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1. The equation of the osculating plane at a point on the complete irreducible
curve of intersection of two algebraic surfaces in [3] was found by Hesse
(5, p. 283); the plane, having to contain the tangent of the curve, belongs to the
pencil spanned by the tangent planes of the two surfaces, and it is a question
of determining which plane of the pencil to choose. The equation also appears
in the books of Salmon (6, p. 378) and Baker (1, p. 206). The analogous
problem for the osculating solid at a point on the complete irreducible curve of
intersection of three algebraic primals, or threefolds, in [4] does not appear to
have been considered. The simplest instance is the octavic curve C of inter-
section of three quadrics, and this has the special interest of being a canonical
curve; moreover the quadrics are of the same order, and so can be replaced
by any three linearly independent members of the net which they determine, a
replacement of which it may be prudent to take advantage with a view to
simplifying the algebra. It is a question of determining which solid to choose
among the tangent solids to the quadrics of the net at a point on C, but while
Hesse’s methods serve to carry one a certain distance there seems no obvious
way of pushing them to a conclusion. It is then natural, with a view to reaching
a conclusion, to choose a net of quadrics that, through having some particular
property, is more amenable. So let it be supposed that all the quadrics through
C have a common self-polar simplex §. If S is the simplex of reference for
homogeneous coordinates the quadrics can be taken (4, p. 261) as

x2=0, Zax?=0, Zalx?=0, (L.1)

where summations, here and hereafter, run over j =0, 1,2, 3,4. Also, to
prevent further specialization, no two of the five numbers g; are equal.

2. If ¢ is a point on C the equation of the osculating solid, which has to
contain the tangent of C, is, for appropriate 4, u, v,

I(A+pa;+vad)éx; = 0.

Both ¢ and d¢ are on the tangent, but the osculating solid must contain d%¢
and d3¢ as well, so that

2(A+ﬂaj+ Va?,)éjdzéj = 2(}.+ﬂal+ Va?,)cjdséj = 0'
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But, by differentiating equations 1.1,
Takédé; = Zak(E;d*E;+dE%) = Zak(¢,d* ¢, +3dEd* ) =0
for k = 0, 1, 2, so that the previous pair of equations is equivalent to
Z(A+pa;+va?)dE? = T(A+pa;+vad)déd*E; =0
and the osculating solid of C at £ is
zde? Za;dé? Taldé?
Ld¢d?¢; Zajdfjdzfj Zaﬁ-déjdzéj

One has now so to order matters that no differentials appear. To this end
write

J(6) = (6—ao)(0—a,)(0—az)(0—a3)(0—a,).
Then, if 5, = Za%/f"(a)),
So=35 =85=53=0, s,=1, s5=2Za;=o0,say. .1

The equations 1.1 for the five “ unknowns > x? have a matrix of rank 3, further
specialization having been forestalled; their solutions are linearly dependent
on two of them so that, if they are all satisfied when x is &,

&3 f'(a)) = p+qa; (2.2)
with p, g arbitrary. Then
2f'(ap)¢;de; = dp+a;dg,
4f'(a;)de; = (dp+a;dg)*/(p+a;q),

Z(p+a;q)’dEi=0 by 2.1.
A second differentiation yields

2dp+a;dg)(d*p+a,diq)  (dp+adg)’

p+ayq (p+aq)’
so that, again by 2.1, Z(p+a,q)2déjd2§j = 0. If, therefore, the columns of the
determinant are multiplied by p?, 2pq, g% and then added zeros appear in the
two bottom rows: the equation of the osculating solid is Z(p +a;q)*¢;x; = 0.
The differentials have vanished; it only remains for p and ¢ to follow them.
And this they immediately do since, by 2.1 and 2.2,

so that

8f'(a )dE;d?E; =

Za3? =g, Zajti=p+qo;
the final form for the equation is
4

5 {rasti—o-anmaig] e =0

k=

https://doi.org/10.1017/50013091500027024 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027024

THE OSCULATING SOLID OF A CERTAIN CURVE IN [4] 279

3. The equation has, up to this moment, been looked upon as controlling
the freedom of x; x varies in a solid determined by the position of £ on C. But
it can be regarded, in the opposite sense, as a restriction on ¢ with x fixed; it
is then the equation of a quintic primal whose 40 intersections £ with C are the
contacts with those of its osculating solids that pass through the given point
x in [4].

Unless one is cognisant of the matters expounded on pages 199 and 200 of
(1) the number 40 is contrary to untutored expectation; one would, over
hastily as it turns out, expect the number of osculating solids of C through an
arbitrary point P to be not 40 but 80, the number of sets (7, p. 188; 2, p. 10;
8, p. 389) of a linear series g3 that have four coincident members—the g3 being
that cut on C by all solids through P. The resolution of this apparent contra-
diction must lie in the possession by C of some peculiarity, a peculiarity which
will be among those imported in specializing C so that all the quadrics through
C have S for a self-polar simplex. It is known (3, pp. 486-7) that the 40 inter-
sections of this special curve C with the bounding solids of S—eight with each of
the five solids—are stalls: places where the osculating plane has 4-point, instead
of the statutory minimal 3-point, intersection; a general canonical curve of
genus 5 has no stalls. But when an osculating plane n has 4-point intersection so
has the solid joining © to an arbitrary point P, so that the stall counts for four
among the eight intersections of this solid with C, and is among the places where
sets of g3 have quadruple members. It is the 40 such places that are not stalls
which furnish osculating solids through P,

4. The solution at the conclusion of §2 of the problem here propounded
leaves outstanding that of three quadrics whose common curve is not specialized;
still more does it that of three primals, of orders /, m, n, whose common curve
of order Imn is irreducible. The equation of the osculating solid at a point
on this last curve will contain its coordinates to degree 10(/+m+n—35), and it
remains to find it.
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