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The Neuropathogenesis of HIV Infection:
Host-Virus Interaction and the Impact of
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ABSTRACT: Despite the availability of highly active antiretroviral therapy (HAART), primary HIV-related neurological diseases
remain major problems in HIV clinics. The present review examines the pathogenesis of HIV-related dementia and the less severe minor
cognitive and motor deficit, together with distal sensory and drug-induced toxic polyneuropathies. Abnormal host immune responses
within the nervous system and the role of viral expression and diversity are emphasized in relation to neurovirulence. Induction of innate
immune responses within the central and peripheral nervous systems, largely mediated by cells of macrophage lineage, appear to be
common to the development of primary HIV-related neurological disease. Activation of these cell types results in the release of a
cascade of inflammatory molecules including cytokines, chemokines, matrix metalloproteinases, and arachidonic acid metabolites that
influence neuronal survival. Individual viral proteins encoded by envelope and fat genes and discrete sequences within these genes
influence the extent to which these pro-inflammatory molecules are induced. At the same time, systemic immune suppression may
influence the occurrence and severity of HIV-related neurological diseases. Implementation of HAART and neuroprotective treatments
improves neurological function although the evolution of drug-resistant viral strains limits the sustained benefits of HAART.

RESUME: La neuropathognese de I'infection par le VIH: interaction hote-virus et impact du traitement. Malgré la disponibilité de la thérapie
antirétrovirale hautement efficace (HAART), les maladies neurologiques reliées a ’infection par le VIH demeurent un probleme majeur dans les
cliniques de traitement de I’infection par le VIH. Cette revue examine la pathogenese de la démence reliée au VIH et des déficits cognitifs et moteurs
de moindre importance, ainsi que les polyneuropathies sensitives distales, induites par la toxicité des médicaments. Les réponses immunitaires
anormales de 1’hote dans le systeme nerveux et le role de I’expression et de la diversité virale sont soulignés en relation avec la neurovirulence.
L’induction des réponses immunitaires innées dans le systtme nerveux central et périphérique, en grande partie médiée par les cellules de la lignée
macrophagique, semble étre commune au développement des maladies neurologiques reliées au VIH. L’activation de ces types de cellules provoque la
libération d’une cascade de molécules inflammatoires incluant des cytokines, des chemokines, des métalloprotéinases de la matrice et des métabolites
de I’acide arachidonique qui influencent la survie neuronale. Des protéines virales individuelles codées par des génes de I’enveloppe et des genes tat,
ainsi que des séquences discretes dans ces genes, influencent le niveau d’induction de ces molécules pro-inflammatoires. De plus, la suppression
immunitaire systémique peut influencer I’apparition et la sévérité de maladies neurologiques reliées au VIH. Le traittement HAART et les traitements
neuroprotecteurs améliorent la fonction neurologique, bien que 1’évolution de souches virales résistantes a la médication limite les bénéfices a long
terme du traitement HAART.

Can. J. Neurol. Sci. 2002; 29: 19-32

Over 55 million individuals, worldwide, have been infected NEUROLOGICAL ASPECTS
by the human immunodeficiency virus, type 1 (HIV-1);! greater
than 90% of those infected will develop a neurological disease.”
The development of AIDS is defined by a decline in CD4 T cell
levels below 200 cells/ul in blood, with or without an AIDS-
defining illness. This fall in CD4 cells is accompanied by
increasing viremia and opportunistic infections (Figure 1). Since

the publication of our earlier review,® the understanding and

Early in the HIV epidemic, two general categories of
neurological diseases were recognized as HIV infection
progressed to AIDS; the first group includes opportunistic
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treatment of HIV/AIDS-related neurological disorders has
advanced, particularly with the advent of highly active
antiretroviral therapy (HAART). This review highlights new
developments in HIV neuropathogenesis.
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Figure 1: Disease course in HIV infection. Following primary infection there is a rapid transient rise in
plasma viremia accompanied by a decline CD4+ lymphocyte count, which resolves over time. However,
viral replication continues throughout infection and escalates with the development of AIDS with a
concomitant drop in CD4+ cells below 200-cells/ul in blood. (After Johnson RT. Viral Infections of the
Nervous System. Lippincott-Raven Publishers, 1998, with permission from Lippincott-Raven Publishers)
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Figure 2: Neurological diseases occurring during the course of HIV infection. All levels of the neural axis
may be affected by HIV infection but the individual syndromes usually emerge depending on the level of
immune suppression. HAD, MCMD and DSP present during advanced infection.(After Johnson RT. Viral
Infections of the Nervous System. Lippincott-Raven Publishers, 1998, with permission from Lippincott-Raven
Publishers)

GBS/CIDP = Guillain-Barré syndrome/chronic inflammatory demyelinating polyneuropathy; DSP = distal
sensory polyneuropathy; HAD = HIV-related dementia; MCDC = minor cognitive and motor deficit
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Figure 3: Prevalence of neurocognitive impairment in a subset of
patients (n=150) with HIV infection, followed at the Southern Alberta
Clinic, Calgary AB. The level of immune suppression among patients
with or without neurocognitive impairment did not differ significantly.
Patients treated with HAART (HAD/MCMD-75%; ND (nondemented)-
81%) were receiving three or more antiretroviral drugs (NP+; abnormal
results on neuropsychological testing).

infections of the central nervous system (CNS), while the second
group are the primary HIV-induced syndromes. The latter
syndromes include HIV-associated dementia (HAD), minor
cognitive and motor deficit (MCMD), vacuolar myelopathy
(VM), and several peripheral neuropathies* (Figure 2). Other
neurological syndromes have emerged, particularly with the
advent of HAART including stroke-like events.

