
Canad. J. Math. Vol. 58 (4), 2006 pp. 691–725

Hypoelliptic Bi-Invariant Laplacians on
Infinite Dimensional Compact Groups

A. Bendikov and L. Saloff-Coste

Abstract. On a compact connected group G, consider the infinitesimal generator −L of a central

symmetric Gaussian convolution semigroup (µt )t>0. Using appropriate notions of distribution and

smooth function spaces, we prove that L is hypoelliptic if and only if (µt )t>0 is absolutely continu-

ous with respect to Haar measure and admits a continuous density x 7→ µt (x), t > 0, such that

limt→0 t log µt (e) = 0. In particular, this condition holds if and only if any Borel measure u which is

solution of Lu = 0 in an open set Ω can be represented by a continuous function in Ω. Examples are

discussed.

1 Introduction

Let G be a compact connected group equipped with its normalized Haar measure ν.
Let (µt )t>0 be a symmetric Gaussian convolution semigroup of measures and −L

be its infinitesimal generator. The operator L can be interpreted as a second order
differential operator on G and we call such operator L a sub-Laplacian on G (sub-

Laplacians can be characterized in several different ways, see [12]). This paper is
concerned with the hypoellipticity of L under the additional assumption that L is
bi-invariant (this is equivalent to saying that (µt )t>0 is central). The notion of hy-
poellipticity must be carefully defined since several interpretations are possible in

this setting. The aim of this paper and the companion paper [12] is to introduce
and explore some of these possibilities. In finite dimension, there are (at least) two
well established theories of hypoellipticity, namely, C∞-hypoellipticity and analytic-
hypoellipticity. In the present infinite dimensional setting, there are many possible

choices to measure smoothness and it seems important from a practical viewpoint to
allow for as much flexibility as possible, as one may encounter many different types
of smooth functions.

Denote by C(G) the space of all continuous functions on G equipped with the
uniform topology. Let M(G) be the space of all Borel signed measures on G, viewed
as the dual of C(G) and equipped with the total variation norm ‖µ‖ = |µ|(G), where

µ = µ+ − µ− is the usual decomposition of µ in positive and negative parts and
|µ| = µ+ + µ−.

Recall that G is the projective limit of compact connected Lie groups [25, 27].

Denote by B(G) the set of all smooth cylindric functions on G, i.e., all Bruhat test
functions. These are smooth functions on Lie quotients of G, lifted to G. We equip
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B(G) with its natural topology [21, Définition 1] and let B ′(G) be the topological
dual of B(G), i.e., the space of Bruhat distributions on G. Given an open set Ω,

let C(Ω) be the set of all continuous functions in Ω, and let B0(Ω) be the set of all
smooth cylindric functions with support in Ω.

Let A be a vector space of elements of B ′(G). The vector space A will come
equipped with its own topology, not weaker than that of B ′(G). Assume that A

is stable by multiplication by elements of B(G). We then say that A is a space of dis-

tributions on G. One typical construction of a space of distributions is as the dual
T ′ of a test function space where a test function space is a topological space T such
that B(G) ⊂ T ⊂ C(G) and B(G) acts continuously on T by pointwise multipli-
cation. The space T ′ is equipped with the strong dual topology, i.e., the topology

of uniform convergence on bounded sets, see [20, Chapitre III]. Of course, we have
M(G) ⊂ T ′ ⊂ B ′(G) and the topology of T ′ is not weaker than that of B ′(G). More-
over, B(G) acts by multiplication on T ′. Thus T ′ is a space of distributions as defined
above.

Definition 1.1 Let P be a left invariant differential operator on G of finite order
(see definitions in Section 2.1). Let A be a fixed space of distributions. Let S be a
space of continuous functions. We say that P is A-S-hypoelliptic if, for any U ∈ A

and F ∈ B ′(G) such that

PU = F in B
′(G),

and for any open set Ω such that

∀φ ∈ B0(Ω), φF ∈ S,

we have

∀φ ∈ B0(Ω), φU ∈ S.

The larger A is, the stronger A-S-hypoellipticity is for any fixed S. Varying S leads to
possibly different, a priori not comparable, notions. Let us illustrate this definition

by some examples:

Example 1.2 Let G be a compact Lie group. Take T = S = B(G) = C∞(G),
A = T ′. The definition above reduces to the usual notion of C∞-hypoellipticity. In

this case, if P =
∑k

1 X2
i for some left invariant vector fields Xi , then P is hypoelliptic

if and only if {X1, . . . ,Xk} generates the full Lie algebra of G (Hörmander’s theorem
[28]).

Example 1.3 Let G = T
∞ = (R/2πZ)∞. Take T = C(G), S = C∞ where C∞ is the

space of continuous functions having continuous partial derivatives of all orders in
the canonical directions of the fixed product structure of T

∞. In this case, A = T ′ =

M(T
∞). In [3, §5.3], the corresponding hypoellipticity is studied for operators of the

form L = −
∑

i ai∂
2
i . There it is shown that M-C∞-hypoellipticity holds if and only

if N(s) = #{i : ai ≤ s} satisfies N(s) = o(s) as s tends to infinity.
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Remarks

(i) Note that we are not assuming that PU = F in A but only in B ′(G). This
allows us, for instance, to consider M(G)-C(G)-hypoellipticity although, of course,
for a measure U , PU is not, in general, a measure. That is, we do not need the
hypothesis that the distribution space A is stable by P.

(ii) The notion of hypoellipticity is a local property of the operator P. In the
definition above, we have chosen to localize by multiplication by functions in B(G).
This makes sense even if the space S is not stable by multiplication by such functions.

However, if S is not stable by multiplication by B(G), it might be extremely difficult
to prove hypoellipticity and also to apply the result in specific examples. We will see
in Section 5 that it is sometimes possible and preferable to use a different localization
procedure.

Definition 1.4 Let (µt )t>0 be a Gaussian semigroup on G.

• We say that (µt )t>0 has property (AC) if, for all t > 0, µt is absolutely continuous

with respect to the Haar measure ν on G.
• We say that (µt )t>0 has property (CK) if (AC) holds and, for all t > 0, µt admits a

continuous density x 7→ µt (x).
• We say that (µt )t>0 has property (CK∗) if (CK) holds and

lim
t→0

t logµt (e) = 0.

In the companion paper [12], we consider a number of different possible choices for
A and prove the following theorem.

Theorem 1.5 ( [12, Theorem 1.3]) Let G be a compact connected group. Let −L be

the infinitesimal generator of a symmetric Gaussian semigroup (µt )t>0. Let S be a space

of continuous functions whose topology is not weaker than the uniform topology.

(i) If G is not a Lie group, L is not B ′(G)-S-hypoelliptic.

(ii) If the operator L is L∞(G)-S-hypoelliptic, then the group G is locally connected

and metrizable.

(iii) The operator L is L∞(G)-C(G)-hypoelliptic if and only if (µt )t>0 satisfies (AC).

Assume in addition that (µt )t>0 is central, i.e., L is bi-invariant.

(iv) Fix 1 ≤ p < +∞. If L is Lp(G)-C(G)-hypoelliptic, then (µt )t>0 satisfies (CK∗).

The purpose of the present paper is to complete this picture in the case of bi-invariant

Laplacians and prove that property (CK∗) implies some rather strong form of hy-
poellipticity. More precisely, if (CK∗) is satisfied, there exists a space of test functions
TL such that L is T ′L-S-hypoelliptic for several natural choices of smooth function
spaces S including TL itself and C(G). As we shall see, the space TL has a very explicit

description. Functions in TL have infinitely many derivatives in certain directions
and T ′L contains many distributions that are not Borel measures. Let us state a simple
corollary of the main result of this paper and Theorem 1.5(iv) which does not require
further notation.
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Theorem 1.6 Let G be a compact connected group. Let −L be the infinitesimal gen-

erator of a symmetric central Gaussian semigroup (µt )t>0. Then L is M(G)-C(G)-

hypoelliptic if and only if (CK∗) is satisfied.

Together with the companion paper [12], the present work shows that for the bi-

invariant operators considered here, many reasonable types of hypoellipticity are
equivalent and hold if and only if (CK∗) is satisfied. That property (CK∗) is an
essential property in this setting is already apparent in previous works by the au-

thors [3, 6–8]. For instance, it is proved in [8] that the sheaf of all continuous har-
monic functions associated to L is a Brelot sheaf (i.e., satisfies Harnack’s inequality) if
and only if the corresponding central symmetric Gaussian semigroup (µt )t>0 satisfies
(CK∗). At this point the reader may wonder whether there indeed exists any central

symmetric Gaussian semigroup having property (CK∗) in infinite dimension! The
first such examples where constructed in [2, 16] on T

∞. By [8], any compact con-
nected locally connected metrizable group carries a host of such Gaussian semigroups
although this existence result is anything but obvious. On the other hand, if G is ei-

ther not metrizable or not locally connected, condition (CK∗) (or even the much
weaker condition (AC)) is never satisfied, see [9, 26].

Several approaches to hypoellipticity are available for second order sub-elliptic

differential operators in finite dimension. Most seem very difficult to adapt in the
present setting. We will follow the line of reasoning developed by Kusuoka and
Stroock [30, Section 8] for second order differential operators in R

n. The tools
used in Kusuoka–Stroock’s approach are: (1) a reasonable theory of distributions

and smooth functions spaces (readily available in finite dimension) and (2) Gaussian
estimates for the time and space derivatives of the heat kernel.

In the present setting, both (1) and (2) need to be developed before Kusuoka–
Stroock’s approach can be brought to bear. Various spaces of smooth functions are
introduced in [10, 12, 15]. The crucial spaces of distributions are introduced and
studied in [15]. Gaussian estimates for the derivatives of the density (t, x) 7→ µt (x) of

(µt )t>0 are obtained in [10] under the hypothesis that (µt )t>0 is central and satisfies
(CK∗). In fact, the main purpose of [10, 15] is to develop the material needed for
the proofs of the main results of the present paper, in particular Theorem 1.6. The
authors are grateful to D. Stroock for asking whether hypoellipticity could be studied

by the method of [30, §8] in the present infinite dimensional setting.

2 Background and Notation

2.1 Projective Structure

The following setup and notation will be in force throughout this article. Let G be
a connected compact group with neutral element e. Assume further that G is locally
connected and metrizable. By Theorem 1.5(ii), this hypothesis is no loss of generality

when studying hypoellipticity. Such a group contains a decreasing family of compact
normal subgroups Kα, α ∈ ℵ such that

⋂
α∈ℵ Kα = {e} and, for each α, Gα = G/Kα

is a Lie group. As G is metrizable, ℵ is either finite (if G is a Lie group) or countable.
Consider the projection maps πα : G → Gα and πα,β : Gβ → Gα, β ≥ α. Then G is
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the projective limit of the projective system (Gα, πα,β)β≥α.
For a compact Lie group N denote by C∞(N) the set of all smooth functions on

N . For any compact connected group G, set

(2.1) B(G) =
{

f : G → R

∣∣ f = φ ◦ πα for some α ∈ ℵ and φ ∈ C
∞(Gα)

}
.

The space B(G) is the space of Bruhat test functions introduced in [21]. The space
B(G) is the inductive limit of the topological vector spaces B(Gα) [21, p. 46]. By [21,
Lemme 1], B(G) is independent of the choice of the family (Kα)α∈ℵ.

