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ABSTRACT

The generalized Poisson distribution with parameters 9 and A was
introduced by Consul and Jain (1973) and has recently found several
instances of application in the actuarial literature. The most frequently used
version of the distribution assumes that 9 > 0 and 0 < A < 1, in which case
the mean and variance are 0/(1 — A) and 9/(1 — A) , respectively. These
simple moment expressions, along with nearly all of the other theoretical
results available for this distribution, fail when A < 0 or A > 1 (e.g.,
Johnson, Kotz, and Kemp, 1992, page 397). In these cases, even the
definition of the probability mass function usually given in the literature is
not properly normalized so that its values do not sum to unity. For this
reason, it is common to truncate the support of the distribution and
explicitly normalize the probability mass function. In this paper we discuss
the estimation of the parameters of this truncated generalized Poisson
distribution using a Bayesian method.
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1. INTRODUCTION

A great many distributions are available for modelling discrete data arising
in the insurance field. A large number of these discrete distributions are
described in Chapter 3 of Klugman, Panjer, and Willmot (1997). Recently,
some authors have also explored the use of Consul's Generalized Poisson
Distribution (GPD) in actuarial settings. Consul (1990) demonstrated that
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the GPD, sometimes also known as the Lagrangian Poisson distribution, is a
plausible model for claim frequency data; Goovaerts and Kaas (1991) and
Ambagaspitiya and Balakrishnan (1994) presented recursive methods to
compute the total claims distribution for certain compound GPD models, as
did Hesselager (1997) for a class of compound Lagrangian distributions
including the compound GPD; Scollnik (1995a) used the GPD, and its
extension to a regression context, in order to model various sorts of claim
frequency data and showed how Markov chain Monte Carlo (MCMC)
methods could be used to implement Bayesian posterior and predictive
analyses of these models (see also Scollnik, 1995b and 1995c); Famoye and
Consul (1995) introduced a version of bivariate GPD (BGPD), discussed
parameter estimation by the method of moments and double zero frequency
and by the method of maximum likelihood, and fit the BGPD to a data set
on accidents sustained by a group of shunters; Vernic (1997) considered the
same BGPD as did Famoye and Consul, and used method of moments
estimation to fit this BGPD to the aggregate amount of claims for a
compound class of policies submitted to claims of two kinds whose yearly
frequencies are a priori dependent.

The purpose of this paper is to clarify some points relating to the GPD
which are frequently misrepresented in the literature and to discuss how
Bayesian posterior and predictive analysis of the truncated GPD and of a
truncated BGPD can proceed using MCMC methods. We begin with a
discussion of GPD models.

2. GENERALIZED POISSON DISTRIBUTION MODELS

The probability mass function of the basic untruncated GPD is commonly
given by

0 forn>mwhen\<0,

and zero otherwise, where 6 > 0, max(—1, —6/m) < A < 1, and m is usually
taken equal to the largest possible positive integer such that 0 + m\ > 0
when A is negative. Often it is explicitly further required that m > 4 (e.g., as
in Vernic, 1997) in order to ensure that there are at least five classes with
non-zero probability when A is negative (see Consul, 1989, page 4), but this
obviously need not be the case. At this time, we will review a few of the
properties associated with (1). Most of these properties are documented in
Consul's (1989) treatment of the GPD. Additional references will be
introduced as required. The reader is forewarned that some authors switch
the roles of the parameters 6 and A. We have adopted the parametrization
found in Consul (1989) and Johnson, Kotz and Kemp (1992, page 396).
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To begin with, suppose that 0 < A < 1 and the value of m is taken equal
to oo. For this case it is known that

T ^ T and ^(1 — Aj

so the variance of the GPD is always larger than or equal to the mean. It is
apparent that this instance of the GPD reduces to the standard Poisson with
parameter 6 when A = 0. The two moment expressions in (2), along with
simple formulae for skewness and kurtosis and virtually all of the other
theoretical results obtained relating to the GPD (e.g., Consul and Jain, 1973;
Ambagaspitiya and Balakrishnan, 1995; Vernic, 1997), are only valid for the
case of the GPD presently under consideration, i.e. when 6 > 0, 0 < A < 1,
and m = 00.

Henze and Klar (1995, page 1877) make the claim that this fact has not
been emphasized enough in the literature, and point to a paper by Alzaid
and Al-Osh (1993) in which it is tacitly assumed that (2) also holds for
negative values of A. Famoye and Consul (1995, page 128) recently made the
same errant assumption, without alerting the reader as to its nature. It is also
very common for authors to estimate the GPD parameters by equating
empirical moments to the theoretical moments obtained in the special case
described above, even when the sample variance is strictly less than the
sample mean so that negative estimates of A result (e.g., Consul, 1989; see
also Vernic, 1997).