Neurocognitive impairment

Estimates of HAD prevalence rates in the pre-HAART era
range from 5-20% among patients with AIDS,> while MCMD
may affect as many as 30% of HIV/AIDS patients.® The
diagnostic criteria for both conditions have been defined in
previous reports.” Despite the wide availability of HAART, HIV-
related neurocognitive impairment is a common problem
observed in HIV clinics (Figure 3). Risk factors for HAD include
low CD4 levels, high viral loads in CSF or plasma, anemia and
extremes of age. HIV-associated dementia is characterized by
progressive motor, cognitive and behavioral abnormalities® and
displays remarkable diversity in its clinical phenotype.®'* The
course of the dementia is variable with an abrupt decline in
function over weeks among some individuals, while others
display a protracted course over several years. Prior to the
availability of HAART in 1996, the mean survival with HAD
was three to six months. Since 1996, the incidence of HAD has
diminished, but the prevalence may be rising due to longer
survival times.''> Minor cognitive and motor deficit exhibits
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many clinical aspects of HAD although the signs and symptoms
are less severe.!”® The relationship between HAD and MCMD
remains uncertain but a subset of patients progress from MCMD
to HAD.!* Radiological features accompanying HAD include
cerebral and basal ganglia atrophy and white matter
hyperintensities on MRI T2 weighted images.!>'® Recent
magnetic resonance spectroscopy studies show diminished N-
acetyl aspartate levels in brain, implying neuronal injury or loss.!”

The neuropathological hallmarks of HIV infection in the adult
include multinucleated giant cells, diffuse white matter pallor,
perivascular cuffs comprised of monocytes and lymphocytes,
microglial nodules or the presence of HIV-1 antigens.'$-?* HIV
encephalitis is defined by the presence of multinucleated giant
cells and/or the presence of viral antigens. Among HIV-infected
adults with dementia, approximately 20-80% of individuals will
display multinucleated giant cells.'®?""?? Diffuse white matter
pallor shows sparing of the U fibers and preserved myelin
proteins; deposition of serum proteins in white matter suggests
altered permeability of the blood brain barrier rather than
demyelination.?*?* These findings are complemented by studies
showing apoptotic cell death in cerebral endothelia in brains of
HIV-infected patients.?

A limited correlation exists between HAD (a clinical entity)
and HIV encephalitis (a pathological entity). Over half of adult
AIDS patients with dementia do not exhibit diffuse myelin pallor
or multinucleated giant cells at autopsy while microglial nodules
may be present in 90% of autopsied AIDS patients including
those without dementia.?®?’ A correlation between HIV antigen
abundance and HAD has been proposed.?® Other studies have
shown that macrophage and microglia activation, particularly in
the basal ganglia, is a stronger predictive marker for HIV
dementia.?® Neuronal injury and death, in the frontal cortex and
deep gray matter occurs in the brains of patients with AIDS.?%-3!
These neuronal abnormalities are likely responsible for the
phenotypic expression of HAD.

Myelopathy

HIV-associated VM affects 5-10% of AIDS-defined patients,
usually manifesting as subacute progressive gait ataxia, leg
weakness, spasticity, incontinence and may occur independently
of neurocognitive impairment.*> The incidence of VM has also
dropped with HAART to a point that it is infrequently seen in
HIV clinics except in severely immunosuppressed patients.’
The diagnosis is one of exclusion of other conditions causing
chronic myelopathy, which requires cerebrospinal fluid (CSF)
analysis and imaging studies. Autopsy studies prior to HAART
showed that 20-50% of AIDS patients exhibited axonal injury,
macrophage infiltration and activation including multinucleated
giant cells, and a vacuolar appearance that was primarily
localized in the lateral and dorsal columns of thoracic spinal
cord. The vacuolar appearance may reflect intramyelinic edema.
Approximately 25% of patients with pathologically confirmed
VM presented with antemortem symptoms or signs suggestive of
a myelopathy. Although HAART appears to reduce the incidence
of VM, limited reversal of the signs or symptoms is observed
after therapy is implemented.

Neuropathies

Despite a decline in incidence of CNS manifestations
associated with advanced HIV infection, the incidence and

21


https://doi.org/10.1017/S0317167100001682

THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES

env
HIV-1 O {1
LTR LTR
— O c—3
gag vif, env
— T | O 10
pol tat  pef
O]
1]
vpu
0 2 4 6 8 10 kb

Figure 4: Genomic structure of HIV-1 and a murine retrovirus (MuLV)
showing common genes (A). A phylogenetic tree showing clustering of
different HIV-1 gp120 sequences from different patients (numbers) that
is dependent on individual viral subtype (clade) (B). B clade viruses are
found predominantly in North America and Europe while A and D
viruses are from East Africa. Brain- (B) and spleen- (S) derived
sequences cluster within patients. Like blood-derived HIV-1, brain-
derived viruses also exhibit immense molecular heterogeneity between
patients and clades (B).