The Lie algebra G of G is defined to be the projective limit of the Lie algebras Gα

of the groups Gα equipped with the projection maps dπα,β . Following [18, 21], we
define the notion of projective family and projective basis.

Definition 2.1 Given a descending family (Kα)α∈ℵ as above, we say that a family
(Yi)i∈I of elements of the projective Lie algebra G is:

• a projective family (w.r.t. (Kα)ℵ) if for each α ∈ ℵ there is a finite subset Iα ⊂ I

such that dπα(Yi) = 0 if i 6∈ Iα;
• a projective basis if for each α ∈ ℵ there is a finite subset Iα ⊂ I such that

dπα(Yi) = 0 if i 6∈ Iα and (dπα(Yi))i∈Iα is a basis of the Lie algebra Gα.

By [18], G does admit a projective basis. If (Yi)i∈I is a projective basis, we can

identify G with R
I as topological vector space. For any Z ∈ G, there exists a unique

a = (ai)i∈I such that for any α ∈ ℵ, dπα(Z) =
∑

i∈I aidπα(Yi) and convergence in G

is equivalent to convergence coordinate by coordinate. Since the group G is assumed
to be metrizable, projective families have at most a countable number of elements.

Given a projective family Y = (Yi)I ⊂ G, we set

Y ℓ
= Yℓ1

· · ·Yℓk

for ℓ = (ℓ1, . . . , ℓk) ∈ Ik. By definition, in any given projective basis Y = (Yi)I , a
homogeneous left invariant differential operator of degree k on G is a sum (possibly
infinite)

P =

∑

ℓ∈Ik

aℓY
ℓ, aℓ ∈ C.

One easily checks that this notion does not depend on Y . Such a P can be interpreted
as a linear operator from B(G) to B(G). Indeed, if f = φ ◦ πα ∈ B(G), we have

P f (x) =

∑

ℓ∈Ik

aℓY
ℓ f (x) =

∑

(ℓ1,ℓ2,...,ℓk)∈Ik
α

aℓ
[
dπα(Yℓ1

)dπα(Yℓ2
) · · · dπα(Yℓk

)φ
]

(πα(x))

where the right-hand side is a finite sum since Iα is finite for each α ∈ ℵ. The formal

adjoint of P is the homogeneous left invariant differential operator P∗ of the same
degree k defined by

P∗ = (−1)k
∑

ℓ∈Ik

aℓY
ℓ̌

where ℓ̌ = (ℓk, . . . , ℓ1) if ℓ = (ℓ1, . . . , ℓk). A differential operator P of finite order k is
a finite sum of homogeneous differential operators of degree at most k and its formal
adjoint P∗ is defined by linearity.
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2.2 Gaussian Semigroups and Sums of Squares

Given a Borel measure µ, define µ̌ by µ̌(A) = µ(A−1) for any Borel set A. We say that
µ is central if µ(a−1Aa) = µ(A) for any a ∈ G and any Borel subset A ⊂ G. Recall
that the convolution of two functions u, v ∈ B(G) is defined by

u ∗ v(x) =

∫

G

u(y)v(y−1x) dν(y) =

∫

G

u(xy−1)v(y) dν(y).

Accordingly, for f ∈ B(G), define the left and right convolution by a measure µ as

µ ∗ f (x) =

∫

G

f (y−1x) dµ(y), f ∗ µ(x) =

∫
f (xy−1) dµ(y).

If µ is central, i.e., µ(a−1Ba) = µ(B) for any Borel set B and any a ∈ G, then µ ∗ f =

f ∗ µ.

A convolution semigroup (µt )t>0 is a family of probability measures such that
µt ∗ µs = µt+s and µt → δe weakly as t → 0. A convolution semigroup (µt )t>0 is
symmetric if µ̌t = µt for all t > 0. It is central if µt is central for all t > 0. It is
Gaussian if

t−1µt (G \V ) → 0

as t → 0 for any neighborhood V of the identity e ∈ G. For background, see [13, 14,
26].

Given a convolution semigroup (µt )t>0, define the associated Markov semigroup
(Ht )t>0 acting on continuous functions by

(2.2) Ht f (x) =

∫

G

f (xy) dµt (y).

Thus Ht f = f ∗ µ̌t . As (Ht )t>0 is a C0-semigroup on C(G), it has an infinitesimal
generator −L. By construction, L is left invariant and Ht = e−tL. We call −L the
infinitesimal generator of (µt )t>0. This terminology may be a little misleading when
(µt )t>0 is not symmetric. Indeed, −L has a natural extension to L2 (the infinitesimal

generator of the semigroup (Ht )t>0 extended to L2). Abusing notation, call −L∗ the
adjoint of this extension. Assume that for all t > 0, µt has a continuous density
x 7→ µt (x) with respect to Haar measure. Then this density belongs to the domain of

L∗ and satisfies ∂tµt = −L∗µt , whereas

(2.3) ∂t µ̌t = −Lµ̌t .

This clearly follows from (2.2).

Using a celebrated theorem of Hunt [29] and the projective structure, Heyer and

Born [19, 26] obtained a general Lévy–Khintchin formula for L. In particular, in the
case of a Gaussian semigroup, they give the following description of L as a differential
operator. Given a (finite or) countable set I, let R

(I) be the set of all z = (zi) ∈ R
I

with finitely many non-zero entries.
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Theorem 2.2 Given a projective basis (Yi)i∈I , the infinitesimal generators of Gaus-

sian convolution semigroups on G are exactly the second order left invariant differential

operators

L = −
∑

i, j∈I

ai, jYiY j +
∑

i∈I

biYi

where b = (bi) ∈ R
I and A = (ai, j)I×I is a real symmetric non-negative matrix in the

sense that ai, j = a j,i ∈ R and ∀ ξ ∈ R
(I),

∑
ai, jξiξ j ≥ 0. Moreover, the Gaussian

semigroup is symmetric if and only if b = 0.

This theorem describes the form of the infinitesimal generator of any Gaussian semi-
group in a fixed projective basis. Based on this description, it is easy to show that if
−L is the infinitesimal generator of a symmetric Gaussian semigroup (µt )t>0, then
there are many projective families X = (Xi)i∈I which are adapted to L in the sense

that

∀ f ∈ B(G), L f = −
∑

i∈I

X2
i f .

See [7, 10, 11] for details. What such projective families have in common is that they

span a certain Hilbert space H(L) contained in G and canonically attached to L. More
precisely, define the field operator Γ to be the symmetric bilinear form

(2.4) Γ( f , g) =
1

2

(
−L( f g) + f Lg + gL f

)
, f , g ∈ B(G).

Definition 2.3 Given the generator −L of a symmetric Gaussian semigroup on G,
let H(L) be the vector space

H(L) = {Z ∈ G : ∃ c(Z), ∀ f ∈ B(G), |Z f (e)|2 ≤ c(Z)Γ( f , f )(e)}

equipped with the norm

‖Z‖L = sup
f∈B(G)

Γ( f , f )(e)≤1

{|Z f (e)|}.

It is proved in [10, 15] that the space H(L) equipped with the norm ‖Z‖L is a Hilbert
space. In fact, let X = (Xi)i∈I be a projective family extracted from a projective
basis in G such that L = −

∑
i∈I X2

i . Then Γ( f , g) =
∑

I(Xi f )(Xig) and X is an

orthonormal basis of H(L), that is,

H(L) =
{

Z =

∑

I

ζiXi :
∑

I

|ζi |
2 <∞

}
and

∥∥∥
∑

I

ζiXi

∥∥∥
2

L
=

∑
ζ2

i .
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2.3 The Spaces Ck
X, D2k

X , Sk
X and Tk

X

Any left invariant vector field Z ∈ G generates a one parameter group t 7→ etZ in G.
By definition, a function f : G 7→ R has a derivative at x in the direction of Z if

Z f (x) = lim
t→0

f (xetZ) − f (x)

t
=

d

dt
f (xetZ)

∣∣∣∣
t=0

exists. Fix a projective family X = (Xi)i∈I of G and let L = −
∑

I X2
i . Fix k, n ∈ N =

{0, 1, 2, . . .}. Consider the set

Λ(k, n) =
{
λ = (λ0, λ2, . . . , λk) : λi ∈ N,

∑
λi = n

}

of all possible ways to put n indistinguishable balls in a rack of k + 1 boxes (these are
called compositions of n into k + 1 parts). For f ∈ B(G), ℓ ∈ Ik, λ ∈ Λ(k, n), set

(2.5) Pℓ,λ f = P
ℓ,λ
X f = Lλ0 Xℓ1

Lλ1 Xℓ2
. . . Lλk−1 Xℓk

Lλk f

For any integer k and any ℓ ∈ Ik, consider the following seminorms on B(G):

Nℓ
X( f ) = ‖Xℓ f ‖∞,(2.6)

D2k
X ( f ) = sup

n≤k

‖Ln f ‖∞,(2.7)

Sk
X( f ) = sup

m≤k

∥∥∥
( ∑

ℓ∈Im

|Xℓ f |2
) 1/2∥∥∥

∞
,(2.8)

Mk
X( f ) = sup

(n,m)∈N

n+2m≤k

sup
λ∈Λ(n,m)

∥∥∥
(∑

ℓ∈In

|Pℓ,nX f |2
) 1/2∥∥∥

∞
.(2.9)

Definition 2.4 Let X be a projective family.

(i) For each k = 0, 1, 2, . . . , let Ck
X be the completion of B(G) for the system of

seminorms Nℓ, ℓ ∈ Ik.
(ii) For each k = 0, 1, 2, . . . , let D2k

X , Sk
X and Tk

X be, respectively, the completion of

B(G) for the norm D2k
X , Sk

X and Mk
X .

(iii) Set C∞X =
⋂

k∈N
Ck

X , D∞X =
⋂

k∈N
Dk

X , S∞X =
⋂

k∈N
Sk

X , T∞X =
⋂

k∈N
Tk

X ,
and equip each of these spaces with its natural system of seminorms and the
corresponding topology.

Remarks

(i) Obviously, D2k
X ( f ) depends only on X through L = −

∑
I X2

i . It is proved
in [10, 15] that the same is true for Sk

X( f ) and Mk
X( f ). Hence we will also use the

notation
D2k

L ( f ) = D2k
X ( f ), Sk

L( f ) = Sk
X( f ), Mk

L( f ) = Mk
X( f )
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and, for k = 0, 1, 2, . . . ,∞, D2k
L = D2k

X , Sk
L = Sk

X , Tk
L = Tk

X . To simplify notation, we
also set

(2.10) TL = T
∞
L .

(ii) If we view −L as the C(G)-infinitesimal generator of the semigroup (Ht )t>0

then D2k
L is the domain of the closed operator Lk.

(iii) The spaces Ck
X , Sk

X , and Tk
X , can also be described as spaces of continuous

functions with continuous derivatives of order k with respect to the family X. Each
of these spaces is an algebra for pointwise multiplication on which, for any Borel

measure µ, the convolution f 7→ µ ∗ f is a bounded operator. Note that if E ⊂ C(G)
is such that, for any projective basis Y , E ⊂ C∞Y then E ⊂ B(G). For these facts and
further properties see [10, 12, 15, 21].

We will need to linearize the seminorms involved in the definition of the spaces Sk
L

and Tk
L. For any fixed k, n, λ ∈ Λ(k, n) and a = (aℓ) ∈ ℓ2(Ik), set

(2.11) Qk
a =

∑

ℓ∈Ik

aℓX
ℓ, Qk,λ

a =

∑

ℓ∈Ik

aℓP
ℓ,λ.

