, 1/Ff) = K | 2 r2 + 2r4 V 2~\n + 1) |6n|
n = l

< 4r2 + 2r4 £ > l&« f «; 2r2 (r2 + 2).
n=l

Since A(r, 1/Fxa) = 2irr2(r2 + 2 ) , we now have the identity. If the maximum is
attained by / , then |a21 = 2 , so that / = Kg for some 0. U

It follows that A(l, 1/Ff) ^ 6n. This shows that each function / G 5 is the
quotient of two functions, z and 1/Ff(z), both of which are bounded and Dirichlet-
finite in D\ see estimate (6) for the bound |1/.F/| ^ 4.

Each / G 5 maps {\z\ — r} onto a curve of length

L(r,f) = r f2'\f(r^)\di (0 < r < 1).
Jo

It is known that, for 0 < r < 1,

(3) 2-17rr(l + r)(l - r)~2 < L(r, K) ^ sup L(r, / ) ;
/es

see [2, Theorem 2] and [3, p.39]. Now, as another application of the de Branges theorem
we have

(4) ma*A(r,/) = A(r,K) = 7rr2(r4 + 4r2 + l )( l - r2)~\

for 0 < r < 1. The maximum is attained only by Kg's.

We improve (3) in
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THEOREM 2 . For 0 < r < 1 we Aave

(5) 27rr(r4 + 4r2 + l)1 / 2( l - r 2)"2 ^ L(r,K) < supL(r,f).
/6S

PROOF: This is a consequence of the expression of A(r, K) in (4), without appeal-
ing to the expression of L[r,K) in terms of elliptic integrals (see [2]). We only apply
to K the isoperimetric inequality:

A(r,/) < 7r{i(r,/)/(27r)}2 for / G 5,

which says that, of all rectifiable Jordan curves with the given perimeter L(r, / ) ,
(0 < r < 1), the circle has interior of maximum area. D

Since
inf (r4 + 4r2 + l)1 / 2 ( l + r)'* = V&/S > 1/4,

0 < r < l V I \ I 1 1 1

estimate (5) is better than (3).
We recall that

for / € S and 0 < r < 1 [3, p.40]. Estimate (5) now yields

r) ^ supi(r, / ) ^ 7(r).
fS

Note that f(r) is the length of the boundary circle of 8T = {\z\ < r(l — r)~2}.
We recall the growth theorem for / € 5:

(6) (l + M)- a < |JF>(*) |£( l - |* | ) - 2 , zeD;

see [3, p.33]. The image f({\z\ < r})(f G 5) is contained in the disc ST with area
TIT2(1 - r)"4 and

is at most:

( r 4 + 4 r 2 + l ) ( l + r ) - 4 , 0 < r < l ,

which decreases from 1 to 3/8 as r increases from 0 to 1. Therefore, one may say
that the upper estimate of (6) becomes "worse" as r increases because / ({ | z | < r})
occupies only a small part of 6r in area. We next assume that Ff is nonconstant.
The Riemann surface $ r ( $ * , respectively) which is the image of {|z| < r } by Ff

(1/Ff, respectively), by (6), has projection contained in the disc with centre 0 and
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radius (1 — r)~ ((1 + r ) , respectively). The "sheet-number" of the covering surface
$ r ( $ * , respectively) over this disc:

A(r, * » / { i r ( l - r ) - 4 } ( A ( r , l/F,)/{n(l + r)% respectively)

is at most 2r2(r2 + 2)(1 + r)~4 which increases from 0 to 3/8 as r increases from 0 to
1. In this sense (6) yields little information on the distribution of the values of F/(z)
(1/Ff(z), respectively), for \z\ < r.

Let C be the family of all / € S such that f(D) is convex. With the aid of the
coefficient estimate [3, p.45, Corollary] we have

maxA(r, Ff) = nr2(1 - r)~2, 0 < r < 1.

For each r, 0 < r < 1, the maximum is attained only by Jg(z) = z/(l — ex6z) , z £ D,

6 real. A natural conjecture is that

Trr2, 0 < r < 1,

where the maximum is attained only by Jg 's.

REMARK. If a2 = 0 in (1) for / 6 S, then F'f(0) = a2 — 0, so that Ff is not univalent
in any disc with centre 0. To consider the case a2 ^ 0, we first note that the function

= -log (1 - x2) + (3*2 - 2x4)(l - x2)
-2

increases from 0 to +oo as x increases from 0 to 1. Therefore there exists a number
R = R(a2), 0 < R < 1, such that tp(R) = \a2\

2. We shall show that Ff is univalent in
{\z\ < R(a2)}. The expression for 1/Ff in the proof of Theorem 1 shows that

oo
- 1g(z) = {l- l/F,(*)}/o, = z - a,"1 £ bn^zn in D.

n=2

The Schwarz inequality, together with (2), yields that

n=2

1 { £ (» -1) |6n-ii2}1/2{E «'(» - ir'
n=2 n=J

https://doi.org/10.1017/S0004972700018311 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018311


[5] Univalent functions 439

By [3, p.73, Problem 24 (b)] we have that R~1g{Rz) is univalent and starlike in D.
Thus g, and hence Ff, are univalent in {\z\ < R} as we wished. We note that the
image of {|z| < R} under 1/Ff is starlike with respect to 1 also. Unfortunately we
cannot claim that R(a.2) is sharp. In fact, for the Koebe function K with 02 = 2 we
have

R{2) = 0.6823 ,

while FK is univalent in D. Finally, since \a2\ < 2 for / € S, we have R(a2) < -R(2).
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