prevalence of peripheral neuropathies remains high. At present,
there are two major groups of neuropathy observed among
patients with HIV infection, which may overlap to some extent
in clinical features and occurrence.® The first group to be
recognized was the HIV-associated neuropathies such as distal
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sensory polyneuropathy (DSP), acute and chronic demyelinating
neuropathies, and mononeuritides multiplex.® Distal sensory
polyneuropathy is the most frequently encountered, affecting 35-
45% of AIDS-defined patients, and is associated with advanced
HIV infection and is usually manifested by chronic or subacute
complaints of burning foot pain, paresthesiae, dysesthesiae,
distal sensory loss with diminished or absent distal deep tendon
reflexes.*® This neuropathy may improve with HAART although
several antiretrovirals are clearly toxic to peripheral nerves. The
second group of neuropathies, frequently encountered among
treated HIV/AIDS patients, includes the toxic neuropathies
(TN), arising due to the use of antiretrovirals including
didanosine (DDI), zalcitabine (DDC), stavudine (D4T) and to a
lesser extent, lamivudine (3TC).3” The symptoms and signs of
toxic neuropathies are similar to DSP and the two entities are
frequently indistinguishable except by history of recent onset
neuropathy with initiation of a neurotoxic drug within several
months. The pathological features of DSP and TN include distal
“Wallerian” axonal degeneration of long fibers with small
diameter sensory fibers being chiefly affected. Macrophage
infiltration and activation is also frequently observed with
detection of viral protein or nucleic acid in macrophages of 30-
50% of biopsies. Similarly, inflammatory cells, including
macrophages and lymphocytes, have been reported in the dorsal
root ganglia (DRG) of AIDS patients with neuropathy, which
may be accompanied by a decrease in the number of DRG
neurons. Recent skin biopsy studies indicate a loss or
degeneration of small diameter C and Ad fibers in epidermis
among HIV/AIDS patients with and without concurrent HAART,
and fiber degeneration may precede symptoms and signs of
neuropathy.3$-3

VIROLOGICAL ASPECTS

HIV-1 belongs to the lentivirus genus of retroviruses, which
are defined by a relatively slow disease course in their natural
hosts. Other lentiviruses include visna-maedi virus, simian
(SIV), feline (FIV), and bovine (BIV) immunodeficiency
viruses, which are also neurotropic.** HIV-2, which is chiefly
found in West Africa and is genetically closely related to SIV,
exhibits less systemic virulence but is of uncertain
neurovirulence. Like all retroviruses, the HIV-1 genome is
defined by gag, pol, and env genes, but HIV also contains several
nonstructural genes that influence splicing and transcriptional
events, for a total of 10 open reading frames within
approximately 10 kilobase pairs*! (Figure 4A). Extensive
variation within different HIV-1 strains is manifested both
genotypically as well as phenotypically;*>*3 this arises from poor
fidelity during reverse transcription and recombination in the
virion between the diploid RNA molecules (Figure 4B). Viral
phenotypes have been defined in terms of cell tropism: most HIV
strains are either macrophage- or T cell-tropic but dual tropic
viruses have also been described.*** HIV-1 cell tropism is
chiefly defined by which chemokine receptor the virus uses as a
co-receptor; CXCR4 on T cells and CCRS5 receptor on
macrophages function together with the CD4, for infection;*
although viruses using CCRS5 can be isolated from T-
lymphocytes*® (Figure 5). In addition, different HIV strains have
also been defined in vitro as syncytia (SI)- or nonsyncytia-
inducing (NST).#’
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Figure 5: Potential mechanisms by which HIV-1 enters the nervous system and causes neuronal injury. Macrophages and lymphocytes, expressing
CD4 and CCRS5 or CXCR4 are infected in the periphery and subsequently traverse the blood-brain (or blood-nerve) barrier. Once in the nervous
system, other cells of macrophage/microglia lineage are infected or are induced to release potential neurotoxins including cytokines, chemokines,
matrix metalloproteinases, quinolinic acid, glutamate and nitric oxide. To a limited extent astrocytes are infected which also influence neuronal
survival. The inset shows a potential signaling pathway in macrophage/microglia involving HIVgp120 induction of MMP expression through CCR5
and subsequent activation and nuclear translocation of the transcription factor, STAT-1 (after Power C. Trends in Neurosciences 2001;24:162-165,

with permission from Elsevier Science).

NEUROPATHOGENESIS

Neurovirological infections are defined by the following
attributes: neuroinvasiveness or ability of virus to enter the
nervous system; neurotropism or ability of virus to infect brain
cells (including the selective infection of neurons, termed
neuronotropism) and neurovirulence or ability of virus to cause
nervous system disease.*® HIV-1 fulfills each of the above
criteria. Several properties that contribute to HIV’s complex
neurobiology include: (i) its predilection to genomic mutation,
(ii) its induction of both innate and adaptive immune responses
within the nervous system and (iii) its ability to cause disease
simultaneously outside the nervous system.*’