The following Lemma is proved in [15].

Lemma 2.5 For any f ∈ Sk
L, any n ≤ k and any a = (aℓ) ∈ ℓ2(In) with

∑
|aℓ|

2 ≤ 1,

we have Qn
a f ∈ Sk−n

L and Sk−n
L (Qn

a f ) ≤ Sk
L( f ). Moreover,

Sk
L( f ) = sup

n≤k

sup
a∈ℓ2(In)∑

a2

ℓ≤1

{‖Qn
a f ‖∞}.

Similarly, for any f ∈ Tk
L, any n,m, λ with n + 2m ≤ k and λ ∈ Λ(n,m), we have

Qn,λ
a f ∈ T

k−n−2m
L and Mk−n−2m

L (Qn,λ
a f ) ≤ Mk

L( f ).

Moreover,

Mk
L( f ) = sup

(n,m)∈N

n+2m≤k

sup
λ∈Λ(n,m)

sup
a∈ℓ2(In)∑

a2

ℓ≤1

{‖Qn,λ
a f ‖∞}.

2.4 Bruhat Distributions

Let us denote by B ′(G) the (strong) topological dual of B(G). This is the space of

Bruhat distributions on G introduced in [21] and we refer to [21] for details. Recall
the following definitions. Let U ∈ B ′(G). The distribution Ǔ is defined by

∀φ ∈ B(G), Ǔ (φ) = U (φ̌),

where φ̌(x) = φ(x−1). Convolutions of a function f ∈ B(G) and a distribution U in
B ′(G) are defined by

[ f ∗U ](φ) = U ( f̌ ∗ φ), [U ∗ f ](φ) = U (φ ∗ f̌ ), φ ∈ B(G).
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The distributions f ∗U and U ∗ f are in fact functions in B(G) and we have

U ∗ f (z) = U (Lz−1 f̌ ) = U (y → f (y−1z)),

f ∗U (z) = U (Rz−1 f̌ ) = U (y → f (zy−1))

where La,Ra are the left and right translation operators defined by

La : f 7→ La f , La f (x) = f (ax), a ∈ G(2.12)

Ra : f 7→ Ra f , Ra f (x) = f (xa), a ∈ G.(2.13)

These formulas allow us to define the convolution of two distributions U ,V ∈ B ′(G)
by setting

∀φ ∈ B(G), U ∗V (φ) = V (Ǔ ∗ φ) = U (φ ∗ V̌ ).

For any left invariant vector field Z, ZU ∈ B ′(G) is defined by ZU (φ) = −U (Zφ),
φ ∈ B(G). This definition extends to any left invariant finite order differential oper-

ator P by setting (see §2.1)

∀φ ∈ B(G), PU (φ) = U (P∗φ).

Given a distribution U ∈ B(G) and an open set Ω, we say that U restricted to
Ω can be identified with a continuous function if there is a continuous function u

defined in Ω such that

∀φ ∈ B0(Ω), U (φ) =

∫
uφ dν.

The next lemma tells us how to recognize that a distribution coincides with a smooth
function in an open set Ω. We omit the proof, which is standard.

Lemma 2.6 Let X be a projective family. Fix an open set Ω and an integer k. Let U be

a distribution in B ′(G).

(i) Assume that for each integer m ≤ k and each ℓ ∈ Im, the distribution XℓU

restricted to Ω can be identified with a continuous function uℓ. Then for any φ ∈ B0(Ω),
the distribution φU can be identified with a function in Ck

X .

If, in addition, for each m ≤ k,
∑

ℓ∈Im |uℓ|
2 is a continuous function in Ω, then for any

φ ∈ B0(Ω), the distribution φU can be identified with a function in Sk
X .

(ii) Assume that for each pair of integers m, n with m + 2n ≤ k, each ℓ ∈ Im

and each λ ∈ Λ(m, n), the distribution Pℓ,λU restricted to Ω can be identified with a

continuous function uℓ,λ and that, for all m, n, m + 2n ≤ k,
∑

ℓ∈Im |uℓ,λ|
2 is continuous

on Ω. Then, for any φ ∈ B0(Ω), the distribution φU can be identified with a function

in Tk
X .
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2.5 The Space of Distributions T ′L

Fix a symmetric Gaussian semigroup with infinitesimal generator −L. Consider the
topological vector space of smooth functions TL introduced in Definition 2.4. It is a
Fréchet space [20, II.26]. Denote by T ′L the strong topological dual of TL [20, III.14].

Elements in T ′L are linear functionals U on TL such that there exist an integer m =

M(U ) and a real C = C(U ) > 0 such that

∀φ ∈ TL, |U (φ)| ≤ CMm
L (φ).

The topology of T ′L is defined by the family of seminorms

pB(U ) = sup
φ∈B

|U (φ)|

where B runs over all bounded sets in TL (recall that B ⊂ TL is bounded if for any
integer k, supφ∈B Mk(φ) < ∞). The space T ′L is complete [20, III.24]. As TL is an

algebra, contains B(G) and has a weaker topology, it follows that T ′L is contained in
B ′(G) and that B(G) acts on T ′L by pointwise multiplication. We will need some basic
results concerning convolution on T ′L. It turns out that there are essential differences
between the general case and the case when L = −

∑
I X2

i is bi-invariant. We refer

the reader to [15] for details. The following proposition gathers the results needed in
the sequel.

Proposition 2.7 Assume that L is bi-invariant.

(i) Let U ∈ T ′L and f ∈ TL. Then U ∗ f ∈ TL and

(2.14) XℓLn[U ∗ f ] = U ∗ [XℓLn f ].

Moreover, there exists a constant CU and an integer m = m(U ) such that

(2.15) ∀ k, Mk
L(U ∗ f ) ≤ CU Mm+k

L ( f ).

(ii) Let φǫ, ǫ > 0 be a family of functions in TL such that φǫ → δe as ǫ tends to zero.

Then for any U ∈ T ′L, the distribution U ǫ = U ∗ φǫ is represented by a function

in TL, and

∀ψ ∈ TL, lim
ǫ→0

U ǫ(ψ) = U (ψ).

3 T ′
L-C(G)-Hypoellipticity

This section contains our main results concerning the hypoellipticity of the infinites-

imal generators of central Gaussian semigroups. For brevity we will use the fol-
lowing notation. Let U be a distribution in B ′(G). Let Ω be an open set. We say
that U belongs to C(Ω) if there exists a continuous function u on Ω such that, for
all φ ∈ B0(Ω), U (φ) =

∫
uφ dν. In this case, we set ‖U‖Ω,∞ = ‖u‖Ω,∞ where

‖u‖Ω,∞ = sup
Ω
{|u|}. Given a projective family X = (Xi)I and an open set Ω, we set

(see (2.9))

Mk
X(Ω, f ) = sup

(n,m)∈N

n+2m≤k

sup
λ∈Λ(n,m)

sup
x∈Ω

(∑

ℓ∈In

|Pℓ,nX f |2
) 1/2

.
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3.1 Smoothing

In this section we present basic but critical technical computations that will be used to
prove hypoellipticity results. We focus our attention on the bi-invariant infinitesimal
generator −L of symmetric central Gaussian semigroup (µL

t )t>0. Let also Z ∈ G.

Assume that for each k = 0, 1, 2, . . . there exist a constant A(Z, k) ≥ 1 and an
integer κ(Z, k) such that

(3.1) ∀ f ∈ B(G), Mk
L(Z f ) ≤ A(Z, k)M

κ(Z,k)
L ( f ).

Set

(3.2) P = L + Z.

Note that Z satisfies (3.1) if and only if ZTL ⊂ TL (see also Lemma 4.3). Our aim is to
study the hypoellipticity of P. To this end we assume throughout this section that the
symmetric central Gaussian semigroup (µL

t )t>0 satisfies the property (CK), that is,

µL
t is absolutely continuous with respect to Haar measure and admits a continuous

density for all t > 0. Under this condition, it is proved in [10, Theorem 4.2] that
µL

t ∈ TL, for all t > 0. We will need the following observation.

Lemma 3.1 Let (µL
t )t>0 be a symmetric central Gaussian semigroup with infinitesi-

mal generator−L. Let Z be a left invariant vector field. Let (µt )t>0 be the Gaussian semi-

group such that the semigroup Ht f = f ∗µ̌t has infinitesimal generator−P = −(L+Z).

(i) The measure µL
t has a continuous density if and only if µt does, and if they exist,

the two continuous densities have the same uniform norm.

(ii) Assume (3.1) and that (µL
t )t>0 satisfies (CK). Let x 7→ µt (x) be the continuous

density of the measure µt . Then ∂n
t µt , ∂

n
t µ̌t ,∈ TL for any integer n = 0, 1, 2, . . . .

Proof Since L is bi-invariant it commutes with Z. Hence, for any Borel set B,

(3.3) µt (B) = µL
t (Bzt ) = µL

t (zt B), µ̌t = µL
t (Bz−1

t )

where zt = exp(tZ) is the one parameter subgroup generated by Z. The first assertion
follows. Moreover, if the two semigroups have property (CK), it follows from [10,
Theorem 4.2] and (3.3) that the densities are in TL and satisfy Mk

L(µt ) = Mk
L(µL

t ).
Moreover ∂n

t µt = (−L + Z)nµt . By (3.1) this shows that ∂n
t µt ∈ TL.

Lemma 3.2 Let L,Z, P be as above with Z satisfying (3.1). Let U ∈ T ′L. Let A(U ) ≥ 1
and the integer κ(U ) be such that

(3.4) ∀φ ∈ TL, |U (φ)| ≤ A(U )Mκ(U )(φ).

Then for any η ∈ B(G) there exists Cη such that for all φ ∈ TL

max
{∣∣ [ηPU ](φ)

∣∣ ,
∣∣ [PηU ](φ)

∣∣} ≤ CηA(U ,Z)Mκ(U ,Z)(φ)

with

(3.5) A(U ,Z) = A(U )A(Z, κ(U )) and κ(U ,Z) = max{κ(Z, κ(U )), 2+κ(U )}.
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Proof We have [ηPU ](φ) = U ((L − Z)ηφ) and

Mk
L

(
(L − Z)(ηφ)

)
≤

[
Mk

L(L(ηφ)) + Mk
L(Z(ηφ))

]
.

Hence, by (3.1) and the fact that Ts
L is an algebra for any fixed integer s,

Mk
L((L − Z)(ηφ)) ≤ [M2+k

L (ηφ) + A(Z)M
κ(Z,k)
L (ηφ)] ≤ CM

m(Z,k)
L (η)M

m(Z,k)
L (φ)

with m(Z, k) = max{κ(Z, k), 2 + k}. It follows that

∣∣ [ηPU ](φ)
∣∣ ≤ CηA(U )A(Z, κ(U ))M

m(Z,κ(U ))
L (φ).

For [PηU ](φ) = U (η(L + Z)φ), a similar argument gives the desired result.

Consider two distributions U ∈ T ′L, F ∈ B ′(G) such that

PU = F in B
′(G).

By construction and (3.1), PTL ⊂ TL. Hence PT ′L ⊂ T ′L. It follows that

F ∈ T
′
L and PU = F in T

′
L.