Actually, in order to permit cases where the variance is smaller than the
mean, Consul and Jain (1973) had proposed to admit negative values of A.
However, when the value of A is negative the probability mass function (1) is
no longer normalized. To see this, suppose that 6— 1.6, A = -0.75 and
m = 2. Then Pr(N = 0) = 0.2019, Pr(N = 1) = 0.6839, Pr(N = 2) =
0.0724, Pr(N > 2) = 0.0, and the sum of these supposedly exhaustive
'probabilities' is only 0.9582. This problem was not recognized in the early
literature concerning the GPD (e.g., Consul and Jain, 1973) until Nelson
(1975) indicated that a cautious approach was warranted in the use of the
GPD model with negative values of A. One solution to this problem is to
simply normalize the function in (1) when A < 0. In fact, (1) will generally
need to be normalized except in the special case that 6 > 0, 0 < A < 1, and
m = 00. Accordingly, Consul and Famoye (1989) defined the probability
mass function of the truncated GPD to be

P l d X m ) for n = 0 , 1 , 2 , . . . , m (3)

and zero otherwise, where 6 > 0, —00 < A < 00,

n=0
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and m is any positive integer such that 6 + m\ > 0. Usually, m is taken equal
to the largest such value. Note that the definition of the truncated GPD
extends the permitted range of the parameter A to the entire real line.

When class frequencies are inappropriately calculated using (1) instead of
(3), an error of truncation is said to occur. Consul and Shoukri (1985) and
Consul (1989, Section 9.1.1) have made an analysis of the error of truncation
when — 1 < A < 0. The simulation study they conduct is not exhaustive, but
it does appear to indicate that the error of truncation may be serious when
the number of non-zero probability classes is 3 or 4 and the value of 9 is
approximately between 0.7 and 4.5. The reader can easily verify that the
error of truncation may also be serious when A<— 1 or A > 1.

Consul and Famoye (1989) studied the truncated GPD in some detail and
discussed parameter inference using maximum likelihood (ML) estimation
and estimation based upon the empirical mean and the ratio of the first two
empirical class frequencies. Their main conclusion was that the ML
estimates determined using (3) as the basis of the likelihood function are
generally closer to the true values of the population parameters than are the
ML estimates determined on the basis of (1). Hence, even though the error
of truncation associated with using (1) may be small in some cases, they
suggested that one should estimate the values of the parameters 9 and A
using the truncated GPD model (3). It should be noted that the estimation
methods persued by Consul and Famoye (1989) are implemented in such a
way so as to determine estimates of 6 and A conditional upon a presumed
known value of m. Since m is not known, Consul and Famoye (1989) simply
set it equal to the value of the largest observation.

Bayesian estimation is a likelihood based style of inference that
incorporates prior information on the unknown variables. ML estimates
are equivalent to the nodes of the Bayesian posterior distribution, when the
prior distribution for the unknown variables is flat. However, the goal of a
Bayesian analysis is generally not just a point estimate like the posterior
mode (or mean or median), but a representation of the entire distribution for
the unknown parameter(s) (Gelman, Carlin, Stern, Rubin, 1995, page 301).
In the next Section, we discuss how a Bayesian analysis of the truncated
GPD with an informative prior distribution can be accomplished using a
MCMC approach. We emphasize that the Bayesian estimation method
yields a posterior distribution for all of the unknown parameters, including
m (cf. Consul and Famoye, 1989).

3. A BAYESIAN ANALYSIS OF THE TRUNCATED GPD MODEL

Consul and Famoye (1989) argue that any discrete probability model for a
random variable N defined on the set of non-negative integers is
automatically truncated in real life situations because the sample size is
always finite and the probabilities for large values of N become so small so as
to be unobservable. This is particularly true in an insurance setting when the
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number of claims per policy is small. Assuming this context, we suppose that
the sampling model is taken to be approximately truncated GPD as in (3)
with parameters 9, A, and m, so that