Neuroinvasion

Neuroinvasion by HIV-1 occurs early after initial (primary)
infection and has occurred in most patients by the time of death.
HIV antigens and/or genome have been detected in the brains of
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HIV-infected patients at all stages of infection.”*5? Studies of
patients who have died soon after infection of other causes
exhibit viral antigen and neuropathological findings indicative of
HIV infection.’® The mechanism by which HIV enters the CNS
has been assumed to be infection of macrophages or
lymphocytes, which cross the blood-brain barrier and infect cells
of macrophage lineage (microglia and perivascular macro-
phages) in the brain. This has been termed the “Trojan Horse”
hypothesis’* (Figure 5). An alternative pathway for entry into the
CNS includes infiltration of the choroid plexus with subsequent
seeding of the brain by infected macrophages or CD4
lymphocytes harbouring CCR5-using viral strains.>>>8

The viruses recovered from the brains of AIDS and pre-AIDS
patients are macrophage-tropic viruses in terms of viral gene
sequence analyses and in vitro cell tropism.>*®! However,
monocyte/macrophage traffic through the CNS is limited, unless
some injury or infection has occurred within the brain. Several
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chemokines, including macrophage inflammatory protein (MIP)-
la and MCP-1, show enhanced expression in the brains of HIV
infected patients suggesting that monocyte/macrophages (HIV-
infected or uninfected) may be recruited into the CNS through a
chemotactic mechanism.®? Additionally, upregulation of
adhesion molecules such as intercellular adhesion molecule on
the luminal aspect of brain endothelial cells has been
demonstrated in vivo, which may facilitate monocyte/
macrophage adherence and subsequent CNS entry.%® Free virus
may directly enter the CNS during initial plasma viremia; this
route of entry has appeal because of the high levels of
macrophage-tropic virus early in infection in the plasma and
CSF. The relationship, if any, of CSF viral subtype and quantity
to infection of the brain also remains unclear. As discussed
below, viral load in CSF may be a predictor of severity of HIV
dementia.®> How HIV enters the CNS remains a pivotal issue,
because strategies to prevent CNS entry by HIV will be of value
in preventing the development of neurological disease.

Neurotropism

HIV antigens and genome (DNA and RNA) in the brain are
found primarily in microglia and perivascular macrophages®-7
and in astrocytes, albeit less frequently.®® Infected cells are
principally localized in the central white matter and the deep
gray matter structures including the basal ganglia.® In situ
hybridization, with and without PCR, confirms the immunocyto-
chemical findings.%®7%72 To date, endothelia and oligodendro-
cytes have not been shown consistently to be infected in vivo
although in vitro studies indicate these cell types are permissive
to some strains of HIV-1.7373 The question of in vivo infection of
neurons remains controversial: Nuovo et al’”> have reported
detection of viral genome in neurons by in situ PCR and this
finding has been confirmed by at least one other group.”!
However, the preponderance of studies has failed to show viral
nucleic acids in neurons. /n vivo productive infection of neurons
has not been shown to date, despite studies showing in vitro
productive infection of neuronal cell lines.”®7

HIV infection is mediated by CD4 as the principal receptor on
lymphocytes and macrophages.*> However, CD4 expression is
comparatively low in the brain although brain-derived strains of
HIV utilize CD4 for infection. Several co-receptors have been
shown to exist on blood-derived cells such as CCRS5 on
macrophages and CXCR4 on lymphocytes.”®” Other co-
receptors have been reported,® although their roles are less well-
defined. In the brain, CCRS5 and CCR3 have been postulated as
potential co-receptors on microglia.?® Thus, HIV-1 strains
isolated from brain appear to be principally macrophage-tropic>-
61'and have also been shown to infect microglia in vitro.8'32 The
hypervariable V3 of HIV gp120 (Figure 4) derived from brain
has been shown to be critical for HIV infection of macrophages
and microglia.?># Recently, it has been demonstrated that brain-
derived HIV-1 V3 sequences mediate the use of CCR5 and
CCR3, but not CXCR4, as co-receptors.’* Repeated passages of
HIV in vitro can result in mutations in the envelope that resemble
mutations identified in brain-derived sequences, suggesting that
the virus may adapt to the brain.> How the different regions of
gp120 interact with plasma membrane receptors is uncertain but
a conformationally dependent interaction between multiple
regions of the envelope (V2, V3 and C3 regions) and the
different receptors, has been proposed.?®8” CXCR4 has also been
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demonstrated on microglia, in addition to cells such as neurons.?®
The failure of T-cell tropic (CXCR4-using) HIV-1 strains to
establish productive infection of microglia, despite the presence
of CXCR4, is enigmatic and may reflect a requirement for
interaction between multiple co-receptors for infection or
importance of replicative steps subsequent to attachment and
penetration. Nonetheless, the role of this latter co-receptor in
HIV neuropathogenesis remains intriguing because it may have
important implications in mediating neuronal injury and
death.3>% Other HIV receptors in the brain have been reported,
including galactosyl ceramide’’ and a 260Kd-astrocyte cell
membrane protein.””> Hence, the mechanisms of viral fusion and
entry into brain cells remain uncertain and may differ from blood
cells.