Let Ω be an open set such that F ∈ C(Ω). Fix an open set Ω0 such that Ω0 ⊂ Ω. Fix a

function η0 ∈ B0(Ω) such that η0 ≡ 1 on a neighborhood of Ω0 and set

(3.6) Ũ = η0U , F̃ = η0F, Ṽ = PŨ − F̃.

Observe that Ũ ∈ T ′L, F̃ ∈ C(G) ⊂ T ′L, hence Ṽ ∈ T ′L. Moreover, Ṽ is supported in
Ω\Ω0.Under the standing assumption that (µL

t )t>0 satisfies (CK), Lemma 3.1 shows
that the density x 7→ µ̌t (x) of the measure µ̌t belongs to TL. Hence, by Proposition
2.7, we can consider

(3.7) Ũ t
= Ũ ∗ µ̌t , F̃t

= F̃ ∗ µ̌t , Ṽ t
= Ṽ ∗ µ̌t

which are all in TL.

Lemma 3.3 Let L,Z, P, (µL
t )t>0, (µt )t>0 be as above with (µL

t )t>0 satisfying (CK) and

Z satisfying (3.1). Let W be in T ′L and set W t = W ∗ µ̌t . Then, for all t > 0,

W t , PWt ∈ TL and ∂tW
t
= −PW t .

Proof Note that for any w ∈ B(G) we have

P(w ∗ µ̌t ) = w ∗ (Pµ̌t ) = (Pw) ∗ µ̌t

because P and right convolution by µ̌t commute. By Lemma 3.1, µ̌t and Pµ̌t are in
TL. By Proposition 2.7, W t , PW t belong to TL and it follows that the double equality
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above holds true if we replace w by a distribution W in T ′L. For any 0 < s < t < +∞,
we now have

W t −W s
= W ∗ (µ̌t − µ̌s) = W ∗

∫ t

s

µ̌ ′τ dτ

= −W ∗

∫ t

s

Pµ̌τ dτ = −

∫ t

s

W ∗ Pµ̌τ dτ

= −

∫ t

s

(PW ) ∗ µ̌τ dτ =

∫ t

s

(−PW )τ dτ .

Hence ∂tW
t exists and ∂tW

t = (−PW )t . As (−PW )t = −PW t this finishes the
proof.

Fix x0 ∈ Ω0. We want to show that Ũ ∈ C(Ω1) for some neighborhood Ω1 ⊂
Ω1 ⊂ Ω0 of x0. For this, it suffices to bound

sup
0<t≤1

‖∂tŨ
t‖Ω1,∞.

Indeed, such a bound implies that Ũ is the uniform limit of the continuous functions
Ũ t in Ω1 as t tends to zero and that

(3.8) ‖Ũ‖Ω1,∞ ≤ ‖Ũ 1‖Ω1,∞ + sup
0<t≤1

‖∂tŨ
t‖Ω1,∞.

By Lemma 3.3,

∂tŨ
t
= −PŨ t

= (−PŨ ) ∗ µ̌t = −(Ṽ + F̃) ∗ µ̌t

= −Ṽ t − F̃t .

Thus it suffices to bound

‖F̃t‖Ω1,∞ and ‖Ṽ t‖Ω1,∞.

To handle F̃t we do not need any additional localization provided by Ω1.

Lemma 3.4 We have ‖F̃t‖∞ ≤ ‖F̃‖∞ < +∞.

Proof By hypothesis F̃ = η0F ∈ C(G), and F̃t = F̃ ∗ µt . Hence,

‖F̃t‖∞ ≤ ‖F̃‖∞ < +∞.

We are now left with the task of bounding Ṽ t . For this, we will need the additional

localization in a small neighborhood Ω1 of x0. We will be able to control ‖Ṽ t‖Ω1,∞

independently of the continuity of F in Ω. By construction, Ṽ ∈ T ′L is supported in
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Ω \Ω0. Let Θ0 be an open neighborhood of G \Ω0 such that x0 /∈ Θ0. Obviously we
can choose the neighborhood Ω1 of x0 so that

(3.9) x0 ∈ Ω1 ⊂ Ω0, e /∈ Θ
−1
0 Ω1

where e is the identity element. To see that such a choice is indeed possible, write
Θ0 = x0θ0 where θ0 is an open set whose closure does not contain the identity e

and write Ω1 = x0ω1 where ω1 is an open neighborhood of e. Then condition (3.9)

amounts to e /∈ θ−1
0 ω1, and this can obviously be arranged by choosing ω1 small

enough. From now on we fix Ω1 so that (3.9) holds true.

Lemma 3.5 Let Θ0 be an open neighborhood of G\Ω0 whose closure does not contain

x0. Let Ω1 be an open neighborhood of x0 such that (3.9) holds true and set Θ = Θ
−1
0 Ω1.

Then

‖Ṽ t‖Ω1,∞ ≤ CAMκ
L (Θ, µt )

where, referring to (3.1), (3.4) and (3.5), A = A(U ,Z), κ = κ(U ,Z) and C =

C(Ω0,Ω1).

Proof Since Ṽ ∈ TL, we have

Ṽ t (x) = Ṽ ∗ µ̌t (x) = Ṽ (Lx−1µt )

and, since Ṽ is supported in Ω \ Ω0, we can write

Ṽ t (x) = Ṽ (η1Lx−1µt )

where η1 ∈ B0(Θ0) and η1 = 1 in a neighborhood of Ω \ Ω0. Since Ṽ = PŨ − F̃ =

P(η0U ) − η0PU , Lemma 3.2 gives

∀φ ∈ TL, |Ṽ (φ)| ≤ Cη0
AMκ(φ).

Thus

|Ṽ t (x)| ≤ CAMκ
L (η1Lx−1µt )

If we assume x ∈ Ω1, then

y ∈ Θ0 =⇒ y−1x ∈ Θ
−1
0 Ω1 = Θ

and it follows that there exists C2 = C2(η0, η1) such that

Mκ
L (η1Lx−1µt ) ≤ C2Mκ

L (Θ, µt ).

This finishes the proof of the lemma.
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3.2 The Condition (CK∗)

Recall from [12] that given a symmetric central Gaussian semigroup (µt )t>0 with
generator −L, property (CK∗) is a necessary condition for the T ′L-C(G)-hypoellip-
ticity of L. We are now ready to prove that (CK∗) is also a sufficient condition.

The next result, taken from [10], captures the role of this condition. It follows from
Gaussian estimates [10, Corollary 4.8] for space and time derivatives of the density
x 7→ µt (x).

Theorem 3.6 ( [10, Corollary 4.9]) Assume that (µt )t>0 is a symmetric central Gaus-

sian semigroup satisfying condition (CK∗). Then for any compact set K with e /∈ K,

any integer k, and any σ > 0, there exists a constant C (which depends on (µt )t>0, K, k

and σ) such that

sup
t∈(0,1)

{t−σMk
L(K, µt )} ≤ C.

In order to treat the operators of the form P = L + Z where Z is a left invariant vector
field satisfying (3.1) as in Section 3.1, we need the following corollary.

Corollary 3.7 Let −L be the bi-invariant infinitesimal generator of a symmetric cen-

tral Gaussian semigroup (µL
t )t>0. Let Z be a left invariant vector field satisfying (3.1).

Let (µt )t>0 be the Gaussian semigroup with infinitesimal generator −P = −(L + Z).

Assume that (µL
t )t>0 satisfies (CK∗). Then, for any compact set K with e /∈ K, any inte-

ger k, and any σ > 0, there exists a constant C (which depends on (µt )t>0, K, k and σ)

such that

sup
t∈(0,1)

{t−σMk
L(K, µt )} ≤ C.

Proof By Lemma 3.1, we know that µt ∈ TL. In fact, using the same notation as in

the proof of Lemma 3.1, we have µt (x) = µL
t (xzt ) = µL

t (zt x) where zt = exp(tZ). By
definition t 7→ zt is a continuous map. Thus, for any fixed compact set K and any
open set Ω such that K ⊂ Ω and e /∈ Ω, there exists t0 > 0 such that Kzt ⊂ Ω for all
t ∈ (0, t0). Hence

sup
t∈(0,t0)

{t−σMk
L(K, µt )} ≤ sup

t∈(0,t0)

{t−σMk
L(Ω, µL

t )} ≤ C.

As Mk
L(µt ) is decreasing in t , this proves the desired result.

The following theorem describes our main hypoellipticity result in a form that
will be used to obtain further information in the next few sections.

Theorem 3.8 Let −L be the bi-invariant infinitesimal generator of a symmetric cen-

tral Gaussian semigroup (µL
t )t>0. Let Z be a left invariant vector field satisfying (3.1).

Let (µt )t>0 be the Gaussian semigroup with infinitesimal generator −P = −(L + Z).

Assume that (µL
t )t>0 satisfies (CK∗). Consider two distributions U ∈ T ′L, F ∈ B ′(G)

such that

(3.10) PU = F in B
′(G).
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Let Ω be an open set in G such that F ∈ C(Ω). Then U ∈ C(Ω) and for any open sets

Ω1 ⊂ Ω0 ⊂ Ω with Ω1 ⊂ Ω0 and Ω0 ⊂ Ω, we have

‖U‖Ω1,∞ ≤ C(Ω0,Ω1)(‖F‖Ω0 ,∞ + A).

where, referring to (3.1), (3.4) and (3.5), A = A(U ,Z). In particular P is T ′L-C(G)-hy-

poelliptic. Moreover, setting U t = U ∗ µ̌t ,

∀ t ∈ (0, 1), ‖U −U t‖Ω1,∞ ≤ C(Ω0,Ω1)t(‖F‖Ω0,∞ + A).

Proof Referring to the setting and notation of Section 3.1, Corollary 3.7 and Lemma
3.5 give

sup
t∈(0,1)

‖Ṽ t‖Ω1,∞ ≤ C1A

where A is as above and C1 = C1(Ω0,Ω1). This inequality together with Lemma 3.4,
(3.8), and the smoothing argument of Section 3.1 yields

∀ t ∈ (0, 1), ‖Ũ − Ũ t‖Ω1,∞ ≤ C(Ω0,Ω1) t (‖F‖Ω0,∞ + A).

This shows that U is continuous in Ω1, being the uniform limit of the continuous
functions Ũ t as t tends to zero. Together with (3.4), it also proves the first inequality

in the theorem. To obtain the last statement, we need to estimate

‖U t − Ũ t‖Ω1,∞.

But U t − Ũ t = [(1 − η0)U ] ∗ µ̌t and (1 − η0)U is supported in G \ Ω0. Thus, for all

t ∈ (0, 1), Theorem 3.6 yields

∣∣ [(1 − η0)U ] ∗ µ̌t (x)
∣∣ = |U [(1 − η0)Lx−1µt ]|

≤ AMκ
L ((1 − η0)Lx−1µt ) ≤ CAt

Where C depends on Ω0,Ω1, (µt )t>0 and κ. Hence, we obtain ‖U t − Ũ t‖Ω1,∞ ≤
C(Ω0,Ω1)At, as desired.

Taking Z = 0 in the above theorem yields the following result which contains the

“if” part of Theorem 1.6 stated in the introduction.

Corollary 3.9 Let −L be the bi-invariant infinitesimal generator of a symmetric cen-

tral Gaussian semigroup (µt )t>0. Assume that (µt )t>0 satisfies (CK∗). Then L is

T ′L-C(G)-hypoelliptic.