Pr(N =j\e,X,m) = qj(6,\,m) = ^ ' x ' ^ l for j = 0, 1,2, ..., m, (4)
A^(7, A , mj

and zero otherwise, with 9 > 0 and -oo < A < oo, with m equal to some
positive integer such that 9 + mX > 0, and with 1 < m < M so that there is
at least one non-zero class with non-zero probability. Setting M equal to a
value between 5 & 15, say, will generally suffice when the number of claims
per policy or accidents per individual is small. We recognize that the value
selected for the parameter M is formally an expression of a priori knowledge.
This is further discussed in the next paragraph. If the data consists of
observed class frequencies rtjj = 0, ..., M, with n = «o + ... «M, then the
likelihood function is of the form

/(M,in) «nfr(g»*•'")'= K(8,\,m)n ' ( )

If the data includes some grouped class frequencies, then the likelihood
function is modified in the obvious way. For example, if we observe the first
two class frequencies «o and n\ along with the grouped class frequency
g2 = «2 + ••• +n\i, then the likelihood function is of form

In order to complete the definition of a full probability model, it is now
necessary to specify a prior distribution for the unknown parameters 9, X,
and m. The reader is free to use any reasonable prior specification as befits
the expert opinion that is available to him or her. For our presentation, we
will consider 3 different forms of prior density specification (PDS). For the
first PDS, we will assume that the parameters are distributed a priori in the
following way:

p{9, A, m) (x p{9)p(X)p(m) when 9 + mX>0 , (6)

and zero otherwise, with

p(9) ~ Gamma {\, 2) , (7)

p(X) ~ Normal (0,0.1) , (8)

p{m) ~ Uniform {1, ..., M} . (9)

The Gamma distribution in (7) is parametrized so as to have mean and
standard deviation both equal to 0.5, and the Normal distribution in (8) has
standard deviation equal to 0.1. With respect to the Uniform distribution in
(9), we are free to attach a hyper-prior distribution to the parameter M. We
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have not pursued this particular avenue, although in Section 5 we will
compare the use of several different values of M in the context of a particular
data analysis.

Another approach is to forgo the introduction of M entirely, and rather
specify a distribution p(m) on the entirety of the non-negative integers (in
effect, M = oo). In this case, equations (6), (7) and (8) would be unchanged,
and (9) might be replaced with

p{m) ~ Poisson (fi) , (10)

for some specified value /z > 0. The parameter restrictions in effect would be
9 > 0, -oo < A < oo, and 6 + m\ > 0. An analysis of the truncated GPD
model incorporating this second form of PDS will also follow in Section 5.

Our third PDS will be similar to the two above, with the added restriction
that m = M, for some specified value M < oo. That is, our third analysis will
be conditional on a fixed value of m < oo.

By multiplying the likelihood and prior density functions together, we
obtain the form of the posterior distribution up to a normalizing constant,
that is

p{e,\,m\no,...,nm)<xp(6)p(\)p(m)l(6,\,m) when 9 + m\ > 0 , (11)

and zero otherwise, with 9 > 0 and — oo < A < oo. If we let n* denote the
value of the largest observation, then we also require that m e {«*,..., M}.
Here, either the value of M < oo is known as in the case of our first PDS, or
else M — oo as in the second. In the case of our third PDS, M is assumed to
be known and we further condition upon the assumption that m — M < oo.
At this stage, the complete probability model can be analysed using a
numerical method. We propose the use of a MCMC method in order to
complete the analysis of the posterior and predictive distributions.

4. COMPLETING THE BAYESIAN ANALYSIS USING A MCMC METHOD

In order to complete the Bayesian analysis of the truncated GPD model, we
adopt a MCMC method. In particular, we implement a 'single-component
Metropolis-Hastings' (Gilks, Richardson, and Spiegelhalter, 1996, page 10),
or 'variable-at-a-time Metropolis-Hastings' (cf. Chan and Geyer's discussion
of Tierney's 1994 paper, page 1748; also, Haastrup and Arjas, 1996, page
156), algorithm. This algorithm simulates a realization of a Markov chain
which has the posterior distribution of the unknown parameters 9, A, and m
as its equilibrium distribution. The algorithm generates a sequence of
simulated parameter values, 0^\ A^, m®, 9^\ \^\ tn^\ ..., whose empiri-
cal distribution converges towards the posterior distribution of the unknown
parameters. The posterior distribution can thus be approximated on the
basis of these values, and the approximation can be made as exact as we
desire by simply increasing the length of the simulation. Note that
predictions can also be obtained by simply averaging the truncated GPD
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probability mass function over the sampled parameter values. That is, the
probability mass function for a future observation Nf, given the observed
class frequencies «o, ••-, nm, can be estimated using the result that

Pr(Nf =j | no, ..., n (12)

•£/ /•
Pr{Nf =j | 0,X,m)p(0,X,m \ n0, ..., nm) dd dX

Here, S represents the number of iterations for which the Markov chain is
allowed to 'burn-in' and L represents the number of iterations the Markov
chain is run thereafter. A method for checking the convergence of the
Markov chain by comparing several different and independently simulated
sequences is given in Gelman, Carlin, Stern, and Rubin (1995, pages 330-
333). If several different and independently simulated sequences are
available, then the sample average in (12) should be taken over all of the
available sample paths.