Cell tropism or infectivity of a retrovirus is determined by
multiple viral genes that influence events during infection,
including viral entry, reverse transcription, integration, transport
of viral proteins and genome to the cell surface and budding of
virions.*> Hence, several genes found within HIV are likely to
influence its tropism. HIV entry appears to be modulated by
different regions of gp120 that is encoded by the env gene.”>%*
Studies of other viral genes and their ability to influence
neurotropism indicate that distinct gag® and tar®® sequences may
influence neurotropism but functional confirmatory studies are
pending. Other groups using transgenic mice have shown that the
HIV-1 LTR may be important for expression in the brain.”’
Reverse transcriptase®® and env® sequences from brain, blood
and spleen cluster separately by phylogenetic analyses,
suggesting that different organs may exert selective evolutionary
pressures on viral replication and cell tropism within the organ.”

Neurovirulence

(i) Viral strains

The role of distinct lentivirus strains that do or do not cause
neurological disease has remained controversial, largely because
the immense molecular diversity within lentiviruses obscures
discrete or specific viral sequences associated with disease.
Nonetheless, evidence for virulent HIV-1 strains comes from
several sources including (1) studies showing that specific HIV-1
subtypes (clades) are associated with an accelerated disease
course compared to socio-economically and geographically-
matched patients infected with other HIV-1 clades;'® (2) the
occurrence of drug resistant viral strains that are defined by
specific mutations in the HIV-1 pol gene;!'°' (3) the use of
CXCR4 by more pathogenic blood-derived viral species instead
of CCR5 as disease progresses;'? (4) organ-specific
compartmentalization of HIV-1 quasispecies.®!%* Evidence that
individual viral strains play a direct or causative role in
lentivirus-induced brain disease is derived from studies showing
that distinct SIV and FIV strains are responsible for disease
development in animal models.!**!% Additionally, specific
sequences within the env gene have been shown to influence the
development of animal lentivirus neurological disease.!07-108

In studies of a well-characterized, prospective cohort of AIDS
patients with and without HAD, specific mutations within the
V36! and V1! domains of brain-derived HIV-1 envelope
sequences differed between AIDS patients with and without
dementia. These findings are supported by subsequent
studies.!!'%!!"! These same domains also determined the ability of
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Table 1: Potentially neurotoxic molecules implicated in HIV
neuropathogenesis

Molecules
Tat, Nef, gp41, gp120, Vpr
Macrophage factors Low molecular weight toxic factors: Ntox,

Source
Viral proteins

Quinolinic acid, glutamate

Arachidonic acid metabolites

(prostaglandins E,, F, ; thromboxane B,;
platelet activating factor)

Matrix metalloproteinases (MMP-2, MMP-7,
MMP-9, TACE) and their substrates

NO, super anion, peroxynitrite

Cytokines: TNF-a, IL-18, IL-6, IFN-a
Chemokines: MCP-1, RANTES, MIP-1a.,
SDF-1a

IFN, interferon; IL, interleukin; TNF, tumor necrosis factor; MCP-1,
monocyte chemoattractant protein-1; RANTES, regulated upon
activation normal T cell suppressed and secreted; MIP-1a, macrophage
inflammatory protein-1o; SDF, stromal derived factor

infectious recombinant clones to infect and spread in
macrophage and mixed glial cultures; but these recombinants do
not replicate in T cell analogue (HeLa/CD4) cultures.®” In
addition, conditioned media from macrophages infected with
recombinant viruses from HAD patients caused greater neuronal
death when applied to human neural cultures.'” However, other
studies have shown that T cell-tropic strains of HIV-1 induced
the highest levels of neuronal injury when tested in an in vitro
model of neuronal death, possibly through activation of CXCR4
expressed on neurons.!'? Recent studies confirm the findings that
brain-derived viruses use chiefly CCR5 and differ between
patients with and without HAD, although the region of brain
from which the virus was isolated may influence its replicative
properties. 10111

(ii) Viral proteins

There is extensive literature implicating several different
virus-encoded proteins in HIV-1 neuropathogenesis.''3 HIV-1
env-encoded gp120 has been shown to be directly and indirectly
neurotoxic in vitro and in vivo''*'16 (Table 1). Specific domains
within gpl20 have been implicated as especially
neuropathogenic, including the CD4 binding!"” and the V3
regions.!"® One proposed mechanism is the accumulation of
intracellular calcium in neurons following activation of
glutamate receptors and voltage-operated calcium channels.!!”
For example, indirect activation of the N-methyl D-aspartate
(NMDA) receptor may result in neuronal death, through binding
to the adjacent glycine receptor or increased free zinc
concentrations.'”® This binding can be blocked with several
different NMDA receptor antagonists such as memantine and
AP5.12!' Other neurotransmitters may be affected by gp120-
induced activation of NMDA receptors, such as impaired
dopamine transport shown in dopaminergic neurons cultured
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from rat midbrain.'??> Dawson et al'?® have also shown that nitric
oxide may modulate gpl120 neurotoxicity. Transgenic mice
expressing HIV-1 gp120 in astrocytes display neuropathological
findings including astrogliosis, neuronal loss, and dendritic
vacuolizations, resembling HIV encephalitis.'?* Studies of gp120
action on glial cells suggest that the protein may alter glial
function through pertubation of the Na*/H* ion transporter(s) in
astrocytes; this in turn might contribute to neuronal dysfunction
and death.'” Tt has also been shown that gpl20 affects
intracellular signaling that controls the expression of different
cell adhesion molecules, cytokines and perhaps nitric oxide
through the JAK-STAT pathway.'?® Recent studies suggest that
mutations in gpl20 may influence the induction of matrix
metalloproteinases (MMP) by mechanism involving STAT-1 in
macrophages'® (Figure 5, inset). The above in vitro and in vivo
findings support the hypothesis that gp120 is directly involved in
the pathogenesis of HIV-induced neurological injury.