4 T ′
L-Ck

Y -Hypoellipticity

We are now ready to state and prove some of the main results of this paper concerning
T ′L-S-hypoellipticity. The main question we need to answer is: for which spaces S of
smooth functions can we prove hypoellipticity? This section is concerned with the
case when S = Ck

Y where Y is a fixed projective family.
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4.1 Bi-invariant Laplacians

The next proposition is simple but very useful. It shows that when a differential
operator P is bi-invariant and the space of distributions A is stable under the action
of any vector field Yi of a projective family Y = (Yi)I , A-C(G)-hypoellipticity implies

A-Ck
Y -hypoellipticity for each k = 1, 2, . . . ,∞. Thus, in the present setting, and for

bi-invariant operators, A-C(G)-hypoellipticity is really the main property one should
study. This idea will be developed further in Section 5.

Proposition 4.1 Let P be a bi-invariant differential operator of finite order on a con-

nected compact group G. Fix a space of distributions A and a projective family Y =

(Yi)I . Assume that for any distribution U ∈ A and any i ∈ I, YiU is in A. Then

A-C(G)-hypoellipticity implies A-Ck
Y -hypoellipticity, for all k = 1, 2, . . . ,∞.

Proof Let U ∈ A, F ∈ B ′(G) be such that PU = F and φF ∈ Ck
Y for all φ ∈ B0(Ω).

Then for any integer m ≤ k and any ℓ ∈ Im, Y ℓU satisfies

PY ℓU = Y ℓPU = Y ℓF

because P is bi-invariant. By hypothesis, the distribution Y ℓU belongs to A and for

any φ ∈ B0(Ω), φY ℓF is continuous. Thus A-C(G)-hypoellipticity implies that Y ℓU

coincides with a continuous function in Ω. This proves that φU belongs to Ck
Y for

any φ ∈ B0(Ω), as desired.

Theorem 4.2 Assume that (µt )t>0 is a symmetric central Gaussian semigroup satis-

fying (CK∗). Let −L denote its infinitesimal generator. Let Y = (Yi)i∈I be a projective

family and assume that

(4.1) ∀ i ∈ I, YiTL ⊂ TL.

Then the operator L is T ′L-Ck
Y -hypoelliptic for each k = 0, 1, 2, . . . . In particular, for

any projective family X = (Xi)I such that L = −
∑

X2
i is T ′L-Ck

X-hypoelliptic for each

k = 0, 1, 2, . . . .

Proof This statement readily follows from Theorem 3.8 and Proposition 4.1.

Remark Let −L be the infinitesimal generator of a symmetric central Gaussian
semigroup. Let Z be a left invariant vector field and assume that Z ∈ H(L). Then

by Lemma 2.5, ZTL ⊂ TL. A useful necessary and sufficient condition for this last
property (equivalently (3.1)) is given in the next lemma taken from [15, Lemma 5.2].

Lemma 4.3 Let −L be the infinitesimal generator of a symmetric central Gaussian

semigroup. Let Z be a left invariant vector field. Assume that there are constants m and

C such that

(4.2) ∀ f ∈ B(G), ‖Z f ‖∞ ≤ CMm
L ( f ).

Then condition (3.1) is satisfied, that is, ZTL ⊂ TL.

Remark Inequality (4.2) does not imply Z ∈ H(L). See Theorem 6.2.
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4.2 The Case P = L + Z

In view of Theorems 3.8 and 4.2, the question arises of whether or not one can extend
Theorem 4.2 to operators of the form P = L+Z as in Theorem 3.8. The only difficulty
comes from the fact that Z may not commute with other vector fields. This seems to

be a rather serious technical difficulty in general, but it can be easily solved in certain
cases by using the following notion.

Let Y be a projective family. Denote by Y̆i the right invariant vector field which
coincides with Yi at the neutral element. This leads in a natural way to the definition

of a right invariant version of the space Ck
Y which we denote by RC

k
Y . In order to be

able to talk simultaneously about left and right invariant vector fields it is convenient
to introduce a reasonable notion of (non-invariant) vector field. A continuous vector

field on G is a linear map Z : B(G) → C(G) with the property that Z( f g) = f Zg +
gZ f , i.e., a derivation. It is not hard to see that given a projective basis Y = (Yi)I , any
continuous vector field Z can be written

Z =

∑

i

aiYi, that is, for f ∈ B(G), Z f (x) =

∑

i

ai(x)Yi f (x),

where the coefficients ai are continuous functions. Conversely, each such expression
obviously yields a vector field on G.

Definition 4.4 A (left invariant) projective family Y = (Yi)i∈I is called a special

projective family if there are functions a→i, j , a
←
i, j ∈ B(G), i, j ∈ I, and finite sets J(i),

i ∈ I, such that a→i, j ≡ a←i, j ≡ 0 for all (i, j) with j /∈ J(i) and

Y̆i =

∑

j∈I

a→i, j Y j , Yi =

∑

j∈I

a←i, j Y̆ j .

Obviously, if Y is a special projective family, then the spaces Ck
Y and RC

k
Y coincide.

Also, if G is abelian, any projective family is special. The following proposition fol-

lows easily from the structure theory of compact connected groups [27] and the
structure of bi-invariant second order operators, see [8]. See also Section 6.2.

Proposition 4.5 Let G be a compact connected group. Let −L be the infinitesimal gen-

erator of a symmetric central Gaussian semigroup. Then there exists a special projective

family X = (Xi) such that L = −
∑

i∈I X2
i .

Theorem 4.6 Let −L be the bi-invariant infinitesimal generator of a symmetric cen-

tral Gaussian semigroup (µL
t )t>0 which satisfies (CK∗). Let Z be a left invariant vector

field satisfying (3.1) and set P = L + Z. Let Y be a special projective family satisfying

(4.1). Then P is T ′L-Ck
Y -hypoelliptic, k = 0, 1, . . . .

5 T ′
L-S-Hypoellipticity, S = Sk

Y , Tk
Y , . . .

We now want to study T ′L-S-hypoellipticity when S = Sk
Y or other spaces of this

type. As mentioned in the introduction, it seems important in the present set-
ting to have as much flexibility as possible in the choice of the spaces of smooth
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functions S. Having identified a large space of distributions, namely T ′L, for which
T ′L-C(G)-hypoellipticity holds, turns out to be one of the keys to the desired flexibility

concerning the choice of S.

5.1 Smooth Function Spaces

The following definition gives a very flexible tool to define spaces of smooth func-
tions. Recall that any finite order left invariant differential operator on G is a con-
tinuous operator on B(G) and on B ′(G). Let I denote the identity operator acting
on functions. In what follows we consider I as an invariant differential operator of

order 0.

Definition 5.1 Let N = {0, 1, 2, . . .}. For any n ∈ N, let O(n) be a set of con-
tinuous linear operators on B(G), each of which admits a continuous extension to
B ′(G). Assume further that I ∈ O(0) and O(n) ⊂ O(k) if n ≤ k. Denote this data by

O. Set
BO(G) =

{
f ∈ B(G) : ∀ k ∈ N, sup

Q∈O(k)

‖Q f ‖∞ < +∞
}

and consider the norms defined by

∀ f ∈ BO(G), pk( f ) = sup
Q∈O(k)

‖Q f ‖∞.

Let Sk(O) ⊂ C(G) be the closure of BO(G) for the topology defined by the norm

pk. Set S(O) =
⋂∞

0 Sk(O) equipped with the topology defined by the the family of
norms pk, k = 0, 1, . . . .

It follows from this definition that each Q ∈ O(k) can also be viewed as a continuous

linear operator
Q : S

k(O) → C(G).

The following examples illustrates this definition.

Example 5.2 Fix a projective family X = (Xi) and set L = −
∑

i∈I X2
i .

(a) Enumerate
⋃k

n=0 In as {ℓ0, ℓ1, . . . } with ℓ0 = ∅ and set (with the convention
X∅ = I)

O(m) = {Xℓ : ℓ = ℓ0, . . . , ℓm}.

Then pm( f ) = supℓ∈{ℓ0,...,ℓm}
‖Xℓ f ‖∞ and S(O) = Ck

X (one can take k = ∞).

(b) Set O(k) =
{

Qn
a =

∑
In aℓX

ℓ :
∑

In a2
ℓ ≤ 1, n ≤ k

}
. Then pk( f ) = Sk

X( f ),

Sk(O) = Sk
X = Sk

L and S(O) = S∞L .
(c) Set O(k) = {Ln : n = 0, . . . , k}. Then pk( f ) = D2k

L ( f ) and Sk(O) = D2k
L is the

C(G)-domain of Lk.

(d) Set

O(k) =
{

Qn,λ
a =

∑

In

aℓP
ℓ,λ :

∑

In

a2
ℓ ≤ 1, λ ∈ Λ(n,m), n + 2m ≤ k

}
.

Then pk( f ) = Mk
L( f ) and Sk(O) = Tk

L.
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(e) Fix p ∈ [1,+∞] and let q be the Hölder conjugate of p, i.e., 1/p + 1/q = 1. Set
O(k) = {

∑
In aℓX

ℓ :
∑

a
q
ℓ ≤ 1, n ≤ k}. Then

pk( f ) = sup
n≤k

∥∥∥
(∑

Ik

|Xℓ f |p
) 1/p∥∥∥

∞
.

We set Sk(O) = S
p,k
X . Thus we have S

2,k
X = Sk

X , whereas S
∞,k
X corresponds to

having a uniform control over the sup-norm of all derivatives Xi f with i ∈ Im,
m ≤ k.

(f) Fix a positive function ω : N → (0,∞) and set

O = O(k) = {ω(|ℓ|)−1Xℓ, ℓ ∈

∞⋃

0

Ik}

where |ℓ| = k if ℓ ∈ Ik. Then

p( f ) = pk( f ) = sup
ℓ∈

⋃
∞

0
Ik

ω(|ℓ|)−1‖Xℓ f ‖∞.

A function f is in S(O) if and only if it is in C∞X and there is a constant C such
that ‖Xℓ f ‖∞ ≤ Cω(|ℓ|). Examples of potential interest are ω(k) = (Ak)ak with
some A > 0 and a ≥ 1.

(g) Fix a positive function ω : N → (0,∞) and set O = O(k) = {ω(n)−1Ln, n ∈ N}.
Then p( f ) = pk( f ) = supn∈N

ω(n)−1‖Ln f ‖∞. For instance, assume that −L is
the infinitesimal generator of a symmetric central Gaussian semigroup (µt )t>0

satisfying (CK). Set ω(k) = (k)−k. Then it is not hard to see (e.g., [10, Lemma

4.5]) that for all t small enough, µt belongs to the corresponding space S(O), that
is, ‖Lkµt‖∞ ≤ C(t)kk.

(h) In the above examples, we can replace the family of left invariant vector fields X

by its right invariant counter part X̆. One can also use both left and right vector

fields.

We will need a local version of Definition 5.1. Fix an open set Ω ⊂ G and B ⊂ Ω. Fix
k = 1, 2, . . . . If U is a Bruhat distribution such that QU ∈ C(Ω) for all Q ∈ O(k)

then set
pB,k(U ) = sup

Q∈O(k)

‖QU‖B,∞.

Definition 5.3 Let O be as in Definition 5.1. Fix an open set Ω ⊂ G and k =

1, 2, . . . . We say that a Bruhat distribution U belongs to Sk(Ω,O) if QU ∈ C(Ω) for
all Q ∈ O(k) and there exists a sequence of functions fi ∈ Sk(O) such that, for any
compact K ⊂ Ω,

lim
i→∞

pK,n(U − fi) = 0.