There are many ways of implementing the Markov chain described
above. We proceed in the following manner. Let 0(°\ X^°\ and m^ denote
arbitrary starting values for the 3 random variables under examination. In
this context, the /th iteration of the single-component Metropolis-Hastings
algorithm consists of 3 updating steps:

Step 1
We enter the first step of the /th iteration with values 0('~l\ X^'~l\ and m('~lh
In this step, we update the value of 9 by generating a candidate value 9* from
a proposal distribution indexed by 6^'"^ with density qe{0\0^l~^). The
candidate value is accepted with probability

mm )qe{9* l V

where the density p(9,X,m \ «o, •••, nm) is as given in equation (11). If the
candidate value is accepted, we assign 0^ equal to 9*. Otherwise, 0® is set
equal to fl^1';

Step 2
We enter the second step of the /th iteration with values #W, A '̂"1), and
m^'~x\ In this step, we update the value of A by generating a candidate value
A* from a proposal distribution indexed by A '̂"1) with density ^ 1 '
The candidate value is accepted with probability

no, .., nm)qx(X*
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If the candidate value is accepted, we assign A^ equal to A*. Otherwise, A*'' is
set equal to A''"1';

Step 3
We enter the third and last step of the rth iteration with values 9^'\ A(i), and
m^~x\ In this step, we update the value of m by generating a candidate value
m* from a proposal distribution with density qm{m\m^~^). The candidate
value is accepted with probability

non)q(m^\m*) \

A('W-i) | n0, ..., nm)qm[m* \ m^

If the candidate value is accepted, we assign m^ equal to m*. Otherwise, m^
is set equal to m^~^. This concludes the third step of the /th iteration, and we
exit from it with the updated values 0^'\ A^, and mw.

qm(The specification of the proposal distributions <?<?(• I•)> <7A(-|-)> and qm

appearing in the steps above still remains. This is discussed in Section 5. It
should be emphasized that the algorithm given above describes only one
possible implementation of the single-component Metropolis-Hastings
algorithm. A fuller discussion of this algorithm and other MCMC methods
will not be presented at this time, since several such discussions are readily
available in the texts by Carlin and Louis (1996, Section 5.4), Tanner (1996,
Chapter 6), and Gelman, Carlin, Stern, and Rubin (1995, Chapter 11).
Within the actuarial literature, the recent articles by Haastrup and Arjas
(1996) and Scollnik (1995d) may prove instructive to a reader unfamiliar
with these methods. Also, Pai (1997) discusses the use of MCMC to perform
a Bayesian analysis to scrutinize the compound loss distribution.

5. NUMERICAL ILLUSTRATION

The data we analyse is taken from Adelstein (1949, p. 379) and gives the
observed number of accidents in the age-group 26-30 years during the first
year of service for a group of railyard shunters. The data appears in Table 1,
and is underdispersed with a sample mean of 0.5815 and a sample variance
of 0.5719. Consul and Famoye (1989) previously fit a truncated GPD model
to this data and obtained the ML estimates 6 = 0.6115 and A = -0.0676.
However, Consul and Famoye (1989) proceeded by grouping the last three
of the class frequencies appearing in Table 1 into a single class of frequencies
greater than or equal to 4 and also appear to have set m = 4 for the purposes
of estimation even though one worker experienced 6 accidents. Conse-
quently, their ML estimates are adversely affected. Our own analysis will use
the original form of the data presented by Adelstein.
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TABLE 1

ADELSTEIN'S (1949) SHUNTERS' ACCIDENTS DATA.

FIRST YEAR OF SHUNTING. A G E 26-30 YEARS.