Other HIV proteins including Tat, gp41, and Nef have been
shown to be neurotoxic in vitro.'?’128 The transactivating protein,
Tat, has attracted extensive attention in neuropathogenesis
studies because early studies showed it was neurotoxic, released
from infected lymphocytes, was taken up by cells and could, in
turn, transactivate host genes such as TNF-a 1% and IL-1.1% As
with gp120, several domains within faf have been found to be
especially neurotoxic including the basic region and the RGD
amino acid residues in the second exon, but other groups have
shown that the entire first exon is necessary for neurotoxicity.
Conant and colleagues have shown that Tat induces the
expression of MCP-1 in astrocytes, which may influence
macrophage trafficking in the CNS."! Our group has recently
shown that brain-derived tar sequences induce the expression of
MMP-2, which is neurotoxic in vitro and in vivo.'3?

(iii) Viral load

Many studies indicate that viral replication in blood is
extremely high in persons with HIV-1 infection and the balance
established between viral replication and clearance shown in the
viral load set point is predictive of the course of systemic
disease.'?* However, the role of viral load in brain in relation to
the development of neurological disease is less clear. Viral load
in CSF is usually several orders of magnitude less than plasma
and is correlated to some extent with the presence of HAD.'** In
addition, the source of virus in CSF may be derived from both
blood and brain.'3 Differing results depending on the method of
viral or proviral quantitation have been reported from various
groups examining the relationship between viral load in the CNS
and in the development of HIV dementia. QC-PCR studies of
brain-derived viral mRNA and proviral DNA in brain indicate no
significant difference in levels between AIDS patients with and
without HIV dementia.!3¢137 In contrast, viral protein and RNA
levels detected in CSF,'*® and viral antigen load, as detected by
immunocytochemistry in brain,?%! show elevated levels among
patients with HAD compared to nondemented AIDS controls.
Other studies suggest that CSF viral load is correlated with
neuropsychological abnormalities'>* but is one hundred-fold less
than that of plasma viral load.** Viral load in the brain measured
by immunostaining or quantitative molecular methods is closely
associated with the extent of pathological change accompanying
HIV encephalitis.'*0
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(iv) Neuroinflammation

Excess production of host-encoded inflammatory molecules
by microglia and perhaps astrocytes has been proposed as a chief
cause of damage within the brain in a number of diseases
including Alzheimer’s disease, stroke, multiple sclerosis and
HAD.'*! This hypothesis is predicated on data derived from cell
culture experiments, animal models and studies of autopsy
tissues. Among studies of HIV neuropathogenesis, this
hypothesis has gained wide popularity because microglia and
astrocytes are the principal cells infected or activated by HIV-1,
resulting in the release of inflammatory and neurotoxic
molecules (Table 1, Figure 4).

In 1990, Giulian and colleagues'* showed that HIV-infected
monocytoid cell lines secreted diffusible molecules that killed
several different neuronal cell types by a presumed excitotoxic
mechanism, mediated by NMDA receptors. Pulliam et al'* also
reported that HIV-infected macrophages produced a neurotoxic
compound(s) causing cytopathic effects in cultured cell
aggregates from human fetal brain tissue. In contrast, other
groups'#* have shown that only following direct contact with
neurons in vitro, could HIV-infected monocytes induce
neurotoxicity although a soluble neurotoxin could not be
demonstrated. Despite the controversy surrounding this area,
several potential neurotoxins have been identified and
characterized in vitro and in vivo.'¥

Multiple cytokines have been shown to be elevated in the
brains and CSF of patients with HIV dementia,'#-'4% which
include tumor necrosis factor-alpha (TNF-a), interleukin-1 (IL-
1), interleukin-6 (IL-6) and tissue growth factor-beta (TGF-f).
Although most cells in the CNS can produce cytokines, the chief
sources of these small-secreted proteins are activated glial cells
that include macrophages, microglia and astrocytes. TNF-a. is an
inflammatory cytokine that has received extensive attention for
its potential neurotoxic effects in HIV infection and ability to
influence the release of other cytokines.'* TNF-a. is released by
microglia and astrocytes '#13%n HIV infection and can prevent
uptake of glutamate'>! and may be directly toxic to neurons.'>?
Several studies have shown that TNF-oo mRNA and protein
levels are increased in the brains and CSF of patients with HIV
infection. Notably, Wesselingh et al'¥’ showed that TNF-o
mRNA levels were increased in brains of patients with HIV
dementia compared to AIDS patients without dementia or non-
infected controls; furthermore, the level of mRNA was correlated
with the severity of dementia. I1-6 has also been reported to be
increased in the brains of patients with HIV infection'4®!%% and
may mediate neurotoxicity indirectly. TGF-f and nerve growth
factor (NGF) have been reported to be overexpressed in HIV-
infected brain.'>* The latter molecules have neurotrophic
properties and, hence, their increased production may reflect a
host defense response to the neurotoxic actions of HIV.