The following lemma relates the previous definition to the use of cut-off functions.
We say that Q is local if for any Bruhat distribution U , U = 0 in an open set Ω implies
QU = 0 in Ω.

https://doi.org/10.4153/CJM-2006-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-029-9


712 A. Bendikov and L. Saloff-Coste

Lemma 5.4 Fix O as in Definition 5.1 and k = 0, 1, . . . .
(i) Assume that each Q ∈ O(n), n = 0, 1, 2, . . . , is a local operator. Let U be a

Bruhat distribution. If φU ∈ Sk(O) for all φ ∈ B0(Ω) then U ∈ Sk(Ω,O).

(ii) Assume that, for any open set Ω and any φ ∈ B0(Ω), we have

(5.1) ∀ f ∈ S
k(O), φ f ∈ S

k(O) and pk(φ f ) ≤ C(Ω, φ)pΩ,k( f ).

Then, for any open set Ω and any Bruhat distribution U ,

U ∈ S
k(Ω,O) ⇒ ∀φ ∈ B0(Ω), φU ∈ S

k(O).

Proof Assume φU ∈ Sk(O) for any φ ∈ B0(Ω). Exhaust Ω by an increasing se-
quence of open subsets Ωi with Ωi ⊂ Ω. For each i, pick φi ∈ B0(Ω) with φi ≡ 1 on
Ωi . Then fi = φiU ∈ Sk(O), and for each compact K ⊂ Ω, pK,k(U − fi) = 0 for i

large enough (we use here that each Q is local). This proves (i).

Concerning (ii), observe that the assumption implies that B0(G) acts on Sk(O) by

pointwise multiplication. Suppose U ∈ Sk(Ω,O) and let fi be as in Definition 5.3.
Let φ ∈ B0(Ω). Then φ is supported in a compact K ⊂ Ω. Let Ω1 be a relatively
compact neighborhood of K in Ω. By (5.1) we have

pk(φ( f j − fi)) ≤ C(Ω1, φ)pΩ1,k( f j − fi).

By construction,

lim
i→∞

pΩ1,k(U − fi) = 0.

It follows that φ fi is a Cauchy sequence in Sk(O). As Sk(O) is complete, there exists

v ∈ Sk(O) such that limi→∞ φ fi = v in Sk(O). By assumption, we also know that φ fi

converges uniformly to φU . It follows that φU = v ∈ Sk(O) as desired.

Example 5.5 Referring to Example 5.2(a), (b), (d) and (e), the hypothesis (5.1) of
Lemma 5.4(2) is satisfied because these spaces are algebras. See [10, 12, 15]. In the

case of Example 5.2(c), whether or not (5.1) is satisfied is not known in general.
It is satisfied when G = T

∞, see [15]. In Example 5.2(f), (5.1) does not always
hold. Indeed, as the constant function 1 is in Sk(O), it follows that (5.1) implies
B(G) ⊂ Sk(O). But in general, in Example 5.2(f), B(G) 6⊂ Sk(O).

5.2 Applications to Hypoellipticity

The following theorem provides a convenient way to obtain many hypoellipticity

results.

Theorem 5.6 Let −L be the infinitesimal generator of a symmetric central Gaussian

semigroup (µL
t )t>0. Let Z be a left invariant vector field and set P = L + Z. Let O be as

in Definition 5.1. Assume that L,Z,O have the following properties:

(i) The semigroup (µL
t )t>0 satisfies (CK∗) and Z satisfies (3.1).
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(ii) For any Q ∈
⋃∞

0 O(k), Q is a left invariant differential operator of finite order

and ZQ = QZ.

(iii) For any n = 0, 1, . . . , there exist m = m(n) and C = C(n) such that,

∀Q ∈ O(n), ∀φ ∈ TL, Qφ ∈ C(G) and ‖Qφ‖∞ ≤ CMm
L (φ).

(iv) For any Q ∈
⋃∞

0 O(n), Q∗TL ⊂ TL and, for any n, k = 0, 1, . . . there exist

m(n, k) and C(n, k) such that

∀Q ∈ O(n), ∀φ ∈ TL, Mk
L(Q∗φ) ≤ C(n, k)M

m(n,k)
L (φ).

Fix k = 1, 2, . . . and an open set Ω. Let U , F ∈ T ′L be such that PU = F in B ′(G).

Then F ∈ Sk(Ω,O) implies U ∈ Sk(Ω,O).

Proof Let B and r be such that

∀φ ∈ TL, max{|U (φ)|, |F(φ)|} ≤ BMr
L(φ).

By hypothesis, for any n and any Q ∈ O(n)

PQU = QF in B
′(G).

Moreover, for any Q ∈ O(k), QF ∈ C(Ω) and for any set Ω0 with closure contained

in Ω,
‖QF‖Ω0,∞ ≤ pΩ0,k(F).

Also, for Q ∈ O(k), QU ∈ T ′L because QU (φ) = U (Q∗φ) and

M
q
L(Q∗φ) ≤ C(k, q)M

m(k,q)

L (φ)

with C(k, q),m(k, q) as in hypothesis (iv) of the theorem. The same line of reasoning
shows that QF ∈ T ′L. Moreover, we have

∀φ ∈ TL, max{|QU (φ)|, |QF(φ)|} ≤ BC(k, r)M
m(k,r)
L (φ).

Thus Theorem 3.8 shows that QU ∈ C(Ω). Moreover, by Theorem 3.8, for any open
sets Ω0,Ω1 with Ω1 ⊂ Ω0 and Ω0 ⊂ Ω,

∀ t ∈ (0, 1), ‖QU − (QU )t‖Ω1,∞ ≤ tC1(Ω0,Ω1)(p
Ω0,k

(F) + B)

where U t = U ∗ µ̌t , (µt )t>0 being the Gaussian convolution semigroup generated by
−P as in Section 3.1. By hypothesis (ii), (QU )t = QU t . Hence

lim
t→0

p
Ω1,n

(U −U t ) = 0.

Since U t ∈ TL and, by hypothesis (iii), TL ⊂ Sk(O), this proves that U ∈ Sk(Ω,O) as

desired.
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Remarks

(1) The conclusion of Theorem 5.6 resembles closely T ′L-Sk(O)-hypoellipticity

but is different in general. This is because the localization procedure used in The-
orem 5.6 is not always equivalent to the localization by multiplication by functions
in B(G) used in Definition 1.1. However, if we assume that (5.1) holds, then the con-
clusion of Theorem 5.6 is equivalent to saying that P is T ′L-Sk(O)-hypoelliptic. See

the next two theorems.
(2) The hypothesis that the operators Q are differential operators of finite order

is made for convenience only. It enables us to consider the adjoint Q∗ without addi-
tional explanations.

(3) Note that the hypothesis that ZQ = QZ is automatically satisfied if Z = 0.

The following results are corollaries of Lemma 5.4 and Theorem 5.6.

Theorem 5.7 Assume that (µt )t>0 is a symmetric central Gaussian semigroup satis-

fying (CK∗). Let −L denotes its infinitesimal generator. Let Y = (Yi)i∈I be a fixed

projective family in G.

(i) Referring to Example 5.2(e), fix p ∈ [1,∞] and assume that for any k ∈ N there

exist C(k) and n(k) such that

(5.2) S
p,k
Y ( f ) ≤ C(k)Mn(k)

L ( f ),

Then L is T ′L-S
p,k
Y -hypoelliptic for each integer k (for p = 2, S

p,k
Y = Sk

Y ).

(ii) Assume that for any k ∈ N, there exist C(k) and n(k) such that

(5.3) Mk
Y ( f ) ≤ C(k)Mn(k)

L ( f ).

Then L is T ′L-Tk
Y -hypoelliptic for each integer k.

Note that (5.2) is automatically satisfied when L is related to Y by L = −
∑

Y 2
i and

p ∈ [2,∞]. Similarly, (5.3) is automatically satisfied when L = −
∑

Y 2
i .

Proof Consider the case of the spaces Sk
Y (the case of S

p,k
Y , p 6= 2, and Tk

Y are very

similar). To apply Theorem 5.6 we need to check that (5.2) implies Theorem 5.6(i)
and (ii). According to Example 5.2(b), it suffices to show that for any n, k and any
a = (aℓ)Ik with

∑
ℓ |aℓ|

2 ≤ 1, we have

Mn
L(Q f ) ≤ C(n, k)M

m(n,k)
L ( f )

where Q =
∑

ℓ aℓY
ℓ. This can be proved by the argument of the proof of [15, Lemma

5.2], using the family of right invariant vectors X̆ = (X̆i) corresponding to X.

Next we consider the case of P = L + Z.

Theorem 5.8 Let −L be the bi-invariant infinitesimal generator of a symmetric cen-

tral Gaussian semigroup (µL
t )t>0. Let Z be a left invariant vector field and set P = L+Z.

Assume that (µL
t )t>0 satisfies (CK∗) and that Z satisfies (3.1).
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(i) The operator P is is T ′L-Sk
L-hypoelliptic as well as T ′L-Tk

L-hypoelliptic for each k ∈
{0, 1, . . . ,∞}.

(ii) Fix an integer k and a real p ∈ [1,∞]. Let Y = (Yi)i∈I be a fixed special projective

family (see Definition 4.4). If Y satisfies (5.2), (resp., (5.3)), then the operator P is

T ′L-S
p,k
Y -hypoelliptic (resp., T ′L-Tk

Y -hypoelliptic).

Proof We need to modify the proof of Theorem 5.7 because the Q’s used there do
not necessarily commute with Z hence with P. To prove (i), observe that the spaces Sk

L

can be defined as is in Example 5.2(e), but using right invariant vector fields (because
L is bi-invariant). Thus we write L = −

∑
X2

i where the X = (Xi)i∈I is a projective

family of left invariant vector fields and consider the (right invariant) operators Qk
a =∑

Ik aℓX̆
ℓ,

∑
Ik a2

ℓ ≤ 1. The advantage is that Q = Qk
a commutes with P since any

left invariant operator commutes with any right invariant operator. All the other
assumptions of Theorem 5.6 are trivially satisfied in this case. This proves (i) in the

case of the spaces Sk
L. The proof for Tk

L is similar. Note that this proof does not work
for the spaces Sp,k

X of Example 5.2(e) with p 6= 2 because it is not clear that the right
and left versions of these spaces coincide.

To prove (ii), we use the same trick as above (defining the relevant function spaces

using right invariant vectors instead of left invariant vectors). This works well because
we assume that the projective family is special and this implies that Y̆ = (Y̆i)I yields
the same function spaces as Y . This ends the proof of Theorem 5.8.

5.3 Applications to Harmonic Functions

Let −L be the infinitesimal generator of a Gaussian semigroup (µt )t>0. A distribution
U is harmonic in a domain Ω if LU = 0 in Ω. In the present setting, an important

question is to decide whether or not such a distribution can be represented in Ω by
a continuous function. This is of course closely related to hypoellipticity. Let A be
a space of distributions (in particular, A is stable by multiplication by Bruhat test
functions). Following [12, Definition 1.4], we say that the operator L is A-regular if

for any Bruhat distribution U and domain Ω,

∀φ ∈ B0(Ω), φU ∈ A and φLU = 0 ⇒ ∀φ ∈ B0(Ω), φU ∈ C(G).