Number of Accidents Number of Men

0 121

1 85

2 19

3 1

4 0

5 0

6 1

We proceed to analyse Adelstein's data using the truncated GPD model
along with each PDS introduced in Section 3. We utilise the MCMC method
described in Section 4. A few specifics concerning the implementation of the
Markov chain are worthy of note. For the univariate proposal distributions
associated with the parameters 9 and A, we found that normal distributions
centered at the current value of the parameter in question and with standard
deviation of 0.05, that is

qe{0\s) ~ Normal (s, 0.05) and qx(\\s) ~ Normal (s, 0.05),

yielded acceptance rates in the 50 to 75 per cent range. The proposal
distribution for the parameter m was taken to be Poisson with mean fj, in the
case of the analysis incorporating the second PDS, that is

qm(m\s) = qm{m) ~ Poisson (/i) .

This makes Step 3 of the algorithm an independence sampler (Gilks,
Richardson, and Spiegelhalter, 1996, page 9; also, Tierney, 1994, page 1706)
since qm(m\m^l~^) no longer depends on the value of m^'~l\ For the analysis
incorporating the first PDS, exact draws of m from its full conditional
posterior distribution were used. In this case, the acceptance probability (15)
is always equal to 1. For the analysis incorporating the third PDS, no draws
of m were required since this analysis assumed that the value of m was fixed
and known.

For each analysis, four realizations of a Markov chain were simulated.
Each chain was permitted to run for 10,000 iterations. The results of the first
5,000 iterations were discarded as 'burn-in', and convergence of the Markov
chains for each analysis was formally monitored by applying the diagnostic
of Gelman, Carlin, Stern, and Rubin (1995, page 330-333) to the output of
iterations 5001 through 10,000. The behaviour of the realised Markov chain
sample paths associated with one of the simulations (corresponding to the
second PDS with n — 10) is illustrated in Figures 2, 3 and 4. In these plots, it
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is apparent that the simulated Markov chains are well on their way towards
convergence by the 100th iteration in each case. Estimated posterior
distributions for the parameters 6, A, and m are presented in Figures 5, 6 and
7. These posterior distributions are estimated on the basis of the 20,000
(4 times 5,000) simulated draws for each parameter from its posterior
distribution.

0 20 40 60 80 100

0.8

0.7

0.6 -

0.5 -

0.4 -

5000 5020 5040 5060 5080 5100

Iteration

FIGURE 1: Sample Paths for the Parameter 6.
Iterations 1 to 100 and 5000 to 5100.

(Second PDS with /x = 10)
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0 20 40 60 80 100

0.15

0.10

0.05

-0.10 -

5000 5020 5040 5060 5080 5100

Iteration
FIGURE 2: Sample Paths for the Parameter A.

Iterations 1 to 100 and 5000 to 5100.
(Second PDS with y, = 10)
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10

0 20 40 60 80 100

20

15

10

5000 5020 5040 5060 5080 5100

Iteration
FIGURE 3: Sample Paths for the Parameter m.

Iterations 1 to 100 and 5000 to 5100.
(Second PDS with //. = 10)
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6 i

0 J

0.4 0.5 0.6 0.7 0.8

Theta
FIGURE 4: Estimated Posterior Density Functions for the Parameter 8.

(Second PDS with fi = 10).

10

8

4 -

2 -

0 J

-0.10 0.0 0.05 0.10 0.15

Lambda
FIGURE 5: Estimated Posterior Density Functions for the Parameter A.

(Second PDS with /i = 10).
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0.10

0.08
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0.04

0.02

0.0

0 10 15 20 25

m
FIGURE 6: Estimated Posterior Density Functions for the Parameter m.

(Second PDS with p = 10).

Summary results for all of our analyses appear in Tables 2 through 7.
From Tables 3, 5, and 7, one can observe that predictive inferences are
largely unaffected by the particular choice of PDS.

TABLE 2

ESTIMATED POSTERIOR MEANS AND SDS FOR THE PARAMETERS 0, A, AND m
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF M (m < \i)

Parameter

e

A

m

A / = 6

0.5837

(0.0556)

0.0034

(0.0353)

6

(0)

M = 10

0.5861

(0.0541)

0.0009

(0.0340)

8.0016

(1.4196)

A* = 2 5

0.5807

(0.0536)

0.0085

(0.0316)

14.9864

(5.7347)
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TABLE 3

THE ESTIMATED PREDICTIVE DISTRIBUTION Pr(Nj = nj\n0, ..., nm)
RESULTING UNDER THE FIRST PDS FOR 3 VALUES OF M (m < M)

149

M=10 M=25

0
1
2
3
4
5

> 6

0.5587

0.3237

0.0951

0.0190

0.0030

0.0004

0.0001

0.5573

0.3251

0.0953

0.0189

0.0029

0.0004

0.0001

0.5603

0.3213

0.0952

0.0194

0.0032

0.0005

0.0001

mean

(sd)