Cells of macrophage lineage also produce arachidonic acid
and its metabolites.! Griffin et al'>® reported that prostaglandin
E, and F,  and thromboxane B, were elevated in CSF from
patients with HAD, compared to patients without dementia.
Other groups have shown elevated levels of arachidonic acid
metabolites including platelet-activating factor (PAF) in HIV-
infected macrophages although most of the products were
produced through the lipoxygenase pathway.'>” It may be that
arachidonic acid metabolites influence neurotoxicity indirectly
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by regulating the expression of glutamate uptake by astrocytes,
as has been shown in vitro.'>® Quinolinic acid (QA), a metabolite
of tryptophan metabolism, is produced by macrophages
following different types of stimulation.'> By binding to NMDA
receptors, QA has been shown to have neurotoxic properties
following acute or chronic exposure.'®® QA levels in CSF appear
to correlate with the severity of dementia.'®"!%? Increased MMP
expression has been shown in several in vitro and in vivo studies
following HIV infection'%%132163 and is associated with
neurological disease.!** Likewise, increased levels of inducible
nitric oxide synthase have been reported in the brains of patients
with severe HAD, implicating nitric oxide as a potential
neurotoxin.'®!% The inducible nitric oxide synthase levels also
correlated with the levels of HIV gp41 expression in brain.'?’ An
intriguing report described a novel neurotoxin, Ntox, which is
released by activated microglial cells, although full
characterization of the molecule is pending.'®”

With the increased understanding in the role of chemokine
receptors as co-receptors for HIV infection, a concomitant
expanding interest has developed in the actions of chemokines in
the nervous system in the context of HIV infection and other
neurological diseases.!® Several chemokines are increased in the
CSF and brains of patients with HIV infection,%2%%1%% including
MIP-1o. and MIP-1f3, regulated upon activation normal T cell
suppressed and secreted (RANTES) and inflammatory protein-
10. Other groups have shown that monocyte chemoattractant
protein-1 (MCP-1) levels are increased in the CSF and brains of
patients with HIV dementia'3! while in vitro studies suggest that
stromal derived factor-1 is neurotoxic.'3'# The exact role of these
chemokines remains uncertain because several groups have
shown that MIP-1a and RANTES are able to block gpl120-
induced neuronal death.”® Complementary studies show that
different chemokines affect calcium signaling in neurons and
demonstrate that chemokine receptors, which have shown to be
expressed on neurons, may directly influence neuronal
survival.'7

(v) Host susceptibility

Although multiple host molecules have been implicated in the
inflammatory cascade of events causing HIV-associated
neuronal and axonal injury, there have been few specific
polymorphisms or mutations identified in genes associated with
these molecules. However, the APOE E4 allele has been
associated with an increased likelihood of developing HAD in
one study'’! and a recent study suggested that a polymorphism in
TNF-o was associated with an increased risk of HAD.!”'* Two
small studies have shown that a deletion in the CCR5 gene
among heterozygotes is accompanied by a lower frequency of
HAD occurrence.!”!73 This latter finding complements other
studies showing that CCRS5 mediates both HIV infection and
intracellular signaling!™ pathways involved in inflammation.
Clinical studies have reported slower progression of systemic
disease among HIV-infection patients carrying the CCRS5
deletion.'”

(v) Neuronal damage

There is increasing interest and understanding of the
intracellular signaling pathways and mechanisms by which
neurons are damaged and/or killed during ontogeny and
disease.'”® In the context of HIV infection, these questions are
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just beginning to be addressed. Studies of autopsy tissues
indicate several distinctive patterns of neuronal loss,:177.178
including a reduction in neuronal cell body volume in the frontal
cortices of patients.!7®!8 Diminished dendritic arborization and
loss of presynaptic terminals have also been reported in the
brains of HIV-infected individuals, which may reflect a
retrograde phenomenon of white matter injury in some
instances.3! Select neuronal sub-populations, including larger
pyramidal cells within the cortex identified by stereological
methods, are at greater risk of cell death and similarly neuronal
populations defined by expression of certain neurotransmitters
such as GABA or proteins, including parvalbumin and calbindin,
are more likely to be diminished in HIV-infected brains.*
Synaptic density is diminished in patients with HIV-induced
cognitive impairment.'® In contrast, other neuronal populations
expressing neuropeptides such as somatostatin appear relatively
resistant to HIV-induced injury.'”®" In some studies, the
mechanism of cell death has been shown to be apoptotic, 8283
although this was not correlated with the occurrence of
dementia.'® However, it is unclear at present if programmed cell
death is the major mechanism of neuronal loss, nor is it apparent
the extent to which glia die during the course of HIV infection of
the brain,'® although a recent study indicated that HAD patients
with rapid progression exhibited increased levels of astrocyte
cell death.'®2 [n vitro studies have implicated different
intracellular signaling pathways in neurons as potential routes to
cell death. For example, gp120 induces apoptosis in human fetal
neurons through the activation of JNK and ERK pathways.'8
Other studies suggest that gp120, derived from a T-cell tropic
HIV strain, induced neuronal apoptosis that was mediated by p38
mitogen activated protein kinase.”® In vitro studies using HIV-1
tat indicate that the glycogen synthase kinase-3 beta and caspase
9 are also involved in neuronal death.!®” Thus, these studies
indicate that multiple pathways may determine the mechanism
and frequency of HIV-related neuronal death.