Under the mild assumptions that S is a topological space of continuous functions
whose topology is not weaker than the uniform topology and that C(G) ⊂ A, [12,
Proposition 3.4] asserts that L is A-S-hypoelliptic if and only if L is A-regular. By

Theorem 4.2 and the result of [12], we obtain the following statement.

Theorem 5.9 Let −L be the infinitesimal generator of a symmetric central Gaussian

semigroup (µt )t>0. Then L is T ′L-regular if and only if (µt )t>0 satisfies (CK∗).

By the closed graph theorem, hypoellipticity translates easily into more quantita-

tive statements such as the following corollary of Theorem 5.7.

Theorem 5.10 Assume that (µt )t>0 is a symmetric central Gaussian semigroup satis-

fying (CK∗). Denote by −L its infinitesimal generator and let X be a projective family
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such that L = −
∑

I X2
i . Fix a domain Ω ⊂ G and a compact subset K ⊂ Ω. Let

u ∈ L1(Ω) be a solution of Lu = 0 in Ω in the sense of Bruhat distributions. Then, for

any k ∈ N there exists a constant C = C(L,Ω,K, k) such that

sup
K

(∑

ℓ∈Ik

|Xℓu|2
) 1/2

≤ C

∫

Ω

|u| dν.

A more subtle question concerning harmonic functions in a domain Ω is to ask
in which sense does Lu exist and vanish in Ω. More precisely, assume that L =

−
∑∞

1 X2
i . The best one might hope for is that for every compact K ⊂ Ω,∑∞

1 supK |X2
i u| < ∞. A slightly weaker statement is that Lu = −

∑∞
1 X2

i u con-

verges absolutely locally uniformly in Ω. We can only prove the following even weaker
result.

Theorem 5.11 Assume that (µt )t>0 is a symmetric central Gaussian semigroup satis-

fying (CK∗). Denote by −L its infinitesimal generator and let X be a projective family

such that L = −
∑

I X2
i . Fix a domain Ω ⊂ G, and a continuous harmonic function u

in Ω. Then, for any compact subset K of Ω,
∑

I X2
i u is summable to 0 in C(K).

Proof First we need some simple facts concerning the Riesz transform in L2(G). Let

L2
0 = L2

0(G) be the orthogonal complement of the constants in L2(G). On L2
0, L−1/2

is well defined by spectral theory. The i-th Riesz transform is Ri = XiL
−1/2 (here

Xi and L−1/2 commute because L is bi-invariant). The vector Riesz transform of a
function f ∈ L2

0 is R f = (Ri f )I . By integration by parts, we have

(5.4) ∀ f ∈ L2
0,

∞∑

1

‖Ri f ‖2
2 = ‖ f ‖2

2.

For any finite set J ⊂ I, let R J f = (Ri f )i∈ J . It is clear that for any fixed f ∈ L2
0 and

for any ǫ > 0 there exists a finite set J0 such that, for any finite set J ⊂ I \ J0, we have

(5.5)
∑

j∈ J

‖Ri f ‖2
2 < ǫ.

Let u be harmonic in Ω. Let K be compact subset of Ω and Ω1 be an open set such
that K ⊂ Ω1 and Ω1 ⊂ Ω. Let φ ∈ B0(Ω) with φ ≡ 1 on Ω1. Set v = φu −

∫
G
φu dν.

Observe that v is a continuous function in L2
0 and that, by the hypoellipticity results

of Theorem 5.7, Lv = (Lφ)u + φu + Γ(φ, u) is also a continuous function in L2
0. We

claim that the series
∑

X2
i v is summable in L2(G). To see this, let w be an arbitrary

function in L2
0 and compute |

∫
w(

∑
J X2

i v) dν|. We have

∣∣∣
∫

w(
∑

J

X2
i v) dν

∣∣∣ =

∣∣∣
∑

J

∫
v(X2

i L−1Lv) dν
∣∣∣

=

∣∣∣
∫ ∑

J

(XiL
−1/2w)(XiL

−1/2Lv) dν
∣∣∣

≤
(∫ ∑

J

|Riw|
2 dν

) 1/2(∫ ∑

J

|RiLv|2 dν
) 1/2

.
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Now, by (5.4),
∫ ∑

J |Riw|
2 dν ≤ ‖w‖2

2. Hence

∥∥∥
∑

J

X2
i v

∥∥∥
2

2
≤

∑

J

‖RiLv‖2
2.

As Lv is in L2
0, (5.5) shows that

∑
I X2

i v is summable in L2(G). To finish the proof of

the theorem, we observe that for any finite set J,
∑

J X2
i v is a harmonic function in

Ω1 (recall that L commutes with each Xi). Applying Theorem 5.10, we obtain

sup
x∈K

∣∣∣
∑

J

X2
i u

∣∣∣ = sup
x∈K

∣∣∣
∑

J

X2
i v

∣∣∣ ≤ C

∫

Ω1

∣∣∣
∑

J

X2
i v

∣∣∣ dν

≤ C
(∫ ∣∣∣

∑

J

X2
i v

∣∣∣
2

dν
) 1/2

= C
∥∥∥

∑

J

X2
i v

∥∥∥
2
.

As
∑

X2
i v is summable in L2(G) it follows that

∑
X2

i u is summable in C(K).

6 Examples

6.1 Laplacians on T = T
∞

Let G = T = R/2πZ where R = R
∞ and Z = Z

∞. Thus, T is the countable product

of circle groups, each isomorphic to T = R/2πZ. For the following discussion it
is important to observe that the product structure is not intrinsically attached to T.
More precisely, writing T as an infinite product is equivalent to choosing a projective
basis E = (Ei) of its Lie algebra R = R

∞, with the property that

(6.1) Z =
{

z =

∑
ziEi : zi ∈ Z

}
.

Once this product structure is fixed, Ei = ∂i can be identified with partial differen-

tiation in the i-th coordinate. Any symmetric non-degenerate Gaussian semigroup
(µt )t>0 is determined by a symmetric positive definite matrix A = (ai, j), so that

L = −
∑

i, j

ai, j∂i∂ j .

See [3, 4, 7, 14]. Set Z0 =
{

z =
∑

ziEi : zi ∈ Z, zi = 0 for all but finitely many i
}

.
Define

(6.2) W (s) = #{θ ∈ Z0 :
∑

ai, jθiθ j < s}.

Then by [7, Theorem 5.13], the semigroup (µt )t>0 has the property (CK∗) if and only
if

(6.3) lim
s→∞

s−1/2 log W (s) = 0.
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By Theorems 5.7 and 1.5, it follows that L is T ′L-Sk
L-hypoelliptic, (resp., T ′L-Tk

L-hypo-
elliptic) if and only if (6.3) holds. It should be noted that this statement is rather ab-

stract in general since the condition (6.3) is hard to check, and the spaces SL, TL and
T ′L do not have very explicit descriptions in terms of the matrix A. From this view-
point it is worth mentioning that (6.3) is equivalent to M(G)-C(G)-hypoellipticity.
We are going now to describe more explicit examples.

Example 6.1 (The symmetric diagonal case) Assume that E is a projective basis of
R such that (6.1) holds. We say that (µt )t>0 is E-diagonal if A is a diagonal matrix
with ai,i = ai , that is,

L = −
∑

ai∂
2
i .

In what follows we always assume that ai > 0 for each i. Much is known about the
properties of (µt )t>0 in this case. See [3, 7, 16]. In particular, H(L) is the Hilbert

space contained in R with orthonormal Hilbert basis

(a
1/2

i ∂i)i∈I .

Instead of the function W defined at (6.2), it is easier to work with

(6.4) N(s) = #{i : ai ≤ s}.

In terms of the function N , the E-diagonal semigroup (µt )t>0 associated to the se-
quence (ai) is (CK∗) if and only if

N(s) = o(s) at infinity.

Let S be one of the spaces Ck
E, Sk

L or Tk
L, k = 0, 1, 2, . . . ,∞. Then T ′L-S-hypoellipticity

holds if and only if N(s) = o(s) at infinity. This improves upon the result in [3]
by enlarging the distribution space from M(T) (Borel measures) to T ′L and allowing

different spaces of smooth functions.
For any integers k, r, [15, Proposition 5.5] gives

(6.5) ∀φ ∈ B(T), ‖∂ℓ1
· · · ∂ℓk

φ‖∞ ≤ a
−r/2

ℓ1
· · · a

−r/2

ℓk
Skr

L (φ).

The condition N(s) = o(s) at infinity implies that
∑

a−1−ǫ
i <∞ for any ǫ > 0. This

and (6.5) show that
(CK∗) ⇒ S

∞
L = TL = D

∞
L .

We now record some further consequences of (6.5).

Theorem 6.2 Let L = −
∑

ai∂
2
i be such that N(s) = o(s) at infinity. Let X = (Xi)

be a projective family with Xi =
∑

xi, j∂ j .

(i) Assume that for each i there exists ni > 0 such that

∑

j

|xi, j |a
−ni

j <∞.

Then XiTL ⊂ TL and L is T ′L-Ck
X-hypoelliptic.
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(ii) Let S be one of the spaces Sk
X or Tk

X , k = 0, 1, 2, . . . ,∞. Assume that there exists

n > 0 such that ∑

j

(∑

i

|xi, j |
2
) 1/2

a−n
j <∞.

Then T ′L-S-hypoelliptic.

Proof Part (i) follows from (6.5) and Theorem 4.2. Part (ii) requires more work. To
apply Theorem 5.7, it suffices to show that (a) P =

∑
X2

i satisfies PTL ⊂ TL and (b)

for each integer k, there exists C and m such that

∥∥∥
∑

ℓ∈Ik

bℓX
ℓφ

∥∥∥
∞

≤ CMm
L (φ)

for all (bℓ) with
∑

Ik b2
ℓ ≤ 1. By (6.5), we have

|Pφ| =

∣∣∣
∞∑

i

X2
i φ

∣∣∣ ≤
∑

j1, j2

(∑

i

|xi, j1
xi, j2

|
)
|∂ j1

∂ j2
φ|

≤
∑

j1, j2

(∑

i

|xi, j1
xi, j2

|
)

a−n
j1

a−n
j2

S4n
L (φ)

≤
[∑

j

(∑

i

|xi, j |
2
) 1/2

a−n
j

] 2

S4n
L (φ).

This proves that P has L-finite order. A similar argument shows that for any (bℓ) with∑
Ik b2

ℓ ≤ 1, we have

∣∣∣
∑

ℓ∈Ik

bℓX
ℓφ

∣∣∣ ≤
[∑

j

(∑

i

|xi, j |
2
) 1/2

a−n
j

] k

S2kn
L (φ).

This proves (b). Theorem 6.2(2) then follows from Theorem 5.7.

The following corollary of Theorem 5.7 and (6.5) should be compared with the much
weaker but more general statement obtained in Theorem 5.11.

Theorem 6.3 Let L = −
∑

ai∂
2
i be such that N(s) = o(s) at infinity. Fix a domain

Ω ⊂ T. Let u be a continuous function in Ω such that Lu = 0 in Ω (in the sense

of distributions). Then for any integers k, n and any compact K ⊂ Ω, there exists a

constant C(k, n,K) such that

∀ ℓ ∈ Ik, sup
K

|∂ℓ1
· · · ∂ℓk

u| ≤ C(k, n,K)[aℓ1
· · · aℓk

]−n sup
Ω

{|u|}.