0.5857

(0.7711)

0.5867

(0.7697)

0.5858

(0.7749)

TABLE 4

ESTIMATED POSTERIOR MEANS AND SDS FOR THE PARAMETERS 0, A, AND m
RESULTING UNDER THE SECOND PDS FOR 4 DIFFERENT VALUES OF fi

Parameter

0

A

m

0.5810

(0.0529)

0.0034

(0.0346)

6.32473

(0.6319)

0.5831

(0.0544)

0.0032

(0.0350)

7.2713

(1.4242)

fj, = 10

0.5828

(0.0531)

0.0051

(0.0335)

10.3290

(2.7903)

/t = 25

0.5774

(0.0529)

0.0150

(0.0291)

24.6669

(5.0021)

TABLE 5

THE ESTIMATED PREDICTIVE DISTRIBUTION Pr(N; = nf\n0, ..., nm)
RESULTING UNDER THE SECOND PDS FOR 4 DIFFERENT VALUES OF /I

"f

0

1

2

3
4

5
>6

mean

(sd)

H = 2

0.5602

0.3231

0.0945

0.0188

0.0030

0.0004

0.0001

0.5830

(0.7692)

0.5590

0.3236

0.0949

0.0189

0.0030

0.0004

0.0001

0.5849

(0.7704)

H = 10

0.5591

0.3230

0.0951

0.0192

0.0031

0.0004

0.0001

0.5858

(0.7724)

^ = 25

0.5621

0.3184

0.0953

0.0201

0.0034

0.0005

0.0001

0.5863

(0.7803)
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TABLE 6

ESTIMATED POSTERIOR MEANS AND SDS FOR THE PARAMETERS 8, A, AND m
RESULTING UNDER THE THIRD PDS FOR 3 VALUES OF M(m = M)

Parameter

9

A

m

«/

0

1

2

3

4

5

> 6

mean

(raf)

A / = 6

0.5844

(0.0532)

0.0025

(0.0343)

6

(0)

TABLE 7

M = 10

0.5838

(0.0545)

0.0029

(0.0333)

10

(0)

THE ESTIMATED PREDICTIVE DISTRIBUTION Pr(N; = nf\n0, ...,

RESULTING UNDER THE THIRD PDS FOR 3 VALUES OF M(m =

M = 6

0.5583

0.3243

0.0951

0.0189

0.0030

0.0004

0.0001

0.5857

(0.7700)

M= 10

0.5586

0.3238

0.0951

0.0189

0.0030

0.0004

0.0001

0.5854

(0.7703)

n,,,)
M)

M = 25

0.5748

(0.0511)

0.0160

(0.0279)

25

(0)

M = 25

0.5636

0.3175

0.0948

0.0200

0.0034

0.0005

0.0001

0.5842

(0.7796)

6. FUTURE RESEARCH: THE CORRELATED TRUNCATED BGPD MODEL

Famoye and Consul (1995) and Vernic (1997) have both considered a BGPD
(bivariate GPD) formed by applying the method of trivariate reduction. This
method proceeds as follows: let N\, N2 and JV3 be independent GPD random
variables with respective parameters (9\, X\), (#2, X2), and (#3, A3). Then the
random vector (X, Y) is said to have a correlated BGPD if X — N\ + Nj and
Y = N2 + N3. Unfortunately, both Famoye and Consul (1995) and Vernic
(1997) implicitly permit the parameters A,, / = 1, 2, 3, to take on negative
values but fail to correct the definitions of the affected GPD and BGPD
distributions by appropriately truncating and normalizing them.

In order to correct this problem, we define a correlated truncated BGPD
by the method of trivariate reduction. Let TVJ, N2 and ./V3 be independent
truncated GPD random variables with respective parameters (0\,\\,m\),
(62,X2,nt2), and (6s,X3,rrii). Then the random vector (X, Y) will be said to
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have a correlated truncated BGPD if X = N\ + N2 and Y — N2 + N3 as
before. It should be possible to implement Bayesian posterior and predictive
inferences for this distribution by using an extension of the MCMC method
described in Sections 3 and 4 along with a data augmentation method to
simulate the unobserved values of N\, N2 and JV3, given the observations X
and Y along with the current simulated values of the parameters (0,-, A,-,/M,-),
/ = 1, 2, 3. This procedure will be further explained, and also applied to a
numerical example, in a paper to follow.
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