THERAPEUTIC CONSIDERATIONS

The availability of HAART has revolutionized the care of
patients with HIV infection in developed countries. Survival
times have lengthened, and both general health and quality of life
have been improved. HAART is usually comprised of three or
more antiretroviral drugs including, most often, two nucleoside
analogues and either a non-nucleoside reverse transcriptase
inhibitor or an HIV viral protease inhibitor (Table 2). Signs and
symptoms of HIV-related cognitive impairment, VM and DSP
are actually improved with HAART, although the pre-treatment
level of impairment often limits the extent of recovery.'38193 Two
main mechanisms may contribute to the improvement in
neurological disability. Direct inhibition of viral replication in
the CNS is one mechanism proposed despite the limited CNS
penetration by many antiretroviral drugs such as the large
molecule protease inhibitors. Reduced seeding of the CNS by
HIV-1 from the periphery because of reduced plasma levels of
viremia is a second mechanism.'? A third potential mechanism
includes improved systemic immune function with
accompanying enhanced regulation of macrophage function,
perhaps resulting in diminished neuroinflammation. However, in
patients with HAD the addition of a single antiretroviral
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Table 2: Therapeutics for HIV-related neurological disorders

Drug - type

A) Antiretroviral therapies:
Nucleoside analogues:
(AZT, 3TC, dT4, abacavir, DDI', DDC!) HAD/MCMD, DSP

Neurological syndrome

Protease inhibitors:
indinavir, ritonavir, nelfinavir,
lopinavir, amprenavir

HAD/MCMD, DSP

Non-nucleoside RT inhibitors:
efavirenz, nevaripine

B

~

Neuroprotective therapies:

OPC 14117 - antioxidant HAD/MCMD
nimodipine - calcium channel blocker HAD
selegiline (deprenyl) - antioxidant HAD/MCMD
lexipafant - anti-PAF HAD/MCMD
memantine > - NMDA receptor antagonist HAD
CN1189 2 - anti-TNFo. HAD

NGF - neurotrophin DSP/TN
C) Symptomatic therapies:

Gabapentin DSP/TN

Tegretol DSP/TN

Tricyclic antidepressants DSP/TN

Amantadine/L-DOPA Parkinsonism/HAD

! DDI and DDC are highly associated with the development of TN.

2 Trials in progress.

AZT = zidovudine; DDI = didanosine; DDC = zalcitabine; 3TC =
lamivudine; D4T = stavudine; RT = reverse transcriptase; PAF = platelet
activating factor

nucleoside analogue, abacavir, failed to confer any improvement
in cognition, probably due to pre-existing drug resistance
mutations.!** Antiretroviral resistance mutations in the reverse
transcriptase and protease encoding genes have been identified
in viruses from patients who show high viral loads in blood
despite HAART.!'?>!°® The extent to which these mutations are
present in the viruses found in the brains of patients treated with
antiretroviral drugs is unknown. Brain-derived viruses exhibit
fewer mutations associated with drug-resistance than matched
blood-derived HIV isolates. This may reflect poor CNS drug
penetration and/or limited replication in the brain, which would
diminish the potential for drug resistant mutations to emerge but
may also simply reflect sampling artifact.”®1%7

Neuroprotective strategies have also been employed for both
neurocognitive impairment and peripheral neuropathy in HIV-1
infection. A recent randomized clinical trial (RCT) showed that
NGF was beneficial in terms of reducing symptoms related to
DSP and TN.'”® The antioxidant, selegiline (deprenyl) has been
shown to improve neuropsychological performance in patients
with HIV-related neurocognitive impairment in a small RCT"3
and this preliminary finding has led to the design of a larger trial.
Lexipafant, an antagonist of the putative neurotoxin, PAF,
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showed a trend towards improvement in HIV-related
neurocognitive impairment in a small RCT.' Likewise, an
antioxidant, OPC-14117" and the calcium channel blocker,
nimodipine?® showed beneficial trends in small RCT. Several
trials are in progress testing compounds including a NMDA
antagonist, memantine, and a TNF-a inhibitor, CN-1189.

FUTURE ISSUES

Although the AIDS epidemic continues to expand with ever
increasing numbers of infected individuals, many important
questions remain unanswered regarding the pathogenesis and
optimal treatment of HIV-related neurological disorders. The
potential role of the brain as a protected viral reservoir for drug
resistant strains of virus or as a reservoir that can re-seed the
systemic circulation after the virus has been eradicated in other
sites is not resolved. Most HIV neuropathogenesis studies using
human samples performed to date have focused on gay males
infected with clade B viruses from North American and Europe.
The extent to which this population sample reflects the entire
spectrum of the neuropathogenesis of HIV-1 is uncertain.
Finally, the exact function(s) and regulation of the plethora of
inflammatory molecules released by macrophages infected by or
exposed to HIV have yet to be defined. This latter question is of
interest because it may provide valuable insights into the
mechanisms of neuronal injury mediated by HIV infection. At
the same time, understanding the role(s) of these inflammatory
molecules will provide clues to the pathogenesis and rational
therapy of other neurological diseases characterized by glial
activation and neuronal damage.
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