In particular, for any ǫ > 0, the series
∑

i |ai∂
2
i u|ǫ converges locally uniformly in Ω.
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Example 6.4 (The diagonal case with a first order term) Let us now consider some
examples of diagonal but not symmetric Gaussian semigroups on T. As above, let

E = (Ei), Ei = ∂i . Let

L = −
∑

ai∂
2
i , Z =

∑
bi∂i , P = L + Z.

Let N be defined as in (6.4). Theorems 4.6, 5.8, and 6.5 give the following result.

Theorem 6.5 Assume that N(s) = o(s) at infinity and that there exists an integer n

such that
∑

|bi |a
−n
i < ∞. Let S be one of the spaces Ck

E, Sk
L, Tk

L. Then the operator P is

T ′E-S-hypoelliptic.

Example 6.6 (Hidden diagonal cases) Recognizing whether or not there is a pro-
jective basis of T in which a given Gaussian semigroup (µt )t>0 is diagonal is not an

easy problem. See the discussion in [14]. To illustrate this, consider an increasing
sequence (αi)

∞
1 , αi > 0, and form the matrix A = (ai, j) with ai, j = min{αi , α j},

that is,

A =




α1 α1 α1 α1 · · ·
α1 α2 α2 α2 · · ·
α1 α2 α3 α3 · · ·
α1 α2 α3 α4 · · ·
...

...
...

...
. . .




We will verify below that A is positive definite. Let (µt )t>0 be the symmetric Gaussian

semigroup associated to L = −
∑

i, j ai, j∂i∂ j . If we set

Xi =

∑

j≥i

Ei , X = (Xi),

then X is a projective basis and, setting α0 = 0,

L = −
∑

i

(αi − αi−1)X2
i .

This shows that A is positive definite. Moreover, the lattice Z defining T equals the

X-integer lattice

ZX =
{

z =

∑
ziXi ∈ R : zi ∈ Z

}
.

Thus, viewed in the product structure of T induced by X, (µt )t>0 is diagonal, that is,
(µt )t>0 is X-diagonal with coefficients ai = (αi − αi−1). By Example 6.1 above, it

follows that (µt )t>0 satisfies (CK∗) if and only if

N(s) = #{i : αi − αi−1 ≤ s} = o(s).

For instance, if αi = iβ for some β > 0, then (CK∗) holds if and only if β > 2.

In terms of hypoellipticity, we see that L is T ′L-Ck
X-hypoelliptic if and only if N(s) =

o(s). Observe that the projective basis X is very different from our original basis E.
However, for each i, Ei = Xi − Xi+1. Hence, Ei ∈ HL. By Theorem 4.2 and Lemma
4.3, we see that L is also T ′L-Ck

E-hypoelliptic.
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Example 6.7 Fix α ≥ 0, σ ∈ R, and consider the tridiagonal matrix A = (ai, j)
with ai, j = a j,i given for i ≤ j by

ai, j =





i2α + σ2(i + 1)2α if j = i,

σi2α if j = i + 1,

0 if j > i + 1.

We easily compute a projective basis X = (Xi) in which L = −
∑

i, j ai, j∂i∂ j has the

form L = −
∑

X2
i . It suffices to take

Xi = iα(Ei + σEi+1) = iαEσi where Eσi = Ei + σEi+1.

Case 1 Let us first consider the case where σ ∈ Z. In this case,

Zσ =

{∑
ziE

σ
i : (zi) ∈ Z

∞
}

= Z ⊂ R.

It follows that the semigroup (µt )t>0 is Eσ-diagonal with diagonal coefficients i2α.

Thus this semigroup satisfies (CK∗) if and only if α > 1/2. It follows that L is
T ′L-C∞Eσ -hypoelliptic if and only if α > 1/2. Observe that

(6.6) Ei =

∞∑

j≥i

(−σ) j−1

jα
X j .

Thus, if α > 1/2 and σ = 0,±1, then Ei ∈ H(L). In this case we see that L is
T ′L-C∞E -hypoelliptic. If instead σ is an integer with |σ| > 1, then Ei 6∈ H(L) and, in
fact, is not of finite L-order. Thus we cannot conclude that L is T ′L-C∞E -hypoelliptic.

Case 2 In general, if σ is not an integer, we do not see how to express (µt )t>0 as

a product semigroup (and one certainly should expect that, for some σ, this re-
ally cannot be done). However, (µt )t>0 can be compared efficiently with a diagonal
semigroup as follows. Let D be the diagonal matrix with (i, i) entry di = ai,i =

i2α + σ2(i + 1)2α. Then, for all ξ ∈ R
(∞),

∑

i

diξ
2
i − 2

∑

i< j

|ai, j ||ξi ||ξ j | ≤
∑

i, j

ai, jξiξ j ≤
∑

i

diξ
2
i + 2

∑

i< j

|ai, j ||ξi||ξ j |.

For j > i + 1, ai, j = 0, and

|ai,i+1| ≤
|σ|

1 + σ2

(
|ai,i ||ai+1,i+1|

) 1/2
.

Thus ∑

i< j

|ai, j ||ξi ||ξ j | ≤
|σ|

1 + σ2

∑

i

(|ai,i ||ai+1,i+1|)
1/2|ξi ||ξi+1|.
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By Cauchy–Schwarz inequality, this yields

(
1 −

2|σ|

1 + σ2

) ∑

i

diξ
2
i ≤

∑

i, j

ai, jξiξ j ≤
(

1 +
2|σ|

1 + σ2

) ∑

i

diξ
2
i .

It follows that, assuming as we may that |σ| 6= 1, the semigroup (µt ) satisfies (CK∗)
if and only if #{i : di ≤ s} = o(s), that is, if and only if α > 1/2. Thus, T ′L-C∞Eσ -
hypoellipticity holds for any σ and any α > 1/2 and does not hold if α ≤ 1/2. By

(6.6), T ′L-C∞E -hypoellipticity also holds if |σ| < 1 and α > 1/2.

6.2 Semisimple Groups

Recall that a compact connected group G is called semisimple (see [27, Definition
9.5]) if its commutator G ′ = [G,G] is equal to G itself. In the case of compact

connected Lie groups, this definition coincides with other classical definitions. It is
proved in [8] that many questions about symmetric central Gaussian semigroups on
general compact connected groups can be split into a purely abelian part and a purely

semisimple part. In particular, whether or not a symmetric central Gaussian semi-
group satisfies the property (CK∗) can be reduced to purely abelian and semisimple
parts. See [13] for the treatment of some explicit examples. In this section, we de-
scribe in concrete terms how the hypoellipticity results of this paper apply in the case

of semisimple groups.

Let G be a compact connected metrizable semisimple group. Then there exists
a sequence (Σi) of compact simple Lie groups and a closed central subgroup H of

Σ =
∏

Σi such that

G ∼= Σ/H.

Since the center of Σ is a product of finite groups, H is totally disconnected and the
projective Lie algebra G of G equals the projective Lie algebra of Σ, that is, equals the

product of the Lie algebras Si of the simple Lie groups Σi . Because G and Σ have the
same projective Lie algebra, there is a natural one-to-one correspondence between
finite order left invariant differential operators on G and on Σ. By Theorem 2.2, this
induces a one-to-one correspondence between Gaussian convolution semigroups on

G and on Σ. For each i, denote by ∆i the Laplacian on Σi induced by the Killing
form on Si . This Laplacian ∆i is sometimes called the Casimir operator. Up to
scalar multiplication, it is the unique bi-invariant second order differential operator
without constant term on Σi . For each i, let ni be the dimension of Σi . Set Ji =

{n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni}. Denote by (E j) j∈ Ji
a basis of Si such that

∆i = −
∑

j∈ Ji

E2
j .

Denote by E the projective basis of G formed by the vectors E j , j = 1, . . . .
We can now describe the set of all symmetric central Gaussian semigroups on G.

Namely, there is a one-to-one correspondence between symmetric central Gaussian

https://doi.org/10.4153/CJM-2006-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-029-9


Hypoelliptic Bi-Invariant Laplacians 723

semigroups (µt )t>0 on G and sequences a = (ai) of non-negative numbers such that
the infinitesimal generator of (µt )t>0 is given by

L =

∑
ai∆i = −

∑

i

∑

j∈ Ji

aiE
2
j .

Set ã j = ai if j ∈ Ji and Ãℓ = ãℓ1
· · · ãℓk

if ℓ = (ℓ1, . . . , ℓk) ∈ {1, 2, . . . }k. In this

notation,
L = −

∑

i

ai∆i = −
∑

j

ã jE
2
j .

Note that the vectors a
1/2

i E j , j ∈ Ji, i = 1, 2, . . . form an orthonormal basis of H(L)
and a special projective basis in the sense of Definition 4.4. Set

(6.7) N(s) =

∑

i:ai≤s

ni.

Then it is proved in [5] that (µt )t>0 satisfies (CK∗) if and only if

(6.8) N(s) = o(s) at infinity.

In this setting, Theorems 4.2 and 5.7 give the following statement.

Theorem 6.8 Referring to the notation introduced above, let S be one of the spaces Ck
E,

Sk
L, Tk

L. Then L is T ′L-S-hypoelliptic if and only if (6.8) holds true.

The results of [15, §5] imply that assuming that N satisfies (6.8) (in particular,
ni = O(ai)), we have

∀ ℓ ∈ {1, 2, . . . }k, ∀φ ∈ S
∞
L , ‖Eℓφ‖∞ ≤ Ck,m(φ)A−m

ℓ .

This immediately implies that S∞L = TL and yields the following results.

Theorem 6.9 Let L be as above and assume that (6.8) is satisfied. Let X = (Xi) be a

projective family with Xi =
∑

xi, jE j .

(i) Assume that for each i there exists ri > 0 such that

∑

m

(max
j∈ Jm

|xi, j |)a−ri

m <∞.

Then XiTL ⊂ TL and L is T ′L-Ck
X-hypoelliptic.

(ii) Let S be one of the spaces Sk
X or Tk

X , k = 0, 1, 2, . . . ,∞. Assume that there exist

r > 0 such that ∑

m

(
max
j∈ Jm

|xi, j |
)

a−r
m <∞.

Then L is T ′L-S-hypoelliptic.
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(iii) Let Z =
∑

ziEi and assume that there exist s > 0 such that

∑

m

(
max
j∈ Jm

|z j |
)

a−s
m <∞.

Then L + Z is T ′L-Ck
E-hypoelliptic. Moreover, if X and S are as in (ii) above, L + Z

is T ′L-S-hypoelliptic.

The proof is similar to that of Theorem 6.2 (the first part of the statement in (iii) uses

the fact that E is a special projective basis). We omit the details.

Theorem 6.10 Let L be as above and assume that (6.8) is satisfied. Fix a domain

Ω ⊂ G. Let u be a continuous function in Ω such that Lu = 0 in Ω (in the sense

of distributions). Then for any integers k, n and any compact K ⊂ Ω, there exists a

constant C(k, n,K) such that

∀ ℓ ∈ {1, 2, . . .}k, sup
K

|Eℓu| ≤ C(k, n,K)Ã−n
ℓ sup

Ω

{|u|}.

In particular, for any ǫ > 0, the series
∑

i |ãiE
2
i u|ǫ converges locally uniformly in Ω.
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[18] È. Born, Projective Lie algebra bases of a locally compact group and uniform differentiability. Math. Z.
200(1989), no.2, 279–292.
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